Calculus — 23. Series, Solutions

1. Let T' € L(IR") be a linear mapping.
(a) Prove: If A is an eigenvalue of T', then ||T']| > | A|.
(b) Compute the norm of A, B € L(RR?), where

A= 01 and B = 0 -1 .
0 0 1 0
Which are the eigenvalues of A and B?

Proof. (a) We use the characterization of ||T'|| given after Definition 1:

HTH:sup{%'xeR",x#O}. (1)

Since A is an eigenvalue of T there is a non-zero eigenvector v € R™ with Tv = A\v.
Applying the norm to this equation yields

[T]]
[Toll = [[Avll = [A] ol = =
o0 ]|

[ AT

Now (1) yields || T'|| > | A|. (b) Inserting the special vector z = (0,1)" into (1) we
obtain na lower bound for the norm:

||Ax||:H<8 (1)) @)L Il _
] IO V2T

On the other hand by Proposition 1 and Definition 1 we have
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2
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i=1 j=1

1Al =

IA[l <

Hence, ||A]| < v124+0+04 0= 1. We conclude ||A|| = 1. Since
B T _ 0 -1 T _ —XT9
i) 1 0 i) Al

|Bx| = \/(=22)* + 21 = ||z]| = [B] = 1.

we have by (1)

Note that the eigenvalues of A are A\; = Ay = 0 whereas the eigenvalues of B are
+i. ]

2. Find the partial derivatives of the following functions
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(a) f(x,y,z) = sin(xsiny)°*.

(b) f(x,y,2) = a¥*=.

(€) f(z,y,2) = (y +2)".

(d) f(z,y) = g(x)"® (in terms of g, h, ¢, and h'.)
(e) C

e)

ompute Dy f(1,y) for

ISC

f(z,y) =y* 4+ arctan(arctan(arcsin(z”® 4 3?))) log z.
Hint. There is an easy way to do this.

Solution. (a) Sorry, it was not quite clear how to read the function, f(z,y,2) =
(sin(zsiny))

COs 2

©s2). In the first case we have

or sin((x siny)

cosz—1

fu(x,y, z) = cos z sin(zsin y) cos(z siny) sinvy,

)cos z—1

fy(x,y,2) = cos z sin(xsiny cos(z siny)x cosy,

f2(z,y, z) = (sin(xsiny))“** log(sin(x sin y) ) (— sin 2).
In the second reading we have

cosz—1

fe(z,y, 2) = cos((zsiny)“*?) cos z(z sin y) sin y,

fu(x,y, 2) = cos((x siny)®*?) cos z(x sin y)*** 'z cos y,

fa(z,y, z) = cos((xsiny)°*?)(z siny)*** log(z sin y)(— sin 2).
fo=+2)2v 1 f,=f. =2"logx.

fo=(+2)"logly+2), fy=Ff=xy+z)""
(d)
fol@,y) = h(y)g(@)" g (x),  fy(z,y) = g(x)"@ log(g(x))N (y).

(e) Since we have to compute the partial derivative with respect to y, we can first
insert x = 1 and then compute the derivative:

1

11
f(1,) =y" + arctan(arctan(arcsin(1 + 3)))log 1 = y.
Hence Dy f(1,y) = diy (y) = 1.

. Let L
vy (@) #(0,0)

fley) = {0, (z,1) = (0,0).

Prove that f is twice partial differentiable on R?, however f,,(0,0) # f,.(0,0).
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Proof. Tt is obvious that f € C®(R?\{(0,0)}), i.e. f is infinitely often continuously
partial differentiable on R?\0. This follows from Proposition4.3. First we compute the
partial derivatives of first order for (z,y) # (0,0) and we show that f,(0,0) = £,(0,0) =0
exist. For (z,y) # (0,0) we have

2 2

Tt —y 2a(x? +y?) — (22 —y?)2x  ya? —y® 42y
Dy f(z,y) = y—5— + 2y ( ) 4( 2r_ > T
r r r r
Similarly,
2 —ay?  4xdy?
DQf(x7 y) = r2 - 4
By definition,
le(070>_/111£% h _ilgr(l)ﬁ_o'
Similarly,
DQf(OvO)_/lg(l) h _}lLH%E_O‘
This shows that f is partial differentiable at (0,0), too.
By definintion
_d RO = 00 =
D2D1f(070) - d_y (fl‘(07y))|y:0 - }llli% h - lllli% h = -1
On the other hand
iy D10 = 1,(0.0) G
Dy D, f(0,0) = /1112% h N /lzlir(l) ho L
Similarly,
BERT f:L“(th)_fm(O?O) 1 0 _
DDy f(0,0) = /1113(1) h B llzlir(l) h 0
e FO.D~£,0.0) 0
ERT Y 9 - Y 9 T g
Dy D, f(0,0) = ;1112% h B ]1113% h 0
Hence, all partial derivatives of f up to order 2 exist on R? however,
fye(0,0) = =1 # 1= £,,(0,0). n



