
Calculus – 23. Series, Solutions

1. Let T ∈ L(
�

n) be a linear mapping.

(a) Prove: If λ is an eigenvalue of T , then ‖T‖ ≥ |λ |.
(b) Compute the norm of A, B ∈ L(

� 2), where

A =

(

0 1

0 0

)

and B =

(

0 −1

1 0

)

.

Which are the eigenvalues of A and B?

Proof. (a) We use the characterization of ‖T‖ given after Definition 1:

‖T‖ = sup

{ ‖Tx‖
‖x‖

∣

∣

∣

∣

x ∈ � n, x 6= 0

}

. (1)

Since λ is an eigenvalue of T there is a non-zero eigenvector v ∈ �
n with Tv = λv.

Applying the norm to this equation yields

‖Tv‖ = ‖λ v‖ = |λ | ‖v‖ =⇒
v 6=0

‖Tv‖
‖v‖ = |λ | .

Now (1) yields ‖T‖ ≥ |λ |. (b) Inserting the special vector x = (0, 1)> into (1) we

obtain na lower bound for the norm:

‖A‖ ≥ ‖Ax‖
‖x‖ =

∥

∥

∥

∥

(

0 1

0 0

)

(

0
1

)

∥

∥

∥

∥

∥

∥

(

0
1

)
∥

∥

=

∥

∥

(

1
0

)
∥

∥

√
02 + 12

= 1.

On the other hand by Proposition 1 and Definition 1 we have

‖A‖ ≤

√

√

√

√

m
∑

i=1

n
∑

j=1

a2
ij

Hence, ‖A‖ ≤
√

12 + 0 + 0 + 0 = 1. We conclude ‖A‖ = 1. Since

B

(

x1

x2

)

=

(

0 −1

1 0

) (

x1

x2

)

=

(−x2

x1

)

we have by (1)

‖Bx‖ =
√

(−x2)2 + x2
1 = ‖x‖ =⇒ ‖B‖ = 1.

Note that the eigenvalues of A are λ1 = λ2 = 0 whereas the eigenvalues of B are

±i.

2. Find the partial derivatives of the following functions
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(a) f(x, y, z) = sin(x sin y)cos z.

(b) f(x, y, z) = xy+z .

(c) f(x, y, z) = (y + z)x.

(d) f(x, y) = g(x)h(y) (in terms of g, h, g′, and h′.)

(e) Compute D2f(1, y) for

f(x, y) = yxx
x

x

+ arctan(arctan(arcsin(x2 + y2))) log x.

Hint. There is an easy way to do this.

Solution. (a) Sorry, it was not quite clear how to read the function, f(x, y, z) =

(sin(x sin y))cos z or sin((x sin y)cos z). In the first case we have

fx(x, y, z) = cos z sin(x sin y)cos z−1 cos(x sin y) sin y,

fy(x, y, z) = cos z sin(x sin y)cos z−1 cos(x sin y)x cos y,

fz(x, y, z) = (sin(x sin y))cos z log(sin(x sin y))(− sin z).

In the second reading we have

fx(x, y, z) = cos((x sin y)cos z) cos z(x sin y)cos z−1 sin y,

fy(x, y, z) = cos((x sin y)cos z) cos z(x sin y)cos z−1x cos y,

fz(x, y, z) = cos((x sin y)cos z)(x sin y)cos z log(x sin y)(− sin z).

(b)

fx = (y + z)xy+z−1, fy = fz = xy+z log x.

(c)

fx = (y + z)x log(y + z), fy = fz = x(y + z)x−1.

(d)

fx(x, y) = h(y)g(x)h(y)−1g′(x), fy(x, y) = g(x)h(y) log(g(x))h′(y).

(e) Since we have to compute the partial derivative with respect to y, we can first

insert x = 1 and then compute the derivative:

f(1, y) = y11
1
1

+ arctan(arctan(arcsin(1 + y2))) log 1 = y.

Hence D2f(1, y) = d
dy

(y) = 1.

3. Let

f(x, y) =

{

xy x2−y2

x2+y2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

Prove that f is twice partial differentiable on
� 2, however fxy(0, 0) 6= fyx(0, 0).
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Proof. It is obvious that f ∈ C∞(
� 2 \ {(0, 0)}), i. e. f is infinitely often continuously

partial differentiable on
� 2 \ 0. This follows from Proposition 4.3. First we compute the

partial derivatives of first order for (x, y) 6= (0, 0) and we show that fx(0, 0) = fy(0, 0) = 0

exist. For (x, y) 6= (0, 0) we have

D1f(x, y) = y
x2 − y2

r2
+ xy

2x(x2 + y2) − (x2 − y2)2x

r4
=

yx2 − y3

r2
+

4x2y3

r4
.

Similarly,

D2f(x, y) =
x3 − xy2

r2
− 4x3y2

r4
.

By definition,

D1f(0, 0) = lim
h→0

f(h, 0) − f(0, 0)

h
= lim

h→0

0

h
= 0.

Similarly,

D2f(0, 0) = lim
h→0

f(0, h) − f(0, 0)

h
= lim

h→0

0

h
= 0.

This shows that f is partial differentiable at (0, 0), too.

By definintion

D2D1f(0, 0) =
d

dy
(fx(0, y))|y=0 = lim

h→0

fx(0, h) − fx(0, 0)

h
= lim

h→0

−h3

h2

h
= −1.

On the other hand

D1D2f(0, 0) = lim
h→0

fy(h, 0) − fy(0, 0)

h
= lim

h→0

h3

h2

h
= 1.

Similarly,

D1D1f(0, 0) = lim
h→0

fx(h, 0) − fx(0, 0)

h
= lim

h→0

0

h
= 0

and

D2D2f(0, 0) = lim
h→0

fy(0, h) − fy(0, 0)

h
= lim

h→0

0

h
= 0.

Hence, all partial derivatives of f up to order 2 exist on
� 2; however,

fyx(0, 0) = −1 6= 1 = fxy(0, 0).
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