
Calculus – 22. Series, Solutions

1. Prove: If f is an even or odd periodic function, i. e. f(−x) = f(x) or f(−x) = −f(x)

for all x, respectively, then the Fourier series of f takes the form

a0

2
+

∞
∑

k=1

ak cos kx and

∞
∑

k=1

bk sin kx, respectively.

Hint. Show first that
∫ 2π

0
f(x) dx =

∫

π

−π
f(x) dx.

Proof. Suppose f is periodic and integrable on [0, 2π]. Then we have for every a ∈
�

∫ 2π

0

f(x) dx =

∫

a+2π

a

f(x − a) dx =

∫ 2π

a

f(x − a) dx +

∫

a+2π

2π

f(x − a) dx

=

∫ 2π

a

f(x − a) dx +

∫

a

0

f(x + 2π − a) dx

=

∫ 2π

a

f(x − a) dx +

∫

a

0

f(x − a) dx

=

∫ 2π

0

f(x − a) dx =

∫ 2π+a

a

f(x) dx. (1)

This shows that all integrals over an intervall of length 2π coincide; in particular
∫ 2π

0
f dx =

∫

π

−π
f dx.

It is easy to see that for any odd function g ∈ R on [−a, a] and every for every

a ∈
�

+,
∫

a

−a
g(x) dx = 0:

∫

a

−a

g(x) dx =

∫ 0

−a

g(x) dx +

∫

a

0

g(x) dx =
t=−x

∫ 0

a

g(−t)(− dt) +

∫

a

0

g(x) dx

=

∫

a

0

−g(t) dt +

∫

a

0

g(x) dx = 0. (2)

Suppose now f is even; then f(x) sin kx is odd since

f(−x) sin(k(−x)) = −f(x) sin kx,

and we have by (1) and (2)

bk =
1

π

∫ 2π

0

f(x) sin kx dx =
1

π

∫

π

−π

(odd function) dx = 0.

Hence f ∼ a0/2 +
∑

∞

k=1 ak cos kx.

Suppose now, f is odd. Then f(x) cos kx, k ∈ � +, is odd since cos kx is even, and

we obtain

ak =
1

π

∫ 2π

0

f(x) cos kx dx =
1

π

∫

π

−π

(odd function) dx = 0.

Hence, f ∼
∑

∞

k=1 bk sin kx.
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2. Compute the Fourier series of the periodic function f :
�

→
�

f(x) = |x | if x ∈ [−π, π].

Apply Parseval’s formula. Compare this result with Homework 22.4 (a).

Solution. By the result of the previous homework, bk = 0 since |x | is even. We

have

a0 =
1

π

∫

π

−π

|x | dx =
2

π

∫

π

0

x dx =
2

π

1

2
π2 = π.

Using integration by parts with u = x, v′ = cos kx, u′ = 1, v = 1/k sin kx we have

for k ≥ 1

ak =
2

π

∫

π

0

x cos kx dx =
2x

kπ
sin kx

∣

∣

∣

∣

π

x=0

−
2

kπ

∫

π

0

sin kx dx

= 0 +
2

kπ

(

1

k
cos kx

)
∣

∣

∣

∣

π

0

=
2(cos kπ − 1)

πk2
=

2((−1)k − 1)

πk2

=

{

0, if k is even,

− 4
πk2 , if k is odd.

The Fourier series of f reads

f(x) ∼
π

2
−

4

π

∞
∑

n=0

cos(2n + 1)x

(2n + 1)2
.

Since
∑

k∈ �

| ck |
2 =

a2
0

4
+

1

2

∑

n∈ �

(a2
n

+ b2
n
)

Parseval’s formula gives on the left

‖f‖2
2 =

2

2π

∫

π

0

x2 dx =
2π3

2 · 3π
=

π2

3
.

and on the right

π2

2
+

1

2
·
16

π

∞
∑

n=0

1

(2n + 1)4
.

Hence
π2

3
=

π2

4
+

8

π2

∞
∑

n=0

1

(2n + 1)4
=⇒

∞
∑

n=0

1

(2n + 1)4
=

π4

96
.

This coincides with the result of Question 22.4 (a) since

s = sodd + seven = sodd +
1

24

(

1

1
+

1

24
+ · · ·

)

= sodd +
1

16
s

sodd =
15

16
s =

15

16
·
π4

90
=

π4

96
.
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3. Compute the Fourier series of f(x) = | sin x |. Does the Fourier series converge

uniformly to f? What happens at x = 0?

Solution. Since | sin x | is an even function, bk = 0 for all k and we have

ak =
2

π

∫

π

0

sin x cos kx dx =
2

π

(

(−1)k+1 − 1

k2 − 1

)

, k ∈ � +. (3)

This formula is easily obtained using integration by parts twice. Indeed with u =

sin x, v′ = cos kx we have u′ = cos x, v = (sin kx)/k

Ik =

∫

π

0

sin x cos kx dx = −
1

k

∫

π

0

cos x sin kx dx

Ik = −
1

k

(

− cos x cos kx

k

∣

∣

∣

∣

π

0

−
1

k
Ik

)

in the second line we used u = cos x, v′ = sin kx, u′ = − sin x, v = −(cos kx)/k.

Since cos kπ = (−1)k, this implies

Ik =
(−1)k+1 − 1

k2 − 1
,

which gives (3). Hence,

ak =

{

0, if k is odd,

− 4
π(k2−1)

, if k is even.

The Fourier series reads

| sin x | ∼
2

π
−

4

π

∞
∑

k=1

cos 2kx

4k2 − 1
.

Since f(x) = | sin x | is continuous and piecewise continuously differentiable, the

Fourier series converges uniformly to f on
�

by Theorem 20. In particular we have

pointwise convergence. At x = 0 we obtain

| sin 0 | = 0 =
2

π
−

4

π

∞
∑

k=0

1

(2k + 1)(2k − 1)

which is equivalent to

1

2
=

∞
∑

k=1

1

(2k − 1)(2k + 1)
=

1

2

∞
∑

k=1

(

1

2k − 1
−

1

2k + 1

)

.

The last equation is obvious since 1− 1/3+1/3− 1/5+1/5−+ · · · converges to 1.

4. Use Example 6 (b), the Fourier series of

f(x) =
(x − π)2

4
−

π2

12
∼

∞
∑

k=1

cos kx

k2
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to prove that

(a)
∞

∑

n=1

1

n4
=

π4

90
(b)

∞
∑

n=1

1

n6
=

π6

945
.

Hint. Use Parseval’s formula for f and for
∫

f(x) dx.

Solution. (a) On the one hand we have

‖f‖2
2 =

1

2π

∫ 2π

0

f(x)2 dx =
1

2π

∫ 2π

0

(

x2

4
−

π

2
x +

π2

6

)2

dx

=
1

2π

∫ 2π

0

(

1

16
x4 −

π

4
x3 +

π2

3
x2 −

π3

6
x +

π4

36

)

dx =
1

2π

(

25π5

16 · 5
−

24π5

4 · 4
+

8π5

9
−

4π5

12
+

2π5

36

)

=
π5

2π

(

2

5
− 1 +

8

9
−

1

3
+

1

18

)

=
1

2π
·

π5

180
(72 − 180 + 160 − 60 + 10) =

π4

180
.

On the other hand
1

2

∞
∑

k=0

a2
k

=
1

2

∞
∑

k=1

1

k4
.

Comparing this with the previous line, Parseval’s formula yields
∞

∑

k=1

1

k4
=

π4

90
.

(b) Since the Fourier series of f(x) = 1
4
x2 − π

2
x + π2

6
converges uniformly on

�
to f , we

can integrate the Fourier series term by term
∫

x

0

f(t) dt =

∫

x

0

∞
∑

k=1

cos kt

k2
dt =

∞
∑

k=1

∫

x

0

cos kt

k2
dt

g(x) =
x3

12
−

π

4
x2 +

π2

6
x =

∞
∑

k=1

sin kx

k3
.

Since the right series converges uniformly (by Theorem 3 (Weierstraß)):

∣

∣

∣

∣

sin kx

k3

∣

∣

∣

∣

≤
1

k3

and
∑ 1

k3
< ∞),

∞
∑

k=1

sin kx

k3
is the Fourier series of g. We compute the L2-norm of g to

apply Parseval’s formula:

‖g‖2
2 =

1

2π

∫ 2π

0

(

x3

12
−

π

4
x2 +

π2

6
x

)2

dx

=
1

2π

∫ 2π

0

(

1

144
x6 −

π

24
x5 +

13π2

144
x4 −

π3

12
x3 +

π4

36
x2

)

dx

=
1

2π

(

x7

1008
−

πx6

144
+

13π2x4

720
−

π3x3

48
+

π4x3

108

)
∣

∣

∣

∣

2π

0

=
π6

2 · 945
.

By Parseval’s formula,

‖g‖2
2 =

π6

2 · 945
=

1

2

∞
∑

k=1

1

k6
;

the claim follows.
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