Calculus — 21. Series, Solutions
(turn in: May 21, 2003)

1. Compute the radius of convergence R and the sum of the series on (—R, R), respec-

o [o¢]
E n’z", E ndz
n=1 n=1

Solution. In both cases we have R = 1/lim,, ., Vn? = 1/lim, ., ¥n? = 1. Since
power series can be differentiated term by term (Corollary 11), Example 4 shows

() -2y =

tively.

n=0
1
(1 jxx Zn2 " | @
PP D
n=1
Differentiating the preceding equation we get
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2. Prove that the power series
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converges for all z € C. This function is called the Bessel function of order n and
it is denoted by J,(2).
Prove that J,(z) satisfies the differential equation

22 f"(x) +af' () + (2* —n?) f(z) = 0.

Proof. We compute the radius of convergence R,, of the series J,(z2).
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= lim 4(m+1)(m+n+1) = +oc.



Hence the series converges on the whole complex plane and defines an infinitely
often differentiable function J,(z) (Corollary 12).
Since power series can be differentiated term by term we obtain

o —1\" (g 2m+n
‘U%(””):Z(zm*")( ey
2] (z Z(2m—|—n)(2m—|—n—1)( ni::g/le;m

Hence
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Moreover,
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Since in the last series there is a factor m, summation can start with m = 0. Since
2m+n)2m+n—1)+ (2m +n) —n? = 4m? + 4mn = 4m(m + n) the sum of (1)
and (2) gives 0; this completes the proof. n

. Using Stirling’s formula prove that

Proof. Since (see Section 7.3)
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Now Stirling’s formula (Proposition 5.31) shows
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Inserting this into (3) we have
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4. Prove that for positive integers k, m € N we have
2m
/ cos kx sinmxdx = 0,
0
2m
/ cos kx cosmx dxr = woyy,, k,m €N,
0
2m
/ sin kxz sinmx dx = wp,,
0
where 0y, = 1 if Kk = m and d,, = 0 if k £ m is the so called Kronecker symbol.
Hint. Use fo% e dy =0if n € Z\0.
Proof. Since €™ = 1, n € Z, (Proposition 3.23) the fundamental theorem of
calculus for complex valued functions (Section 5.5) gives for n € Z\{0} gives
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In case n = 0 we have fo% el"® dg = 0% dx = 27; hence for all n € Z we have
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Using the definition of the cosine function cosx = %(ei"” + e7%) we obtain
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Since k, m are positive integers the first two summands vanish by (4). The third
and the fourth summands are 27 if anf only if £ = m, hence
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The other two equations are proved in the same way. [



5. Put py = 0 and define for all positive integers n € N

1

anrl(x) = pn<x> + 5 (.T2 —pn(a:)Q) .

Prove that p,(z) uniformly converges to |z | on [—1,1].
Hint. Use the identity
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to prove that 0 < p,(x) < ppi1(z) < |z | if |2 | <1, and that
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if | x| < 1. For the last inequality consider two cases and induction over n.

Proof. We show (5). The distributive law and the binomial formula give

|2 | = pnya(2).
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2 by def.

We use induction on n to prove 0 < p,(x) < poi1(x) < | x| for all positive integers n.
Since pi(z) = 3z? the induction start 0 < po(z) < pi(z) < |z ] is obvious. Suppose the
inequality holds for some fixed n. We will show that it also holds for n + 1. Since
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(5) shows that both factors on the right are positive, the first one by induction hypothesis,
such that | x| > p,.2(x). Moreover,

| 2] = poya(z) < 2] = pnya(2)
since the right factor is less than 1. This shows p,,12(x) > p,y1(2). Finally, since p,o(x) >
pni1(z) and the later is nonnegative, so is p,io(z). This completes the induction proof.
Since (|2 | — pn(x))pn(z) > 0 from (5) it follows
1
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Iteration of (6) yields
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This shows for that for every positive integer n € N we have
2l =m0 <lol (1- 151 .
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We prove for |2 | <1 and all n € N by induction on n
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The case n = 1 is trivial since at least one factor is less than 1. Suppose the statement is
true for some n; we will show the statement for n + 1. If |z | < 2/(n + 2) this is obvious

since the second factor is less than 1. Suppose now P < |x| < 1. This implies
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This proves the induction assertion. The inequality
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shows that p,(z) uniformly converges to |z | on [—1,1].



