
Calculus – 21. Series, Solutions
(turn in: May 21, 2003)

1. Compute the radius of convergence R and the sum of the series on (−R, R), respec-

tively.
∞

∑

n=1

n2xn,

∞
∑

n=1

n3xn.

Solution. In both cases we have R = 1/ limn→∞
n

√
n2 = 1/ limn→∞

n

√
n3 = 1. Since

power series can be differentiated term by term (Corollary 11), Example 4 shows

(

x

(1 − x)2

)′

=

∞
∑

n=0

(nxn)′ =

∞
∑

n=0

n2xn−1

1 + x

(1 − x)3
=

∞
∑

n=1

n2xn−1 | ·x

x(1 + x)

(1 − x)3
=

∞
∑

n=1

n2xn.

Differentiating the preceding equation we get

x4 + 4x + 1

(x − 1)4
=

∞
∑

n=1

n3xn−1 | ·x

x(x4 + 4x + 1)

(x − 1)4
=

∞
∑

n=1

n3xn.

2. Prove that the power series

∞
∑

m=0

(−1)m(z/2)2m+n

m!(m + n)!
(n ∈ �

0)

converges for all z ∈ � . This function is called the Bessel function of order n and

it is denoted by Jn(z).

Prove that Jn(x) satisfies the differential equation

x2f ′′(x) + xf ′(x) + (x2 − n2)f(x) = 0.

Proof. We compute the radius of convergence Rn of the series Jn(z).

Rn = lim
m→∞

∣

∣

∣

∣

am

am+1

∣

∣

∣

∣

= lim
m→∞

(m + 1)!22(m+1)+n(m + n + 1)!

m!22m+n(m + n)!

= lim
m→∞

4(m + 1)(m + n + 1) = +∞.
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Hence the series converges on the whole complex plane and defines an infinitely

often differentiable function Jn(z) (Corollary 12).

Since power series can be differentiated term by term we obtain

xJ ′
n
(x) =

∞
∑

m=0

(2m + n)
(−1)m(x/2)2m+n

m!(m + n)!
,

x2J ′′
n
(x) =

∞
∑

m=0

(2m + n)(2m + n − 1)
(−1)m(x/2)2m+n

m!(m + n)!
.

Hence

x2J ′′
n
(x) + xJ ′

n
(x) − n2Jn(x) =

=
∞

∑

m=0

(−1)m(x/2)2m+n

m!(m + n)!

(

(2m + n)(2m + n − 1) + (2m + n) − n2
)

. (1)

Moreover,

x2Jn(x) =
∞

∑

m=0

(−1)m(x/2)2m+nx2

m!(m + n)!

=

∞
∑

m=0

(−1)m+1(x/2)2(m+1)+n

(m + 1)!(m + n + 1)!
(−4(m + 1)(m + n + 1))

=

∞
∑

m=1

(−1)m(x/2)2m+n

m!(m + n)!
(−4m(m + n)) (index shift m := m − 1) (2)

Since in the last series there is a factor m, summation can start with m = 0. Since

(2m + n)(2m + n − 1) + (2m + n) − n2 = 4m2 + 4mn = 4m(m + n) the sum of (1)

and (2) gives 0; this completes the proof.

3. Using Stirling’s formula prove that
∣

∣

∣

∣

n
3

2

(

1
2

n

)
∣

∣

∣

∣

−→
n→∞

1

2
√

π
.

Proof. Since (see Section 7.3)

an =

( 1
2

n

)

=
1
2
·
(

1
2
− 1

)

· · ·
(

1
2
− n + 1

)

n!
= (−1)n−1 1

22n−1(2n − 1)

(

2n − 1

n

)

,

we have
∣

∣

∣

∣

n
3

2

(

1
2

n

)
∣

∣

∣

∣

=
n

3

2 (2n − 1)!

22n−1(2n − 1)(n − 1)!n!
=

n
3

2 n(2n)!

22n−12n(2n − 1)(n!)2

=
n

3

2 (2n)!

22n(2n − 1)(n!)2
. (3)
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Now Stirling’s formula (Proposition 5.31) shows

(2n)!

(n!)2
∼

(

2n

e

)2n
√

2π2n
(

n

e

)

2πn
=

22nn− 1

2

√
π

.

Inserting this into (3) we have

∣

∣

∣
n

3

2 an

∣

∣

∣
∼ n

3

2 22nn− 1

2

22n(2n − 1)
√

π
=

1√
π

(

2 − 1
n

) ∼ 1

2
√

π
.

4. Prove that for positive integers k, m ∈ �
we have

∫ 2π

0

cos kx sin mx dx = 0,

∫ 2π

0

cos kx cos mx dx = πδkm,

∫ 2π

0

sin kx sin mx dx = πδkm,

k, m ∈ �
,

where δkm = 1 if k = m and δkm = 0 if k 6= m is the so called Kronecker symbol.

Hint. Use
∫ 2π

0
einx dx = 0 if n ∈ � \ 0.

Proof. Since e2πni = 1, n ∈ � , (Proposition 3.23) the fundamental theorem of

calculus for complex valued functions (Section 5.5) gives for n ∈ � \ {0} gives

∫ 2π

0

einx dx =
1

in
einx

∣

∣

∣

∣

2π

0

=
1

in
(1 − 1) = 0.

In case n = 0 we have
∫ 2π

0
einx dx =

∫ 2π

0
dx = 2π; hence for all n ∈ � we have

∫ 2π

0

einx dx = 2πδn0 (Kronecker symbol). (4)

Using the definition of the cosine function cos x = 1
2
(eix + e−ix) we obtain

∫ 2π

0

cos kx cos mx dx =
1

4

∫ 2π

0

(

eikx + e−ikx
) (

eimx + e−imx
)

dx

=
1

4

∫ 2π

0

(

ei(k+m)x + e−i(k+m)x + ei(k−m)x + e−i(k−m)
)

dx

Since k, m are positive integers the first two summands vanish by (4). The third

and the fourth summands are 2π if anf only if k = m, hence
∫ 2π

0

cos kx cos mx dx =
1

4
(2π + 2π) δkm = πδkm.

The other two equations are proved in the same way.
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5. Put p0 = 0 and define for all positive integers n ∈ �

pn+1(x) = pn(x) +
1

2

(

x2 − pn(x)2
)

.

Prove that pn(x) uniformly converges to | x | on [−1, 1].

Hint. Use the identity

|x | − pn+1(x) = (|x | − pn(x))

(

1 − 1

2
(|x | + pn(x))

)

(5)

to prove that 0 ≤ pn(x) ≤ pn+1(x) ≤ |x | if |x | ≤ 1, and that

|x | − pn(x) ≤ |x |
(

1 − | x |
2

)n

<
2

n + 1

if |x | ≤ 1. For the last inequality consider two cases and induction over n.

Proof. We show (5). The distributive law and the binomial formula give

(|x | − pn(x))

(

1 − 1

2
(| x | + pn(x))

)

= | x | − pn(x)− 1

2
(x2 − pn(x)2) =

by def.
| x | − pn+1(x).

We use induction on n to prove 0 ≤ pn(x) ≤ pn+1(x) ≤ | x | for all positive integers n.

Since p1(x) = 1
2
x2 the induction start 0 ≤ p0(x) ≤ p1(x) ≤ |x | is obvious. Suppose the

inequality holds for some fixed n. We will show that it also holds for n + 1. Since

1 ≥ 1 − 1

2
(|x | + pn+1(x)) ≥ 1 − 1

2
(1 + 1) ≥ 0

(5) shows that both factors on the right are positive, the first one by induction hypothesis,

such that | x | ≥ pn+2(x). Moreover,

|x | − pn+2(x) ≤ |x | − pn+1(x)

since the right factor is less than 1. This shows pn+2(x) ≥ pn+1(x). Finally, since pn+2(x) ≥
pn+1(x) and the later is nonnegative, so is pn+2(x). This completes the induction proof.

Since (|x | − pn(x))pn(x) ≥ 0 from (5) it follows

|x | − pn+1(x) ≤ (|x | − pn(x))

(

1 − 1

2
| x |

)

. (6)

Iteration of (6) yields

| x | − pn+1(x) ≤ (|x | − pn−1(x))

(

1 − 1

2
|x |

)2

≤ · · ·

≤ (|x | − p0(x))

(

1 − 1

2
| x |

)n+1

= |x |
(

1 − 1

2
|x |

)n+1

.

This shows for that for every positive integer n ∈ �
we have

|x | − pn(x) ≤ | x |
(

1 − |x |
2

)n

.
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We prove for |x | ≤ 1 and all n ∈ �
by induction on n

|x |
(

1 − |x |
2

)n

<
2

n + 1
.

The case n = 1 is trivial since at least one factor is less than 1. Suppose the statement is

true for some n; we will show the statement for n + 1. If |x | < 2/(n + 2) this is obvious

since the second factor is less than 1. Suppose now
2

n + 2
≤ | x | ≤ 1. This implies

1 − 1

2
| x | ≤ 1 − 1

2

2

n + 2
=

n + 1

n + 2
.

Then

|x |
(

1 − 1

2
|x |

)n+1

<
Ind.hyp.

| x | 2

n + 1

(

1 − 1

2
|x |

)

≤ 2

n + 1
· n + 1

n + 2
=

2

n + 2
.

This proves the induction assertion. The inequality

0 ≤ |x | − pn(x) <
2

n + 1

shows that pn(x) uniformly converges to |x | on [−1, 1].
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