
Calculus – 20. Series, Solutions

1. Investigate uniform convergence of the following sequence and series on the interval

[a, b], a, b ∈ �
.

(a) fn(x) =
1

1 + n2x2
;

(b)

∞
∑

n=1

n

xn
(a > 0).

Solution. (a) Since fn(0) = 1 for all n and lim
n→∞

1

1 + cn2
= 0 for all nonzero numbers

c, the pointwise limit of (fn) is

f(x) =

{

1, x = 0,

0, x 6= 0.

We will show that the convergence is uniform on [a, b] if and only if 0 is not in [a, b].

Suppose first that a ≤ 0 < b. To ε = 1

2
we find elements xn = 1/n, xn ∈ [a, b] for

sufficiently large n, such that

| fn(xn) − f(xn) | =
1

1 + n2/n2
− 0 =

1

2
.

Hence, (fn) does not converge uniformly to f . The same argument works for inter-

vals with a < 0 ≤ b and xn = −1/n.

Suppose now 0 < a < b. Given ε with 1 > ε > 0 choose n0 =
1

aε
. Then n ≥ n0

implies

n2 >
1

a2ε2
>

1

a2ε
=

1

ε

a2
>

1

ε
− 1

a2
.

This implies

1

ε
< 1 + n2a2 =⇒ ε >

1

1 + n2a2
≥ 1

1 + n2x2
= fn(x).

The last inequality is due to a ≤ x. This shows fn ⇒ 0 on [a, b]. The proof for b < 0

is quite the same.

(b) The quotient test (Corollary 2.26) shows that the series converges if and only in

|x | > 1:

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

(n + 1)xn

nxn+1

∣

∣

∣

∣

!

< 1 =⇒ 1

| x |
!

< 1 =⇒ |x | > 1.

Hence, in case 0 < a ≤ 1 the series does not converge for all x in [a, b], in particular,

the series does not converge uniformly. We will show that the series converges

uniformly on [a, +∞) for a > 1.
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Proof. Choose y with 1 < y < a ≤ x. Since y/a < 1 there is an n0 (Proposi-

tion 2.5 (d)) such that

n
(y

a

)n

< 1 if n ≥ n0.

Putting q = 1/y < 1, we conclude that x ≥ a and n ≥ n0 implies

n

xn
≤ n

an
<

(

1

y

)n

= qn.

Since
∑

qn converges, Theorem 3 implies that
∑ n

xn
converges uniformly.

2. Consider the sequences fn(x) = (1 − x)xn and gn(x) =
1

1 − x
on (0, 1). Show that

both fn and gn converge uniformly on (0, 1) to some functions f and g, respectively.

Show that (fn·gn) does not converge uniformly to fg on (0, 1).

Hint. For fn split the interval (0, 1) into (0, 1 − ε) and (1 − ε, 1) and show that fn

becomes small on both segments.

Proof. (a) We will show that fn ⇒ 0 on (0, 1) (so, f = 0). For, let 1 > ε > 0 be

given and fix x ∈ (0, 1 − ε). Since the geometric sequence (1 − x)xn converges to 0

there is an n0 such that n ≥ n0 implies

(1 − x)xn < xn < ε.

Fix y with 1 − ε ≤ y < 1. Then

(1 − y)yn < 1 − y ≤ ε

for all n ∈ � . Hence, x ∈ (0, 1) and n ≥ n0 implies fn(x) ≤ ε which shows fn ⇒ 0

on (0, 1).

It is trivial that the constant sequence 1/(1 − x) uniformly converges to g(x) =

1/(1 − x) on (0, 1).

(b) We will show that hn(x) = fn(x)gn(x) = xn does not uniformly converge to

f(x)g(x) = 0 on (0, 1). For let ε = 1/4 and xn = 1 − 1

n
. Then for n ≥ 2,

hn(xn) = xn

n
=

(

1 − 1

n

)n

≥ 1

4

since the sequence (xn) is a (monotonically increasing) converging to 1/e sequence.

The point is that (xn

n
) does not approach 0 as n tends to ∞. This shows that there

is no n0 such that |hn(x) | ≤ 1

4
for all n ≥ n0 and x ∈ (0, 1).

3. Consider

f(x) =

∞
∑

n=1

1

1 + n2x
.

2



For what values of x does the series converge absolutely? On what intervals does

it converge uniformly? On what intervals does it fail to converge uniformly? Is f

continuous whenever the series converges? Is f bounded?

Solution. Obviously, the series diverges for x = 0. The series converges absolutely

for all nonzero x. Namely,

∣

∣ 1 + xn2
∣

∣ ≥ 1 +
∣

∣ xn2
∣

∣ ≥ |x |n2

implies

f(x) =

∞
∑

n=1

1

1 + n2x
≤ 1

| x |

∞
∑

n=1

1

n2

and the comparing test with
∑

1/n2 shows convergence.

The series converges uniformly on all closed (finite or infinite) intervals not con-

taining 0 (and hence on all open intervals (a, b) with a > 0). It does not converge

uniformly on closed intervals containing 0.

Suppose first 0 < a. The above argument shows that for x ≥ a

1

1 + xn2
≤ 1

xn2
≤ 1

an2
;

and Theorem 3 implies uniform convergence. A similar argument works for

x ≤ b < 0.

If f converges at x0, it is continuous at x0: We can find a closed interval [a, b] with

x0 ∈ [a, b] and 0 6∈ [a, b]. Since the series of continuous functions converges uniformly

on [a, b], Theorem 4 implies continuity of f on [a, b].

Suppose 0 is a limit point of the (closed or open) interval from a to b. Suppose first

that xn = 1/n2 belongs to the interval for sufficiently large n. Then we have

f(xn) =

∞
∑

k=1

1

1 + k2/n2
≥

n
∑

k=1

1

1 + k2/n2
≥

n
∑

k=1

1

1 + 1
=

n

2
.

This shows that f is unbounded at 0.

In a similar way we will show that the series does not converge uniformly when 0

is a limit point of the interval. For, let ε = 1 be given and suppose to the contrary

there is an n0 such that the Cauchy criterion, Proposition 1 (b), is satisfied, that is,

for all m, n ∈ � with m, n ≥ n0 and for all x we have

n
∑

k=m

1

1 + k2x
≤ 1. (1)

However, since the sequence
(

1

1+k2x

)

k∈ �
is decreasing we have

n
∑

k=m

1

1 + k2x
≥

n
∑

k=m

1

1 + n2x
=

n − m + 1

1 + xn2
.
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Inserting x = 1/n2 we find

n
∑

k=m

1

1 + k2x
≥ n − m + 1

1 + 1
≥ 1

which contradicts (1). The series does not converge uniformly. A similar argument

works if xn = −1/(2n2) is in the interval from a to b for sufficiently large n.

4. For n ∈ � and real x put

fn(x) =
x

1 + nx2
.

Show that (fn) converges uniformly to a function f , and that the equation

f ′(x) = limn→∞ f ′
n
(x) is correct if x 6= 0 but false if x = 0.

Proof. It is obvious that f(x) = 0 and so f ′(x) = 0. Differentiation of fn gives

f ′
n
(x) =

1 + nx2 − x · 2nx

(1 + nx2)2
=

1 − nx2

(1 + nx2)2
.

For nonzero x, f ′
n
(x) is the quotient of a linear polynomial in n, 1 − nx2, and a

quadratic polynomial in n, (1 + nx2)2, such that

lim
n→∞

f ′
n
(x) = 0

for nonzero x. Hence, limn→∞ f ′
n
(x) = f ′(x) = 0, x 6= 0. In case x = 0 we have

f ′
n
(0) = 1 not converging to f ′(0) = 0.

5. Compute the radius of convergence R and the sum of the series on (−R, R), respec-

tively.

(a)
∞

∑

n=1

xn

n
;

(b)

∞
∑

n=1

xn

n(n + 1)
.

Hint. Apply Theorem 7 to the geometric series.

Solution. (a) The root test gives R = limn→∞
n

√
n = 1. Let x ∈ (−1, 1). By

Proposition 5, the geometric series

∞
∑

n=0

tn =
1

1 − t
, | t | < 1
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converges uniformly on every compact subinterval of (−1, 1). Integrating the series

from 0 to x we obtain by Theorem 7

∫

x

0

∞
∑

n=0

tn dt =

∞
∑

n=0

∫

x

0

tn dt =

∫

x

0

dt

1 − t

∞
∑

n=0

xn+1

n + 1
= − log(1 − t)|x

0
= − log(1 − x)

∞
∑

n=1

xn

n
= − log(1 − x), −1 < x < 1.

(b) It is clear that f(0) = 0 since the series starts with x1. Let us assume now

x 6= 0. As in (a), the radius of convergence is R = 1 and the power series converges

uniformly on every compact subinterval of (−1, 1). By (a) we have

∞
∑

n=0

tn

n
= − log(1 − t), | t | < 1.

Integrating this from 0 to x, which can be done by Theorem 7 elementwise on the

left, we have

∫

x

0

∞
∑

n=1

tn

n
dt =

∞
∑

n=1

∫

x

0

xn

n
dt = −

∫

x

0

log(1 − t) dt

∞
∑

n=1

xn+1

n(n + 1)
= (1 − t) (log(1 − t) − 1)|x

0

x
∞

∑

n=1

xn

n(n + 1)
= (1 − x) log(1 − x) + x

∞
∑

n=1

xn

n(n + 1)
=

x6=0
1 +

1 − x

x
log(1 − x), |x | < 1, x 6= 0.
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