Calculus — 20. Series, Solutions

1. Investigate uniform convergence of the following sequence and series on the interval
[a,b], a,b € R.

(@) folt) = T
(b) Y= (a>0)

= (0 for all nonzero numbers

Solution. Si »(0) =1 for all d li
olution. (a) Since f,,(0) orallnand lim J———;

¢, the pointwise limit of (f,) is

xz =0,

17
fle) = {0, x # 0.

We will show that the convergence is uniform on [a, b] if and only if 0 is not in [a, b].

Suppose first that a < 0 < b. To e = % we find elements x,, = 1/n, z,, € [a,b] for

sufficiently large n, such that
1 1

‘fn(xn)_f(xnﬂzm—(]—i

Hence, (f,) does not converge uniformly to f. The same argument works for inter-
vals with a < 0 < b and x,, = —1/n.

1
Suppose now 0 < a < b. Given € with 1 > ¢ > 0 choose np = —. Then n > ng

] i ae
implies
1 1 !
2 € 5
n>-—-—5>——=—>
a?e? " a?e a? a?

This implies

L 1w = > 1 fa(2)

- n“a € = fn(x).

5 1+ n2a?2 = 1+ n22?

The last inequality is due to a < x. This shows f,, = 0 on [a, b]. The proof for b < 0
is quite the same.

(b) The quotient test (Corollary 2.26) shows that the series converges if and only in
|z| > 1:

!

(n+1)x"
nantl

Gntl | _ lim

n—oo

1
l= —< 1= |z|>1.

Ea

Hence, in case 0 < a < 1 the series does not converge for all  in [a, b], in particular,

n—0o00 A,

lim ’

the series does not converge uniformly. We will show that the series converges
uniformly on [a, +00) for a > 1.



Proof. Choose y with 1 < y < a < x. Since y/a < 1 there is an ny (Proposi-
tion 2.5 (d)) such that

n(g) <1 if n>ng.
a

Putting ¢ = 1/y < 1, we conclude that = > a and n > ny implies

n o n ( 1 ) "
—<—=—< (-] =q"
" a™ Y
n
Since Y ¢ converges, Theorem 3 implies that E — converges uniformly. [
xn

n (0,1). Show that
both f,, and g, converge uniformly on (0, 1) to some functions f and g, respectively.
Show that (f,-g,) does not converge uniformly to fg on (0, 1).

Hint. For f, split the interval (0,1) into (0,1 —¢) and (1 —&,1) and show that f,
becomes small on both segments.

Proof. (a) We will show that f, = 0 on (0,1) (so, f = 0). For, let 1 > ¢ > 0 be
given and fix x € (0,1 — ). Since the geometric sequence (1 — x)z™ converges to 0

2. Consider the sequences f,(z) = (1 — z)z" and g,(z) = 1

there is an ng such that n > ngy implies
(1—x)2" <z2" <e.
Fix y with 1 —e <y < 1. Then
1—-yy"<l—-y<e

for all n € N. Hence, z € (0,1) and n > ng implies f,(x) < e which shows f, = 0
on (0,1).
It is trivial that the constant sequence 1/(1 — x) uniformly converges to g(x) =
1/(1—=x)on (0,1).
(b) We will show that h,(x) = fu.(x)g.(z) = 2™ does not uniformly converge to
1
f(z)g(z) =0o0n (0,1). For let e =1/4 and x,, =1 — —. Then for n > 2,
n

1\"_ 1
hn n) = n=(1-- > —
) =ap=(1-1) 2]

since the sequence (z,,) is a (monotonically increasing) converging to 1/e sequence.
The point is that (z') does not approach 0 as n tends to co. This shows that there
is no ng such that | h,(z) | < 1 for all n > ng and z € (0, 1). n

3. Consider




For what values of x does the series converge absolutely? On what intervals does
it converge uniformly? On what intervals does it fail to converge uniformly? Is f
continuous whenever the series converges? Is f bounded?

Solution. Obviously, the series diverges for x = 0. The series converges absolutely
for all nonzero x. Namely,

|1+ an®| > 14 |an’| > |z|n®

implies

C 1 1
< - _
zzl 1+n2x = |x] z:: n?
and the comparing test with > 1/n? shows convergence.

The series converges uniformly on all closed (finite or infinite) intervals not con-
taining 0 (and hence on all open intervals (a,b) with a > 0). It does not converge
uniformly on closed intervals containing 0.

Suppose first 0 < a. The above argument shows that for z > a

1 1 1

QS

1+2n2 — zn an?’

and Theorem 3 implies uniform convergence. A similar argument works for
z<b<0.

If f converges at xo, it is continuous at zo: We can find a closed interval [a, b] with
xo € [a,b] and 0 & [a, b]. Since the series of continuous functions converges uniformly
on [a, b], Theorem 4 implies continuity of f on |[a, b].

Suppose 0 is a limit point of the (closed or open) interval from a to b. Suppose first
that x, = 1/n? belongs to the interval for sufficiently large n. Then we have

o0 n n

f(@n) ;1+k2/n2_;1+k’2/n2_;1+1 2

This shows that f is unbounded at 0.

In a similar way we will show that the series does not converge uniformly when 0
is a limit point of the interval. For, let ¢ = 1 be given and suppose to the contrary
there is an ng such that the Cauchy criterion, Proposition 1 (b), is satisfied, that is,
for all m,n € N with m,n > ng and for all x we have

n

S L <1 (1)
1+ k2z —

k=m
However, since the sequence (1 +}§2x) reN is decreasing we have
i I S S e
1+ K2z — 14+n2z  14an?
=m k=m



Inserting x = 1/n? we find

n

1+ k22 1+1

k=m

which contradicts (1). The series does not converge uniformly. A similar argument
works if z, = —1/(2n?) is in the interval from a to b for sufficiently large n.

. For n € N and real x put -

o) = T
Show that (f,) converges uniformly to a function f, and that the equation
f(x) =lim,,_, f(x) is correct if x # 0 but false if x = 0.
Proof. 1t is obvious that f(z) =0 and so f’(z) = 0. Differentiation of f,, gives

_1+nx2—:p-2n:v 1—nx?

fi(x) = (1 + na?)? - (1+na?)?’

For nonzero z, f!(x) is the quotient of a linear polynomial in n, 1 — nz?, and a
quadratic polynomial in n, (1 + nz?)?, such that

lim f(z)=0

n—oo

for nonzero x. Hence, lim, . f/(z) = f'(z) = 0, x # 0. In case x = 0 we have
f7(0) = 1 not converging to f'(0) = 0. m

. Compute the radius of convergence R and the sum of the series on (—R, R), respec-
tively.
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(b)

n=1

Hint. Apply Theorem 7 to the geometric series.

Solution. (a) The root test gives R = lim, .o, /n = 1. Let x € (—1,1). By
Proposition 5, the geometric series

EOO t":—1 , |t <1
1—1t
n=0



converges uniformly on every compact subinterval of (—1,1). Integrating the series
from 0 to x we obtain by Theorem 7

/Zt"dt z:%/o = | —

0

xn—i—l -
2011 = —log(l —1t)|, = —log(l — x)
Z—: log(l—xz), —1<uz<1.

(b) Tt is clear that f(0) = 0 since the series starts with z!. Let us assume now
x #0. As in (a), the radius of convergence is R = 1 and the power series converges
uniformly on every compact subinterval of (—1,1). By (a) we have
o tn
Z =—log(l—1t), |t|<L.
n

n=0

Integrating this from 0 to x, which can be done by Theorem 7 elementwise on the

—dt /x—dt:—/ log(1 — ) dt
i Jo T 0

left, we have

M\

n+1
—— = (1—-1t)(log(1 —t)—1)[7
> sy = (1= esi—0 - 1)
o xn
Y = (1-a)log(l -
:L’nZI ey (1—2x)log(l —x)+a
= " 1—2z
— =1 log(1 — 1 .
> e ey og(l—=), [z[ <1, 2#0
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