Calculus – 19. Series, Solutions

- 1. Let X be a metric space and A_{α}, A, B subsets of X.
 - (a) Prove that $\bigcup \overline{A_{\alpha}} \subset \bigcup A_{\alpha}$
 - (b) Prove that $\frac{\alpha}{A \cup B} = \frac{\alpha}{A} \cup \overline{B}$.
 - (c) Give an example of subsets $F_n \subset \mathbb{R}$, $n \in \mathbb{N}$, such that

$$\bigcup_{n\in\mathbb{N}}\overline{F_n}\neq\bigcup_{n\in\mathbb{N}}F_n.$$

Proof. (a) This is an easy consequence of the fact that the closure is a *monotonic* set function, i. e. $M \subset N$ implies $\overline{M} \subset \overline{N}$. For, let $x \in \overline{M}$, i. e. every neighborhood U of x has a nonempty intersection with M. Since $M \subset N$, U has a nonempty intersection with N. Thus $x \in \overline{N}$; hence $\overline{M} \subset \overline{N}$.

Let us denote $N = \bigcup_{\alpha} A_{\alpha}$. Since by definition of the union $A_{\alpha} \subset N$ for all α , the above argument shows $\overline{A_{\alpha}} \subset \overline{N}$ for all α . Therefore,

$$\bigcup_{\alpha} \overline{A_{\alpha}} \subset \overline{N}$$

(b) By (a) it suffices to show that $\overline{A \cup B} \subset \overline{A} \cup \overline{B}$. By definition F is closed if and only if $F = \overline{F}$. This together with (a) proves that $N \subset F$, F closed, implies $\overline{N} \subset F$. Since $A \cup B \subset \overline{A} \cup \overline{B}$ and the latter set is closed by Proposition 10 (d) the assertion follows.

(c) Let $(x_n) \subset \mathbb{R}$ be the set of all rational numbers of [0, 1) arranged in a sequence, see Corollary 4. Define $F_n = \{x_n\}, n \in \mathbb{N}$ be the one-point-set consisting of x_n only which is closed by Remark 1 (b). We find

$$\bigcup_{n} \overline{F_n} = \bigcup_{n} \{x_n\} = \mathbb{Q} \cap [0,1) \subsetneq \overline{\mathbb{Q} \cap [0,1)} = [0,1],$$

where we used that \mathbb{Q} is dense in \mathbb{R} , see Example 4 (a).

2. (a) Define

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Prove that f is not continuous at (0, 0). (b) Define

$$g(x,y) = \begin{cases} \frac{x^3 + y^3}{x^2 + y^2}, & (x,y) \neq (0,0), \\ 0, & (x,y) = (0,0). \end{cases}$$

Prove that g is continuous on \mathbb{R}^2 .

Proof. (a) The sequence $(x_n, y_n) := (1/n, 1/n)$ converges converges to (0, 0) by Proposition 12. However, the sequence of images

$$f(x_n, y_n) = \frac{\frac{1}{n^2}}{\frac{1}{n^2} + \frac{1}{n^2}} = \frac{1}{2}$$

does not converge to 0. Hence, f is not continuous at the origin.

(b) By Proposition 17 it is clear by Proposition 17 that g is continuous on $\mathbb{R}^2 \setminus 0$. We have to prove the continuity of g at (0,0) only. Given $\varepsilon > 0$ choose $\delta = \varepsilon/2$, then $(x,y) \in U_{\delta}((0,0)) \setminus (0,0)$, i.e. $x^2 + y^2 < \varepsilon^2/4$, $(x,y) \neq (0,0)$, implies

$$|f(x,y)| = \left|\frac{x^3 + y^3}{x^2 + y^2}\right| \le |x| \frac{x^2}{x^2 + y^2} + |y| \frac{y^2}{x^2 + y^2} \le |x| + |y| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Hence, f is continuous at (0, 0).

- 3. Let ℓ_2 be the normed vector space $\ell_2 = \{(x_n) \mid x_n \in \mathbb{R}, \sum_{n=1}^{\infty} x_n^2 < \infty\}$ with the norm $\|(x_n)\|_2 = \sqrt{\sum_{n=0}^{\infty} x_n^2}$. For $k \in \mathbb{N}$ put $e_k = (0, \ldots, 0, 1, 0, \ldots)$ where the 1 is at the *k*th place.
 - (a) Is the sequence $(e_k)_{k \in \mathbb{N}}$ bounded in ℓ_2 ?
 - (b) Does there exist a Cauchy subsequence of $(e_k)_{k \in \mathbb{N}}$?
 - (c) Prove that the closed unit ball $B_1 = \{x \in \ell_2 \mid ||x||_2 \le 1\} \subset \ell_2$ is not compact.

Hint. For (c) use Proposition 19.

Solution. (a) The sequence is bounded since

$$d(\mathbf{e}_k, \mathbf{e}_n) = \|\mathbf{e}_k - \mathbf{e}_n\|_2 = \|(0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots)\|_2 = \sqrt{2}.$$

(b) The above equation shows that there is no Cauchy subsequence of (e_k) .

(c) Suppose to the contrary that B_1 is compact. By Proposition 19 any sequence in B_1 contains a converging in B_1 subsequence. Since $e_k \in B_1$, (e_k) has a convergent subsequence which is, of course, a Cauchy sequence. This contradicts (b).

4. Give an example of an open cover of (0, 1) which has no finite subcover.

Solution. For a positive integer $n \in \mathbb{N}$ put

$$I_n = (0,1) \cap U_{\frac{1}{n(n+1)}} \left(\frac{1}{n}\right)$$

Then $\{I_n \mid n \in \mathbb{N}\}$ is an open cover of (0, 1) since

$$\frac{1}{n+1} < x \le \frac{1}{n} \quad \text{implies} \quad x \in I_n.$$

Suppose to the contrary that $\{I_n \mid n \in \mathbb{N}\}$ has a finite subcover, say, $\{I_1, I_2, \ldots, I_m\}$. Then 1/(m+1) is not covered; a contradiction.

- 5. (a) Let $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$ be the unit circle and consider the map $f: [0, 2\pi) \to S^1$ given by $f(x) = e^{ix}$.
 - Is f continuous? Is f injective? Is f surjective? Is f a homeomorphism?

(b) Let $f: X \to Y$ be a bijective continuous mapping of the *compact* metric space X onto Y. Prove that f is a homeomorphism.

Hint. For (a) use the properties of the sine and cosine functions (monotony, existence of inverses). For (b) use Propositions 18 and 22.

Solution. (a) Since $e^{ix} = \cos x + i \sin x$ and the sine and cosine functions are continuous on \mathbb{R} (Proposition 3.20), e^{ix} is continuous on \mathbb{R} and in particular on the subset $[0, 2\pi)$. f is injective. Suppose to the contrary that f is not injective, i. e. that there exist x and y with $x, y \in [0, 2\pi)$, x < y, and $e^{ix} = e^{iy}$. The Euler formula gives $\cos x = \cos y$ and $\sin x = \sin y$. Since $\cos x$ is strictly decreasing on $[0, \pi]$ and strictly increasing on $[\pi, 2\pi]$, the equation $\cos x = \cos y$ yields $\pi - x = \pi + y$. The equation $\sin x = \sin y$ then implies $\sin y = \sin(-x) = -\sin x = \sin x$; hence $\sin x = \sin y = 0$, such that $x = y = \pi$. A contradiction.

f is surjective. Suppose $z = a + bi \in S^1$, $a, b \in \mathbb{R}$ is given. Then $a^2 + b^2 = 1$ and $|a|, |b| \leq 1$. Put $\phi = \arcsin(a) \in [-\pi/2, \pi/2]$ and

$$x = \begin{cases} \phi, & \text{if } 0 \le \phi \le \pi/2 \text{ and } b \ge 0, \\ \phi + \pi, & \text{if } 0 \le \phi \le \pi/2 \text{ and } b < 0, \\ 2\pi + \phi, & \text{if } -\pi/2 \le \phi \le 0 \text{ and } b \le 0, \\ \pi + \phi, & \text{if } -\pi/2 \le \phi \le 0 \text{ and } b \ge 0. \end{cases}$$

The addition formulas for sine and cosine show that $e^{ix} = a + bi$.

f is not a homeomorphism since the inverse map $g: S^1 \to [0, 2\pi), g(e^{ix}) = x$, is not continuous at 1. Indeed, $z_n = e^{(2\pi - 1/n)i}$ converges to 1 as n tends to ∞ . However $g(z_n) = 2\pi - 1/n$ converges to 2π which is different from g(1) = 0.

We can also use the result of (b), see below. The inverse mapping g cannot be continuous since S^1 is compact and the continuous image of a compact set is compact; however, $[0, 2\pi)$ is not a compact subset of \mathbb{R} .

Proof. (b) Let $g: Y \to X$ be the inverse mapping to f. We have to show that g is continuous. By Proposition 18 it is sufficient to show that the preimage $g^{-1}(F)$ of every closed set $F \subset X$ is closed. Since X is compact, F is compact by Proposition 21 (b). Since f and g are inverse to each other, $g^{-1}(F) = f(F)$. By Proposition 22 (a), $f(F) \subset Y$ is compact. By Proposition 21 (a), f(F) is closed in X. This completes the proof. \blacksquare