Calculus — 16. Series, Solutions

1. Use integration by parts to show that
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Show that one of these integrals converges absolutely.

Proof. The left boundary 0 is not a singularity, the only singularity is co. The
integral on the right converges absolutely. Indeed, the following integral is bounded
(with the common bound 1 for all R),
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By Proposition 77, the integral converges absolutely. Similarly as in Example 77,
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the integral on the left does not converge absolutely.

We use integration by parts with u = 1/(1 + z), v’ = —1/(1 4+ x)?, v/ = cosz, and

v = sinz and obtain
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Since the integral on the right converges, the integral on the left also converges,

and they coincide. n

. Show that for a > 0,
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Proof. The Gamma function is defined as an improper integral with singularities at
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Choosing ¢ > 0 and R > 0 we avoid the singularities. Using the change of variable
t=s% s= t%, dt = as® !, and
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we have



On the other hand, this limit equals I'(1/a), which proves the claim. ]

3. Show that
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Proof. First note that the integral converges by the integral criterion for series.
One easily sees that a = —1 is a zero of 2® + 1. Long division yields 2® + 1 =
(x+1)(2* —x+1), where the quadratic factor does not factorize into linear factors.
The partial fraction decomposition ansatz
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gives A=1/3, B=—1/3, and C = 2/3 such that
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Using (22 — x4+ 1) =2z — 1 we find
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4. Show that forn € N;a>0and b€ R
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Compute Jy, Ji, and Jo explicitly.

Hint. Using integration by parts find a recurrence relation for the complex integral
I, = [ amelmatthz dg.



Solution. Set a = —a + bi, u = 2", and v/ = e(-atbi

Integration by parts gives
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Taking the limt R — oo we obtain since ’ elE ’ =landa >0
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Since 1/(a — bi) = (a + bi)/(a® + b?), the claim follows.
Inserting n = 0, 1,2 we have
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. Suppose f € R(a) on [a,b], € > 0, and define the L2-norm for h € R(a) by
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Prove that there exists a continuous function g on [a,b] such that || f — ¢, < €.

Hint. Let {xy,...,z,} be asuitable partition of [a, b], define g(t) to be the piecewise
linear continuous function with g(x;) = f(x;) for i = 0,...,n. Use Lemma 5.4 (c).
What happens with the sum on the left if you insert | f — g |* in place of f.

Proof. First, consider an arbitrary partition
P of [a,b]. Later, we will specify the choice
of P. Since the linear function y through the

two points (x;_1, f(x;—1)) and (x4, f(z;)) is

given by
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we find the piecewise linear function g(z)
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In particular, g is continuous on [a,b] and therefore g € R(«), by Theorem 5. By
Propositionsi 9 and 10, | f — g|* € R(a). By the Riemann criterion (Proposition 3)
we find a partition P = {xq,...,z,} of [a,b] such that
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By Lemma4 (¢) with z; in place of ¢; and | f — g |2 in place of f we have
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Since f(x;) = g(x;) by construction, the sum on the left side is zero and we have
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In other words, every integrable function f € R(«) can be approximated in the
LZnorm by a continuous function g. We say C([a,b]) C R(«) is dense in the
L2-topology. =



