
Calculus – 16. Series, Solutions

1. Use integration by parts to show that
∫ ∞

0

cos x

1 + x
dx =

∫ ∞

0

sin x

(1 + x)2
dx.

Show that one of these integrals converges absolutely.

Proof. The left boundary 0 is not a singularity, the only singularity is ∞. The

integral on the right converges absolutely. Indeed, the following integral is bounded

(with the common bound 1 for all R),

∫

R

0

∣

∣

∣

∣

sin x

(1 + x)2

∣

∣

∣

∣

dx ≤
∫

R

0

1

(1 + x)2
dx =

∫

R+1

1

dx

x2
= − −1

x

∣

∣

∣

∣

R+1

1

= 1 − 1

R + 1
≤ 1.

By Proposition ??, the integral converges absolutely. Similarly as in Example ??,

the integral on the left does not converge absolutely.

We use integration by parts with u = 1/(1 + x), u′ = −1/(1 + x)2, v′ = cos x, and

v = sin x and obtain
∫

R

0

cos x

1 + x
dx =

sin x

1 + x

∣

∣

∣

∣

R

0

+

∫

R

0

sin x

(1 + x)2
dx

=
sin R

R + 1
+

∫

R

0

sin x

(1 + x)2
dx −→

R→∞

∫ ∞

0

sin x

(1 + x)2
dx.

Since the integral on the right converges, the integral on the left also converges,

and they coincide.

2. Show that for a > 0,
∫ ∞

0

e−xa

dx =
1

a
Γ

(

1

a

)

.

Proof. The Gamma function is defined as an improper integral with singularities at

0 and ∞
Γ

(

1

a

)

=

∫ ∞

0

t
1

a
−1 e−t dt.

Choosing ε > 0 and R > 0 we avoid the singularities. Using the change of variable

t = sa, s = t
1

a , dt = asa−1, and

t
1

a
−1 = t

1−a
a = s1−a,

we have
∫

R

ε

t
1

a
−1 e−t dt =

∫

R
1/a

ε1/a

s1−a e−s
a

asa−1 ds =

= a

∫

R
1/a

ε1/a

e−sa

ds −→
ε → 0

R → ∞

a

∫ ∞

0

e−sa

ds



On the other hand, this limit equals Γ(1/a), which proves the claim.

3. Show that
∫ ∞

0

dx

x3 + 1
=

2
√

3π

9
.

Proof. First note that the integral converges by the integral criterion for series.

One easily sees that α = −1 is a zero of x3 + 1. Long division yields x3 + 1 =

(x+1)(x2 −x+1), where the quadratic factor does not factorize into linear factors.

The partial fraction decomposition ansatz

1

x3 + 1
=

A

x + 1
+

Bx + C

x2 − x + 1

gives A = 1/3, B = −1/3, and C = 2/3 such that

I =

∫

R

0

dx

x3 + 1
=

1

3

∫

R

0

dx

x + 1
+

1

3

∫

R

0

−x + 2

x2 − x + 1
dx.

Using (x2 − x + 1)′ = 2x − 1 we find

I =
1

3
log(R + 1) +

1

3

∫

R

0

−x + 1
2

x2 − x + 1
dx +

1

2

∫

R

0

dx
(

x − 1
2

)2
+ 3

4

=
1

3
log(R + 1) − 1

6
log(R2 − R + 1) +

1

2

∫

R− 1

2

− 1

2

dt

t2 +
(√

3
2

)2

=
1

6
log

(R + 1)2

R2 − R + 1
+

1√
3

arctan
2t√
3

∣

∣

∣

∣

R− 1

2

− 1

2

=
1

6
log

R2 + 2R + 1

R2 − R + 1
+

1√
3

(

arctan
2R − 1√

3
+ arctan

1√
3

)

−→
R→∞

1

3
log 1 +

1√
3

(π

2
+

π

6

)

=
2π

3
√

3
=

2
√

3π

9
.

4. Show that for n ∈ �
, a > 0 and b ∈ �

Jn =

∫ ∞

0

xn cos bx e−ax dx = n! Re

(

a + bi

a2 + b2

)n+1

.

Compute J0, J1, and J2 explicitly.

Hint. Using integration by parts find a recurrence relation for the complex integral

In =
∫ ∞
0

xn e(−a+bi)x dx.



Solution. Set α = −a + bi, u = xn, and v′ = e(−a+bi)x; then we have u′ = nxn−1 and

v =
1

α
eαx.

Integration by parts gives

In(R) :=

∫

R

0

xn eαx dx =
1

α
xn eαx

∣

∣

∣

∣

R

0

− n

α

∫

R

0

xn−1eαx dx

=
Rn

αeaR
ebiR − n

α
In−1(R).

Taking the limt R → ∞ we obtain since
∣

∣ ebiR
∣

∣ = 1 and a > 0

In = 0 − n

α
In−1 = · · · n!

(−α)n
I0,

where

I0 =

∫ ∞

0

eαx dx =
1

α
eαx

∣

∣

∣

∣

∞

0

= − 1

α
.

Hence,

In =
n!

(a − bi)n+1
.

Since 1/(a − bi) = (a + bi)/(a2 + b2), the claim follows.

Inserting n = 0, 1, 2 we have

J0 =
a

a2 + b2
, J1 =

a2 − b2

(a2 + b2)2
, J2 =

2(a3 − 3ab2)

(a2 + b2)3
.

5. Suppose f ∈ R(α) on [a, b], ε > 0, and define the L2-norm for h ∈ R(α) by

‖h‖2 =

(
∫

b

a

|h |2 dα

)

1

2

.

Prove that there exists a continuous function g on [a, b] such that ‖f − g‖2 < ε.

Hint. Let {x0, . . . , xn} be a suitable partition of [a, b], define g(t) to be the piecewise

linear continuous function with g(xi) = f(xi) for i = 0, . . . , n. Use Lemma 5.4 (c).

What happens with the sum on the left if you insert | f − g |2 in place of f .

x x x x1 2 3

f

0

g Proof. First, consider an arbitrary partition

P of [a, b]. Later, we will specify the choice

of P . Since the linear function y through the

two points (xi−1, f(xi−1)) and (xi, f(xi)) is

given by

y − f(xi−1)

x − xi−1

=
f(xi) − f(xi−1)

xi−1 − xi

,



we find the piecewise linear function g(x)

g(x) =
xi − x

∆xi

f(xi−1) +
x − xi−1

∆xi

f(xi), if x ∈ [xi−1, xi].

In particular, g is continuous on [a, b] and therefore g ∈ R(α), by Theorem5. By

Propositionsi 9 and 10, | f − g |2 ∈ R(α). By the Riemann criterion (Proposition 3)

we find a partition P = {x0, . . . , xn} of [a, b] such that

U(| f − g |2 , P, α) − L(| f − g |2 , P, α) < ε2

By Lemma4 (c) with xi in place of ti and | f − g |2 in place of f we have

∣

∣

∣

∣

∣

n
∑

i=1

((f − g)(xi))
2∆αi −

∫

b

a

| f − g |2 dα

∣

∣

∣

∣

∣

< ε2.

Since f(xi) = g(xi) by construction, the sum on the left side is zero and we have

∫

b

a

| f − g |2 dα < ε2 =⇒ ‖f − g‖2 < ε.

In other words, every integrable function f ∈ R(α) can be approximated in the

L2-norm by a continuous function g. We say C([a, b]) ⊂ R(α) is dense in the

L2-topology.


