Calculus - 10. Series, Solutions

1. Determine all values of $c \in \mathbb{R}$ such that

$$f(x) = \begin{cases} (x-2)^2 & \text{if } x \le 4, \\ cx^2 - 8 & \text{if } x > 4 \end{cases}$$

is continuous on \mathbb{R} .

Solution. The function f is continuous on $\mathbb{R} \setminus \{4\}$ for every c since polynomials are continuous on \mathbb{R} . Suppose f is continuous at x = 4 then $\lim_{x \to 4+0} f(x) = f(4)$. That is

$$\lim_{x \to 4+0} f(x) = (cx^2 - 8) \mid_{x=4} = 16c - 8 \stackrel{!}{=} f(4) = 4.$$

This implies c = 12/16 = 3/4.

On the other hand, if c = 3/4, then $\lim_{x \to 4-0} f(x) = \lim_{x \to 4+0} f(x) = f(4) = 4$ and f is continuous on \mathbb{R} .

2. (a) Prove the following fixed point theorem. Let D = [a, b] be a finite closed interval. Every continuous function $f: D \to D$ has a fixed point, i.e. there exists $c \in [a, b]$ such that f(c) = c.

Give examples of functions $f \colon D \to D$ such that the fixed point theorem fails if

- (b) D is a closed infinite interval.
- (c) D = [a, b).
- (d) $D = [0, 1] \cup [2, 3]$.
- (e) f is not continuous.

Hint. Use the intermediate value theorem for (a).

Proof. (a) The function g(x) = f(x) - x is continuous on [a, b] by Proposition 2. Further, since $f(a) \ge a$ and $f(b) \le b$,

$$g(a) = f(a) - a \ge 0$$
 and $g(b) = f(b) - b \le 0$.

By the intermediate value theorem there exists $c \in [a, b]$ such that g(c) = 0; that is f(c) = c.

- (b) Let $D = \mathbb{R}_+$. Then f(x) = x + 1 maps D continuously into D. However, f has no fixed point since x = x + 1 has no solution.
- (c) Let D = [0, 2). Then f(x) = x/2 + 1 maps D continuously into D. However, the only fixed point of x/2 + 1, c = 2, is not in D.
- (d) Let f be 2 on [0,1] and 1 on [2,3]. Then f is continuous on D (since it is locally constant at every point of D) and f maps D into D. However, f has no fixed point.
- (e) Let D = [0, 1] and $f(x) = \frac{1}{2}$ for every $x \neq \frac{1}{2}$ and $f(\frac{1}{2}) = 1$. Then f has no fixed point.

Remark. The more general statement is Brower's fixed point theorem: A continuous mapping $f: D \to D$ of the compact and convex set $D \subset \mathbb{R}^n$ into itself has a fixed

3. Let a and b be real numbers with 1 < a < b. Prove that the equation

$$\frac{x^7 + 1}{x - a} + \frac{x^3 - 1}{x - b} = 0$$

has a solution $x \in (a, b)$.

Hint. Define an appropriate function f and apply the intermediate value theorem.

Proof. Consider the function

$$f(x) = \frac{x^7 + 1}{x - a} + \frac{x^3 - 1}{x - b}$$

on the open interval (a, b). Since $x^7 + 1 > 0$, $\lim_{x \to a+0} (x - a) = 0$, and $\frac{x^3 - 1}{x - b} \ge C$ in a neighborhood of x = a, Homework 9.3 (a) and (b) shows that

$$\lim_{x \to a+0} f(x) = +\infty. \tag{1}$$

Similarly, $\frac{x^7+1}{x-a}$ is bounded above in a neighborhood of b, $x^3-1>0$ since b>1, and $\lim_{x\to b-0}(x-b)=0$, x-b<0. Hence,

$$\lim_{x \to b-0} f(x) = -\infty. \tag{2}$$

Using (1) and (2), the intermediate value theorem applied to $\gamma = 0$ shows that f has a zero in (a, b).

4. Prove. If $f: [a, b] \to \mathbb{R}$ is continuous at $x_0 \in (a, b)$ and $f(x_0) = A > 0$ then there exists a real number $\delta > 0$ such that for every $x \in [a, b]$ the inequality $|x - x_0| < \delta$ implies f(x) > A/2.

(In other words: If a continuous function is nonzero at a point x_0 , then f is nonzero on a whole neighborhood $U_{\delta}(x_0)$)

Proof. Since f is continuous at x_0 to $\varepsilon = A/2 > 0$ one can find $\delta > 0$ such that for every $x \in [a, b]$

$$|x-x_0| < \delta$$
 implies $|f(x)-A| < \frac{A}{2}$.

For those x we have

$$-\frac{A}{2} < f(x) - A < \frac{A}{2}$$
$$\frac{A}{2} < f(x) < \frac{3A}{2}$$

which proves the assertion.

5. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on \mathbb{R}_+ , whereas $f(x) = x^2$ is not uniformly continuous on \mathbb{R}_+ .

Proof. (a) Since $f(x) = \sqrt{x}$ is continuous (by Proposition 11), it is uniformly continuous on the compact set [0,1] (by Proposition 12). That is, given $\varepsilon > 0$ there exists $\delta_1 > 0$ such that for every $x, y \in [0,1]$

$$|x - y| < \delta_1 \Longrightarrow |f(x) - f(y)| < \varepsilon.$$
 (3)

Assume now that $x \geq 1$ or $y \geq 1$ (or both). Choose $\delta_2 = \varepsilon$. Noting that $|\sqrt{x} - \sqrt{y}| |\sqrt{x} + \sqrt{y}| = |x - y|$,

$$|x - y| < \delta_2 = \varepsilon$$
 implies $|\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} < \varepsilon$.

The last inequality follows from $\sqrt{x} + \sqrt{y} \ge 1$. Choosing $\delta = \min\{\delta_1, \delta_2\}$ one can see that

$$|x - y| < \delta \Longrightarrow |f(x) - f(y)| < \varepsilon$$

for all $x, y \in \mathbb{R}_+$.

(b) Consider $f(x) = x^2$. Choose $\varepsilon = 2$, $\delta_n = \frac{1}{n}$,

$$x_n = n + \frac{1}{2n} \quad \text{and} \quad y_n = n - \frac{1}{2n}.$$

Then $x_n - y_n = 1/n$ but

$$f(x_n) - f(y_n) = x_n^2 - y_n^2 = (x_n - y_n)(x_n + y_n) = \frac{1}{n} \cdot 2n = 2.$$

f is not uniformly continuous.