Calculus — 10. Series, Solutions

1. Determine all values of ¢ € R such that

f(x):{(:c—m? if 2 <4,

cr’—8 if z>4

is continuous on R.

Solution. The function f is continuous on R\ {4} for every c since polynomials are
continuous on R. Suppose f is continuous at x = 4 then wgﬁ . f(z) = f(4). That
is

lm f(z) = (ca® —8) |p_a= 16c — 8 = f(4) = 4.

r—4+4+0
This implies ¢ = 12/16 = 3/4.
On the other hand, if ¢ = 3/4, then lim f(z) = lim f(z) = f(4) =4 and f is
r—4—0 z—4+0
continuous on R.

2. (a) Prove the following fixed point theorem. Let D = [a, b] be a finite closed interval.
Every continuous function f: D — D has a fixed point, i.e. there exists ¢ € [a, b]
such that f(c) = c.

Give examples of functions f: D — D such that the fixed point theorem fails if
(b) D is a closed infinite interval.

(c) D =[a,b).

(d) D=10,1]U[2,3].

(e) f is not continuous.

Hint. Use the intermediate value theorem for (a).

Proof. (a) The function g(z) = f(x) — z is continuous on [a, b] by Proposition 2.
Further, since f(a) > a and f(b) < b,

g9(a)=f(a)—a>0 and g(b)=f(b)-b<0.

By the intermediate value theorem there exists ¢ € [a, b] such that g(c) = 0; that is
fle) =c.

(b) Let D =R,. Then f(z) =z + 1 maps D continuously into D. However, f has
no fixed point since x = x + 1 has no solution.

(c) Let D =[0,2). Then f(z) = /2 + 1 maps D continuously into D. However,
the only fixed point of z/2 + 1, ¢ = 2, is not in D.

(d) Let f be 2 on [0,1] and 1 on [2,3]. Then f is continuous on D (since it is
locally constant at every point of D) and f maps D into D. However, f has no
fixed point.

(e) Let D =[0,1] and f(z) = 5 for every z # 3 and f(3) = 1. Then f has no fixed
point.

Remark. The more general statement is Brower’s fixed point theorem: A continuous
mapping f: D — D of the compact and conver set D C R"™ into itself has a fixed



point. [

. Let a and b be real numbers with 1 < a < b. Prove that the equation

' 4+1 23-—1
+ —_—

=0
T—a T —b

has a solution z € (a, b).
Hint. Define an appropriate function f and apply the intermediate value theorem.

Proof. Consider the function

'+1 23 -1
= +
T —a z—0b

f(z)

on the open interval (a,b). Since 2" +1 >0, lim (z —a) = 0, and 5”3:()1 >(Cin a
z—a+0 z

neighborhood of z = a, Homework 9.3 (a) and (b) shows that

lim f(z) = 4o0. (1)

z—a+0

Similarly, 2’41 is hounded above in a neighborhood of b, z* —1 > 0 since b > 1, and

lim (z — b)_: 0, z — b < 0. Hence,
z—b—0
lim f(z)= —oc. (2)
z—b—0

Using (1) and (2), the intermediate value theorem applied to v = 0 shows that f
has a zero in (a, b). m

. Prove. If f: [a,b] = R is continuous at xy € (a,b) and f(zg) = A > 0 then there
exists a real number 6 > 0 such that for every x € [a, b] the inequality |z —z¢ | < ¢
implies f(z) > A/2.

(In other words: If a continuous function is nonzero at a point o, then f is nonzero
on a whole neighborhood Us(z))

Proof. Since f is continuous at zy to e = A/2 > 0 one can find 6 > 0 such that for
every z € [a, b]

A
|z — 20| <d implies |f(z)—A]| <3
For those x we have
A
——<f(:1:)—A<§
A 3A
—<f($)<7

which proves the assertion. m



5. Prove that f(z) = \/z is uniformly continuous on R, whereas f(z) = z? is not

uniformly continuous on R .

Proof. (a) Since f(x) = /x is continuous (by Proposition 11), it is uniformly contin-
uous on the compact set [0, 1] (by Proposition 12). That is, given ¢ > 0 there exists
41 > 0 such that for every x,y € [0,1]

lz—y| <o = |f(z)— fly) | <e. (3)
Assume now that x > 1 or y > 1 (or both). Choose d2 = e. Noting that

Va— il [VE + il = -l

|lz—y|<d=¢ implies |Vz—\y|= |z —y| N

N

The last inequality follows from /z + /y > 1.
Choosing 6 = min{dy, d2} one can see that

lz—y|<d= |f(z)—fly)|<e

for all z,y € Ry.
(b) Consider f(z) = 2?. Choose ¢ =2, 0, = =,

n 1 q 1
T, =n-+ — an =n— —.
" 2n Yn 2n

Then z, — y, = 1/n but

f(xn)—f(yn)zxi—yiz(xn—yn)(xmtyn):%an:z

f is not uniformly continuous. n



