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1 Introduction

Let M ⊂ Rn denote a compact, piecewise smooth, closed m-submanifold.
Let Mk+1 denote the set of ordered (k + 1)-tuples of points in M. We refer
to a function ϕ :Mk+1 → R a measuring function.

Definition 1.1. We say that any two points P = (P0, . . . , Pk), Q = (Q0, . . . , Qk) ∈
Mk+1 are (ϕ ≤ x)-homotopic if either P = Q, or there is a continuous map
H : [0, 1]→Mk with H(0) = P and H(1) = Q such that

ϕ (H(t)) ≤ x, ∀ t ∈ [0, 1].

The notion of (ϕ ≤ x)-homotopy defines an equivalence relation on any
subset U ⊂Mk+1. We denote the set of equivalence classes on U with respect
to the (ϕ ≤ x)-homotopy by U〈ϕ≤x〉.

Now, let ϕ−1(−∞, x] ⊂ Mk+1 denote the preimage of (−∞, x] under ϕ.
Next we define a size function corresponding to a measuring function.

Let |M | denote the cardinality of a set M , then we define a size function
by:

l(ϕ,M) : R2 → N ∪ {0,∞} ,
l(ϕ,M)(x, y) :=

∣∣ϕ−1(−∞, x]〈ϕ≤y〉
∣∣ .

Let us observe that:

1. l(ϕ,M) is non decreasing in x;

2. l(ϕ,M) is non increasing in y;

3. l(ϕ,M) = 0 for all x < min
P∈Mk+1

ϕ(P );

4. l(ϕ,M) =∞ if there is a non isolated point P ∈Mk+1 with:

y < ϕ(P ) < x.

Example 1.2. Let M ⊂ R2 be the contour in (Figure 1) and ϕ : M1 → R
the distance from the point B ∈ R2 shown in the figure.

Example 1.3. Consider the international sign alphabet in (Figure 2). In
(Figure 3), part (f) the size graph for the contours of the letter “w” is shown.
Here the measuring function L(v) for v ∈ α ([0, 1]), where α is the curve that
represents the contour, is the length of the curve within a ball centered on v
of radius c > 0.

2



Figure 1

Figure 2
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Figure 3

4



2 Results relevant for the Application

This simple theorem 2.1 has obvious implications for applications, but also
for theoretical approach to size and submanifold distance notions.

Theorem 2.1. Let ϕ, ψ denote two measuring functions on Mk+1. Let
‖·‖Mk+1 denote the uniform distance onMk+1 and assume ‖ϕ− ψ‖Mk+1 ≤ ε
for some ε ≥ 0. Then for any x, y ∈ R we have:

l(ϕ,M)(x− ε, y + ε) ≤ l(ψ,M)(x, y) ≤ l(ϕ,M)(x+ ε, y − ε)

Proof. Assume ϕ−1(−∞, x]〈ϕ≤x−ε〉 is not empty, otherwise the inequality is
trivial. Consider the map:

ι : ϕ−1(−∞, x− ε]〈ϕ≤y+ε〉 → ψ−1(−∞, x]〈ψ≤y〉,

ι([P ]ϕ,x−ε,y+ε) := [P ]ψ,x,y .

First of all, take P ∈ ϕ−1(−∞, x− ε], then it’s:

−ε ≤ ψ (P )− ϕ (P ) ≤ ε ⇔ ψ (P ) ≤ ε+ ϕ (P ) ≤ x

thus P ∈ ψ−1(−∞, x].
Now choose another point Q ∈ ϕ−1(−∞, x − ε] and assume ι[P ] = ι[Q],

thus either P = Q or there is a homotopy H that connects P with another
point Q such that ψ ◦H ≤ y. If P 6= Q, then we have:

φ ◦H ≤ ψ ◦H + ε ≤ y + ε,

hence [P ] = [Q] in ϕ−1(−∞, x− ε]〈ϕ≤y+ε〉.

Now we assume ϕ is a Morse measuring function, thus C 2 and with regular
second derivative, and denote V := −∇ϕ.

Definition 2.2. Let H : [0, 1] → Mk+1 ∈ C 1(0, 1) with H(0),H(1) criti-
cal points of V . We say H is a flow homotopy if H(0) = H(1) or dH

dt
(t) =

ktV (H(t)) with kt ∈ R \ {0} for all t ∈ (0, 1). A homotopy obtained by a
piecewise composition of flow homotopies will be called piecewise flow homo-
topy (p.f. homotopy).
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From the definition it’s clear that for any flow homotopy the function
ϕ ◦ H has it’s maxima only on the boundary. Thus, if we choose critical
values in ϕ−1(−∞, x] then it’s clear that for any p.f. homotopy ϕ ◦ H ≤ x
will hold. This simplifies very much the computation of size functions, as
we can restrict ourselves to critical points of the measuring function, which
is what the next Theorem states. But before we can state the Theorem we
have to add another definition.

Definition 2.3. Consider the graph G with verticies {C1, . . . , CN} the criti-
cal points of V and edges that connect any Ci, Cj if there is a flow homotopy
that connects Ci with Cj. For every x ∈ R define Gy the subgraph of G
obtained by deleting thouse verticies of G on which ϕ takes values greater
then x.

Moreover, for any (x, y) ∈ R2 let Lϕ(x, y) denote the number of connected
components of Gy which contain at least one vertex of Gx.

Theorem 2.4. For any x, y ∈ R we have l(ϕ,M)(x, y) = Lϕ(x, y).

Proof. See [Frosini 1996].

The immediate implication of the theorem is stated in the corollaries
below, which can be found in [Frosini 1996]. From here the connection to
persistent homology is immediate. Consult also [Weinberger] and compare to
(Figure 3) part (f). Another good source is also [Kaczinski].

We denote D := {(x, y) ∈ R2 : x ≤ y} and l̂(ϕ,M) := l(ϕ,M)|D.

Corollary 2.5. l̂(ϕ,M) is a locally right-constant function, i.e. there is an

ε > 0 for (x, y) ∈
◦
D with (x+ ε, y) ∈ D and l̂(ϕ,M)(x, y) = l̂(ϕ,M)(x+ ε, y).

Corollary 2.6. A necessary condition for (x, y) ∈ D to be a discontinuity
point of l(ϕ,M)|D is that at least one of x, y is a critical value of ϕ.

3 Theoretical Results

A natural way to deal with shapes and similarity of objects is to define a
distance that would vanish for similar objects. One possible approach is as
follows.
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Definition 3.1. Let Σn be the set of C∞ compact n-manifolds without
boundary and embedded in Rm. Define the equivalence relation∼ byM∼ N
if there exists a similarity transformation θ : Rm → Rm, (i.e. a rotation,
translation, scaling of reflection), such that θ(M) = N .

Denote with D(M,N ) the set of C∞ diffeomorphisms fromM to N , and
denote Σθ

n := Σn/∼ the quotient of Σn up to equivalence ∼. Then we define
the distance σ by:

σ ([M], [N ]) :=


∞ if D(M,N ) = ∅

inf
ϕ∈D(M,N )

log

(
sup
P∈M

‖ϕ(P )‖ sup
Q∈N
‖ϕ−1(Q)‖

)
else.

Although this distance reflects quite directly our expectations, it’s ob-
voiusly not that simple to deal with. The more remarkable is the result that
folows.

Theorem 3.2. Let M,N ∈ Σθ
n, δ(M) := sup

p,q∈M
‖p− q‖ the diamiter for any

submanifold M.
If fL(N , ξ, µ) < fL(M, x, y) for ξ, µ, x, y > 0 then:

σ([M], [N ]) ≥ log

(
min

{
ξ · δ(M)

x · δ(N)
,
y · δ(N)

µ · δ(M)

})
.

Here fL is a size function defined for closed curves on a manifold with
respect to a measuring function that measures the length of a curve.

Proof. [Frosini 1990], [Frosini 1999].

A simpler distance and an equivalent result for it can be found in [Frosini 1999].
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