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This note describes the main components for characterizing the relation of the
symmetric topological complexity and the embedding dimension of r-dimensional
projective spaces RP". The key property relating these concepts are Zs-equivariant
maps defined on RP", together with fundamental ideas of the Haefliger’s metastable
range theorem. These results have been announced in [2] and are in relation to
previous investigations, discussed in [1], relating the nonsymmetric topological
complexity and the immersion dimension of projective spaces.

We first recall some basic definitions. Given a fibration p : E — B, the Schwarz
genus of p, denoted as genus(p), is defined as the smallest number of open sets {U; }
covering B such that p admits a continuous section on each U;. The topological
complezity of a topological space X is defined as the Schwarz genus of the endpoints
evaluation map ev: P(X) — X x X, ev(y) = (7(0),v(1)), v € P(X), where P(X)
is the path space X9 with compact open topology. The symmetric topological
complexity of X is defined as TC3(X) := genus(evy) + 1, where evy : Py(X) —
B(X,2),is afibration with P»(X) := Py(X)/Zs, and B(X,2) := (XxX—-Ax)/Zs,
Ax = {(z,z),z € X}. Here, we use the fibration ev; : P;(X) - X x X — Ay,
evi = ev|p,(x), with P;(X) := {paths v € X1 ~(0) # ~v(1)}. The orbit spaces
Py(X) and B(X,2) are defined with the actions of Zy which reverse the direction
of the paths v € P;(X), and interchange the coordinates of the elements in X x
X — Ax. We discuss now the following theorem:

Theorem (Gonzdles and Landweber, 2009, [2]). The symmetric topological com-
plexity of the r dimensional projective space RP", denoted as TCS (RP"), is related
to E(r), the Euclidean embedding dimension of RP", as TCS(RP") = E(r)+1, r €
{1,2,4,8,9,13}, r > 15.

In the following, we sketch the two main components in the proof strategy.
On the one hand, a relation is established between the symmetric topological
complexity of RP" with the level of an involution defined by considering Zs-
equivariant maps using RP". On the other hand, we use the identification, as
described in the Haefliger’s metastable theorem, between isotopy classes of smooth
embeddings of a manifold M C R™ and homotopy classes of Zy-equivariant maps
M x M — Ay —S™L,

The level of an involution given by a Zg-action on X is denoted as level( X, Zo),
and is defined as the minimum ¢ > 0, such that there exists an Zs-equivariant map
X — S~1. The theorem that relates the level of an involution to the symmetric
topological complexity for projective spaces has been presented in [2], and ensures
that for all values of r, TCS(P") = level(P" x P" — Apr,Zy) + 1. There are three
main components for proving this result. First, we need a fundamental property,
presented in [3], of the Schwarz genus of a canonical projection which guarantees
that for an Zy-action on X which admits a Zg-equivariant map X — S™~!, and
for the canonical projection p : X — X/Zy, we have genus(p) = level(X,Z,).
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The second property characterizes genus(ev;) for evy : P(X) = X x X — Ax.
Finally, we characterize also genus(p) for p : RP" x RP" — Agpr — B(RP",2) the
canonical projection. More precisely, we consider the property that for ¢ € {1,2}
genus(ev;) = genus(m; ), defined by constructing (commutative) diagrams:

P(RP") ! S" xz, 8" Py(RP") i B,
RP" x RP" RP" x RP" — ARPT
S
Py(RP") B
m A
B(RP",2)

For defining the map f (and proving the commutativity of the diagrams), we
consider a path v € P(RP"), and 4 : [0,1] — S" any lifting through the canonical
projection S — RP", then f(v) is the class of (§(0),%(1)) in the Borel construction
S" Xz, S" = (S" x S")/(—=x,y) ~ (z,—y). Now, the commutativity of these dia-
grams ensures that part of the equalities genus(ev;) = genus(r;) are valid. In order
to analyze the missing inequalities, we use similar ideas by constructing additional
commutative diagrams, using an Zs-equivariant map g1 : E1 — P;(RP"), where
g1 run backwards with respect to fi. The explicit construction of g; uses a model
for F; as the set (S"xS" —A)/(z,y) ~ (—z, —y), A == {(x,y) € S" x S|z # +y},
and g; maps the class of a pair (z1,x2) into the curve [0,1] - S” — RP" with the
first map given by t — v(tz1 + (1 — t)z2), and v is the normalization map.

Using similar ideas, we can also characterize genus(p), for p : RP" x RP" —
Agrpr — B(RP", 2) the canonical projection, with the property genus(p) = genus(ma).
With all these steps, we have a rough synthesis of some basic ideas for proving the
theorem:

Theorem. For all values of r, TC®(RP") = level(RP" x RP" — Agpr,Zs) + 1.

The second part of the proof of the property relating the symmetric topo-
logical complexity and the embedding dimension uses the celebrated Haefliger’s
metastable range theorem:

Theorem (Haefliger’s metastable range). Let M be a smooth n-dimensional man-
ifold and 2m > 3(n + 1), then there is a surjective map from the set of isotopy
classes of smooth embeddings M C R™ onto the set of Zs-equivariant homotopy
classes of maps M* — S™~1 M* := M x M — Ayy.

In our particular case, we only use from the Haefliger’s metastable range the
fact that the existence of a smooth embedding M C R™ is equivalent to the
existence of a Zg-equivariant map M* — S™~!. Notice that the we have an
explicit construction for the surjective map used in the Haefliger’s metastable
range by considering for any embedding g : RP" — R?, a Zs-equivariant map
g:RP" x RP" — Agpr — 8971 g(a,b) := (9(a) — g(b))/(llg(a) — g(b)]]).
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The components required for relating the embedding dimension of a projective
space with the level of the involution for Zs-equivariant map g : RP" x RP" —
Agpr — S%1 are the following two properties from Gonzéles and Landweber,
complementing results from Haefliger and Hirsch (1961, 1962):

Proposition (Gonzales and Landweber, 2009). For r € {8,9,13} or r > 15, an
axial map RP” x RP" — RP® can exist only when 2s > 3(r + 1).

Theorem (Gonzdles and Landweber, 2009). The existence of a symmetric axial
map RP” x RP” — RP*® implies the existence of a smooth embedding RP” C R5*!
provided 2s > 3r.

Theorem (Haefliger, Hirsch, 1961, 1962). The existence of a smooth embedding
RP" C R® implies the existence of a symmetric axial map RP" x RP" — RP?®.

In order to analyze the missing cases outside the metastable range, r < 15,
we consider lower and upper bounds of the symmetric topological complexity.
This can be achieved by considering the inequalities TC(RP") < TCS(RP") <
E(RP")+1, and TC(RP") < TC®(RP") < Erop(RP")+1, where Erop is defined
for embeddings which are non necessarily smooth. These inequalities can be proved
by considering the property we already discussed TCS(RPT) = level(RP" x RP" —
ARP’V" Zz) + 1.

We finally remark that the corresponding result for complex projective spaces is
significantly simpler to proof that the real case. The main property is TCS(CP") =
2n+1. As it is know from [1], TC(CP") = 2n+1, and therefore, we need to verify
that TCS((CP") < 2n + 1. This inequality can be verified with the following
diagram of pullback squares

P(CP")<—— P|(CP") — > P,(CP")

evL evli eri

CP" x CP" <—— CP" x CP" — A¢cpn —> B(CP",2)

which guarantees that a common fiber for the fibrations ev,evy and evs is the
path connected loop space QCP". Now, with the Theorem 5 in [3], which esti-
mates the genus of a fibration using the homotopy type of the base and connec-
tivity of the fiber, we obtain the following inequality: TCS(CP") = genus(evs) +
1 < dim(Y)/2 + 2, where Y is a CW-complex with the same homotopy type
of B(CP",2). We can conclude our remark using an observation by Farber and
Grant that for M being a smooth closed m-dimensional manifold, B(M, 2) has the
homotopy type of a (2m — 1)-dimensional CW-complex.
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