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This note describes the main components for characterizing the relation of the
symmetric topological complexity and the embedding dimension of r-dimensional
projective spaces RPr. The key property relating these concepts are Z2-equivariant
maps defined on RPr, together with fundamental ideas of the Haefliger’s metastable
range theorem. These results have been announced in [2] and are in relation to
previous investigations, discussed in [1], relating the nonsymmetric topological
complexity and the immersion dimension of projective spaces.

We first recall some basic definitions. Given a fibration p : E → B, the Schwarz
genus of p, denoted as genus(p), is defined as the smallest number of open sets {Ui}
covering B such that p admits a continuous section on each Ui. The topological
complexity of a topological space X is defined as the Schwarz genus of the endpoints
evaluation map ev : P (X)→ X×X, ev(γ) = (γ(0), γ(1)), γ ∈ P (X), where P (X)
is the path space X [0,1] with compact open topology. The symmetric topological
complexity of X is defined as TCS(X) := genus(ev2) + 1, where ev2 : P2(X) →
B(X, 2), is a fibration with P2(X) := P1(X)/Z2, and B(X, 2) := (X×X−∆X)/Z2,
∆X := {(x, x), x ∈ X}. Here, we use the fibration ev1 : P1(X) → X ×X −∆X ,
ev1 = ev|P1(X), with P1(X) := {paths γ ∈ X [0,1], γ(0) 6= γ(1)}. The orbit spaces
P2(X) and B(X, 2) are defined with the actions of Z2 which reverse the direction
of the paths γ ∈ P1(X), and interchange the coordinates of the elements in X ×
X −∆X . We discuss now the following theorem:

Theorem (Gonzáles and Landweber, 2009, [2]). The symmetric topological com-

plexity of the r dimensional projective space RPr, denoted as TCS(RPr), is related

to E(r), the Euclidean embedding dimension of RPr, as TCS(RPr) = E(r)+1, r ∈
{1, 2, 4, 8, 9, 13}, r > 15.

In the following, we sketch the two main components in the proof strategy.
On the one hand, a relation is established between the symmetric topological
complexity of RPr with the level of an involution defined by considering Z2-
equivariant maps using RPr. On the other hand, we use the identification, as
described in the Haefliger’s metastable theorem, between isotopy classes of smooth
embeddings of a manifold M ⊂ Rm and homotopy classes of Z2-equivariant maps
M ×M −∆M → Sm−1.

The level of an involution given by a Z2-action on X is denoted as level(X,Z2),
and is defined as the minimum ` > 0, such that there exists an Z2-equivariant map
X → S`−1. The theorem that relates the level of an involution to the symmetric
topological complexity for projective spaces has been presented in [2], and ensures

that for all values of r, TCS(P r) = level(P r ×P r −∆P r ,Z2) + 1. There are three
main components for proving this result. First, we need a fundamental property,
presented in [3], of the Schwarz genus of a canonical projection which guarantees
that for an Z2-action on X which admits a Z2-equivariant map X → Sn−1, and
for the canonical projection p : X → X/Z2, we have genus(p) = level(X,Z2).
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The second property characterizes genus(evi) for ev1 : P1(X) → X × X − ∆X .
Finally, we characterize also genus(ρ) for ρ : RPr ×RPr −∆RPr → B(RPr, 2) the
canonical projection. More precisely, we consider the property that for i ∈ {1, 2}
genus(evi) = genus(πi), defined by constructing (commutative) diagrams:

P (RPr)
f //

ev %%LLLLLL
Sr ×Z2

Sr

πxxqqqqqq

RPr × RPr

P1(RPr)
f1 //

ev1 ((QQQQQQQQ
E1

π1xxpppppppp

RPr × RPr −∆RPr

P2(RPr)
f2 //

ev2 %%KKK
KKK

E2

π2}}{{
{{

{

B(RPr, 2)

For defining the map f (and proving the commutativity of the diagrams), we
consider a path γ ∈ P (RPr), and γ̂ : [0, 1]→ Sr any lifting through the canonical
projection Sr → RPr, then f(γ) is the class of (γ̂(0), γ̂(1)) in the Borel construction
Sr ×Z2

Sr := (Sr × Sr)/(−x, y) ∼ (x,−y). Now, the commutativity of these dia-
grams ensures that part of the equalities genus(evi) = genus(πi) are valid. In order
to analyze the missing inequalities, we use similar ideas by constructing additional
commutative diagrams, using an Z2-equivariant map g1 : E1 → P1(RPr), where
g1 run backwards with respect to f1. The explicit construction of g1 uses a model
for E1 as the set (Sr×Sr− ∆̃)/(x, y) ∼ (−x,−y), ∆̃ := {(x, y) ∈ Sr×Sr|x 6= ±y},
and g1 maps the class of a pair (x1, x2) into the curve [0, 1]→ Sr → RPr with the
first map given by t 7→ v(tx1 + (1− t)x2), and v is the normalization map.

Using similar ideas, we can also characterize genus(ρ), for ρ : RPr × RPr −
∆RPr → B(RPr, 2) the canonical projection, with the property genus(ρ) = genus(π2).
With all these steps, we have a rough synthesis of some basic ideas for proving the
theorem:

Theorem. For all values of r, TCS(RPr) = level(RPr × RPr −∆RPr ,Z2) + 1.

The second part of the proof of the property relating the symmetric topo-
logical complexity and the embedding dimension uses the celebrated Haefliger’s
metastable range theorem:

Theorem (Haefliger’s metastable range). Let M be a smooth n-dimensional man-
ifold and 2m ≥ 3(n + 1), then there is a surjective map from the set of isotopy
classes of smooth embeddings M ⊂ Rm onto the set of Z2-equivariant homotopy
classes of maps M∗ → Sm−1, M∗ := M ×M −∆M .

In our particular case, we only use from the Haefliger’s metastable range the
fact that the existence of a smooth embedding M ⊂ Rm is equivalent to the
existence of a Z2-equivariant map M∗ → Sm−1. Notice that the we have an
explicit construction for the surjective map used in the Haefliger’s metastable
range by considering for any embedding g : RPr → Rd, a Z2-equivariant map
g̃ : RPr × RPr −∆RPr → Sd−1: g̃(a, b) := (g(a)− g(b))/(||g(a)− g(b)||).
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The components required for relating the embedding dimension of a projective
space with the level of the involution for Z2-equivariant map g̃ : RPr × RPr −
∆RPr → Sd−1 are the following two properties from Gonzáles and Landweber,
complementing results from Haefliger and Hirsch (1961, 1962):

Proposition (Gonzáles and Landweber, 2009). For r ∈ {8, 9, 13} or r > 15, an
axial map RPr × RPr → RPs can exist only when 2s ≥ 3(r + 1).

Theorem (Gonzáles and Landweber, 2009). The existence of a symmetric axial
map RPr×RPr → RPs implies the existence of a smooth embedding RPr ⊂ Rs+1

provided 2s > 3r.

Theorem (Haefliger, Hirsch, 1961, 1962). The existence of a smooth embedding
RPr ⊂ Rs implies the existence of a symmetric axial map RPr × RPr → RPs.

In order to analyze the missing cases outside the metastable range, r ≤ 15,
we consider lower and upper bounds of the symmetric topological complexity.
This can be achieved by considering the inequalities TC(RPr) ≤ TCS(RPr) ≤
E(RPr)+1, and TC(RPr) ≤ TCS(RPr) ≤ ETOP(RPr)+1, where ETOP is defined
for embeddings which are non necessarily smooth. These inequalities can be proved
by considering the property we already discussed TCS(RPr) = level(RPr ×RPr −
∆RPr ,Z2) + 1.

We finally remark that the corresponding result for complex projective spaces is
significantly simpler to proof that the real case. The main property is TCS(CPn) =
2n+1. As it is know from [1], TC(CPn) = 2n+1, and therefore, we need to verify

that TCS(CPn) ≤ 2n + 1. This inequality can be verified with the following
diagram of pullback squares

P (CPr)

ev
��

P1(CPn)oo

ev1
��

// P2(CPn)

ev2 ��
CPn × CPn CPn × CPn −∆CPnoo // B(CPn, 2)

which guarantees that a common fiber for the fibrations ev, ev1 and ev2 is the
path connected loop space ΩCPn. Now, with the Theorem 5 in [3], which esti-
mates the genus of a fibration using the homotopy type of the base and connec-
tivity of the fiber, we obtain the following inequality: TCS(CPn) = genus(ev2) +
1 ≤ dim(Y )/2 + 2, where Y is a CW-complex with the same homotopy type
of B(CPn, 2). We can conclude our remark using an observation by Farber and
Grant that for M being a smooth closed m-dimensional manifold, B(M, 2) has the
homotopy type of a (2m− 1)-dimensional CW-complex.
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