Symmetric Topological Complexity and Embedding Problems for Projective Spaces

MIJAIL GUILLEMARD

This note describes the main components for characterizing the relation of the symmetric topological complexity and the embedding dimension of r-dimensional projective spaces \mathbb{RP}^r . The key property relating these concepts are \mathbb{Z}_2 -equivariant maps defined on \mathbb{RP}^r , together with fundamental ideas of the Haefliger's metastable range theorem. These results have been announced in [2] and are in relation to previous investigations, discussed in [1], relating the nonsymmetric topological complexity and the immersion dimension of projective spaces.

We first recall some basic definitions. Given a fibration $p: E \to B$, the Schwarz genus of p, denoted as genus(p), is defined as the smallest number of open sets $\{U_i\}$ covering B such that p admits a continuous section on each U_i . The topological complexity of a topological space X is defined as the Schwarz genus of the endpoints evaluation map ev : $P(X) \to X \times X$, $ev(\gamma) = (\gamma(0), \gamma(1)), \gamma \in P(X)$, where P(X)is the path space $X^{[0,1]}$ with compact open topology. The symmetric topological complexity of X is defined as $TC^S(X) := \text{genus}(ev_2) + 1$, where $ev_2 : P_2(X) \to$ B(X,2), is a fibration with $P_2(X) := P_1(X)/\mathbb{Z}_2$, and $B(X,2) := (X \times X - \Delta_X)/\mathbb{Z}_2$, $\Delta_X := \{(x,x), x \in X\}$. Here, we use the fibration $ev_1 : P_1(X) \to X \times X - \Delta_X$, $ev_1 = ev|_{P_1(X)}$, with $P_1(X) := \{\text{paths } \gamma \in X^{[0,1]}, \gamma(0) \neq \gamma(1)\}$. The orbit spaces $P_2(X)$ and B(X,2) are defined with the actions of \mathbb{Z}_2 which reverse the direction of the paths $\gamma \in P_1(X)$, and interchange the coordinates of the elements in $X \times X - \Delta_X$. We discuss now the following theorem:

Theorem (Gonzáles and Landweber, 2009, [2]). The symmetric topological complexity of the *r* dimensional projective space $\mathbb{R}P^r$, denoted as $\mathrm{TC}^{\mathrm{S}}(\mathbb{R}P^r)$, is related to E(r), the Euclidean embedding dimension of $\mathbb{R}P^r$, as $\mathrm{TC}^{\mathrm{S}}(\mathbb{R}P^r) = E(r)+1$, $r \in \{1, 2, 4, 8, 9, 13\}$, r > 15.

In the following, we sketch the two main components in the proof strategy. On the one hand, a relation is established between the symmetric topological complexity of $\mathbb{R}P^r$ with the level of an involution defined by considering \mathbb{Z}_{2^-} equivariant maps using $\mathbb{R}P^r$. On the other hand, we use the identification, as described in the Haefliger's metastable theorem, between isotopy classes of smooth embeddings of a manifold $M \subset \mathbb{R}^m$ and homotopy classes of \mathbb{Z}_2 -equivariant maps $M \times M - \Delta_M \to \mathbb{S}^{m-1}$.

The level of an involution given by a \mathbb{Z}_2 -action on X is denoted as level (X, \mathbb{Z}_2) , and is defined as the minimum $\ell > 0$, such that there exists an \mathbb{Z}_2 -equivariant map $X \to \mathbb{S}^{\ell-1}$. The theorem that relates the level of an involution to the symmetric topological complexity for projective spaces has been presented in [2], and ensures that for all values of r, $\mathrm{TC}^{\mathrm{S}}(P^r) = \mathrm{level}(P^r \times P^r - \Delta_{P^r}, \mathbb{Z}_2) + 1$. There are three main components for proving this result. First, we need a fundamental property, presented in [3], of the Schwarz genus of a canonical projection which guarantees that for an \mathbb{Z}_2 -action on X which admits a \mathbb{Z}_2 -equivariant map $X \to \mathbb{S}^{n-1}$, and for the canonical projection $p: X \to X/\mathbb{Z}_2$, we have genus $(p) = \mathrm{level}(X, \mathbb{Z}_2)$. The second property characterizes genus(ev_i) for ev₁ : $P_1(X) \to X \times X - \Delta_X$. Finally, we characterize also genus(ρ) for $\rho : \mathbb{RP}^r \times \mathbb{RP}^r - \Delta_{\mathbb{RP}^r} \to B(\mathbb{RP}^r, 2)$ the canonical projection. More precisely, we consider the property that for $i \in \{1, 2\}$ genus(ev_i) = genus(π_i), defined by constructing (commutative) diagrams:

For defining the map f (and proving the commutativity of the diagrams), we consider a path $\gamma \in P(\mathbb{RP}^r)$, and $\hat{\gamma} : [0,1] \to \mathbb{S}^r$ any lifting through the canonical projection $\mathbb{S}^r \to \mathbb{RP}^r$, then $f(\gamma)$ is the class of $(\hat{\gamma}(0), \hat{\gamma}(1))$ in the Borel construction $\mathbb{S}^r \times_{\mathbb{Z}_2} \mathbb{S}^r := (\mathbb{S}^r \times \mathbb{S}^r)/(-x, y) \sim (x, -y)$. Now, the commutativity of these diagrams ensures that part of the equalities genus(ev_i) = genus(π_i) are valid. In order to analyze the missing inequalities, we use similar ideas by constructing additional commutative diagrams, using an \mathbb{Z}_2 -equivariant map $g_1 : E_1 \to P_1(\mathbb{RP}^r)$, where g_1 run backwards with respect to f_1 . The explicit construction of g_1 uses a model for E_1 as the set $(\mathbb{S}^r \times \mathbb{S}^r - \tilde{\Delta})/(x, y) \sim (-x, -y), \tilde{\Delta} := \{(x, y) \in \mathbb{S}^r \times \mathbb{S}^r | x \neq \pm y\}$, and g_1 maps the class of a pair (x_1, x_2) into the curve $[0, 1] \to \mathbb{S}^r \to \mathbb{RP}^r$ with the first map given by $t \mapsto v(tx_1 + (1 - t)x_2)$, and v is the normalization map.

Using similar ideas, we can also characterize genus(ρ), for $\rho : \mathbb{RP}^r \times \mathbb{RP}^r - \Delta_{\mathbb{RP}^r} \to B(\mathbb{RP}^r, 2)$ the canonical projection, with the property genus(ρ) = genus(π_2). With all these steps, we have a rough synthesis of some basic ideas for proving the theorem:

Theorem. For all values of r, $\mathrm{TC}^{\mathrm{S}}(\mathbb{RP}^r) = \mathrm{level}(\mathbb{RP}^r \times \mathbb{RP}^r - \Delta_{\mathbb{RP}^r}, \mathbb{Z}_2) + 1.$

The second part of the proof of the property relating the symmetric topological complexity and the embedding dimension uses the celebrated Haefliger's metastable range theorem:

Theorem (Haefliger's metastable range). Let M be a smooth n-dimensional manifold and $2m \geq 3(n+1)$, then there is a surjective map from the set of isotopy classes of smooth embeddings $M \subset \mathbb{R}^m$ onto the set of \mathbb{Z}_2 -equivariant homotopy classes of maps $M^* \to \mathbb{S}^{m-1}$, $M^* := M \times M - \Delta_M$.

In our particular case, we only use from the Haefliger's metastable range the fact that the existence of a smooth embedding $M \subset \mathbb{R}^m$ is equivalent to the existence of a \mathbb{Z}_2 -equivariant map $M^* \to \mathbb{S}^{m-1}$. Notice that the we have an explicit construction for the surjective map used in the Haefliger's metastable range by considering for any embedding $g : \mathbb{R}P^r \to \mathbb{R}^d$, a \mathbb{Z}_2 -equivariant map $\tilde{g} : \mathbb{R}P^r \times \mathbb{R}P^r - \Delta_{\mathbb{R}P^r} \to \mathbb{S}^{d-1}$: $\tilde{g}(a,b) := (g(a) - g(b))/(||g(a) - g(b)||)$.

The components required for relating the embedding dimension of a projective space with the level of the involution for \mathbb{Z}_2 -equivariant map $\tilde{g} : \mathbb{R}P^r \times \mathbb{R}P^r - \Delta_{\mathbb{R}P^r} \to \mathbb{S}^{d-1}$ are the following two properties from Gonzáles and Landweber, complementing results from Haefliger and Hirsch (1961, 1962):

Proposition (Gonzáles and Landweber, 2009). For $r \in \{8, 9, 13\}$ or r > 15, an axial map $\mathbb{R}P^r \times \mathbb{R}P^r \to \mathbb{R}P^s$ can exist only when $2s \ge 3(r+1)$.

Theorem (Gonzáles and Landweber, 2009). The existence of a symmetric axial map $\mathbb{R}P^r \times \mathbb{R}P^r \to \mathbb{R}P^s$ implies the existence of a smooth embedding $\mathbb{R}P^r \subset \mathbb{R}^{s+1}$ provided 2s > 3r.

Theorem (Haefliger, Hirsch, 1961, 1962). The existence of a smooth embedding $\mathbb{R}P^r \subset \mathbb{R}^s$ implies the existence of a symmetric axial map $\mathbb{R}P^r \times \mathbb{R}P^r \to \mathbb{R}P^s$.

In order to analyze the missing cases outside the metastable range, $r \leq 15$, we consider lower and upper bounds of the symmetric topological complexity. This can be achieved by considering the inequalities $\mathrm{TC}(\mathbb{R}\mathrm{P}^r) \leq \mathrm{TC}^{\mathrm{S}}(\mathbb{R}\mathrm{P}^r) \leq E(\mathbb{R}\mathrm{P}^r) + 1$, and $\mathrm{TC}(\mathbb{R}\mathrm{P}^r) \leq \mathrm{TC}^{\mathrm{S}}(\mathbb{R}\mathrm{P}^r) \leq E_{\mathrm{TOP}}(\mathbb{R}\mathrm{P}^r) + 1$, where E_{TOP} is defined for embeddings which are non necessarily smooth. These inequalities can be proved by considering the property we already discussed $\mathrm{TC}^{\mathrm{S}}(\mathbb{R}\mathrm{P}^r) = \mathrm{level}(\mathbb{R}\mathrm{P}^r \times \mathbb{R}\mathrm{P}^r - \Delta_{\mathbb{R}\mathrm{P}^r}, \mathbb{Z}_2) + 1$.

We finally remark that the corresponding result for complex projective spaces is significantly simpler to proof that the real case. The main property is $\mathrm{TC}^{\mathrm{S}}(\mathbb{C}\mathrm{P}^{n}) = 2n+1$. As it is know from [1], $\mathrm{TC}(\mathbb{C}\mathrm{P}^{n}) = 2n+1$, and therefore, we need to verify that $\mathrm{TC}^{\mathrm{S}}(\mathbb{C}\mathrm{P}^{n}) \leq 2n+1$. This inequality can be verified with the following diagram of pullback squares

$$P(\mathbb{C}P^{r}) \longleftrightarrow P_{1}(\mathbb{C}P^{n}) \longrightarrow P_{2}(\mathbb{C}P^{n})$$

$$ev_{\downarrow} \qquad ev_{1} \downarrow \qquad ev_{2} \downarrow$$

$$\mathbb{C}P^{n} \times \mathbb{C}P^{n} \longleftrightarrow \mathbb{C}P^{n} \times \mathbb{C}P^{n} - \Delta_{\mathbb{C}P^{n}} \longrightarrow B(\mathbb{C}P^{n}, 2)$$

which guarantees that a common fiber for the fibrations ev, ev_1 and ev_2 is the path connected loop space $\Omega \mathbb{CP}^n$. Now, with the Theorem 5 in [3], which estimates the genus of a fibration using the homotopy type of the base and connectivity of the fiber, we obtain the following inequality: $\mathrm{TC}^{\mathrm{S}}(\mathbb{CP}^n) = \mathrm{genus}(ev_2) + 1 \leq \dim(Y)/2 + 2$, where Y is a CW-complex with the same homotopy type of $B(\mathbb{CP}^n, 2)$. We can conclude our remark using an observation by Farber and Grant that for M being a smooth closed m-dimensional manifold, B(M, 2) has the homotopy type of a (2m-1)-dimensional CW-complex.

References

- M. Farber, S. Tabachnikov, and S. Yuzvinsky, *Topological robotics: motion planning in projective spaces*, Int. Math. Res. Not., no. 34, 1853-1870 (2003).
- J. González and P. Landweber, Symmetric topological complexity of projective and lens spaces, Algebraic & Geometric Topology, no. 9 473-494 (2009).
- [3] A. S. Schwarz, The genus of a fiber space, Amer. Math. Soc. Transl., Ser. 2, vol. 55 49-140 (1966).