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Abstract:

A novel concept for the analysis of high-dimensional sig-
nal data is proposed. To this end, customized techniques
from manifold learning are combined with convolution
transforms, being based on wavelets. The utility of the
resulting method is supported by numerical examples con-
cerning low-dimensional parameterizations of scale mod-
ulated signals and solutions to the wave equation at vary-
ing initial conditions.

1. Introduction

Recent advances in nonlinear dimensionality reduction
and manifold learning have provided new methods for the
analysis of high-dimensional signals. In this problem, a
very large data set U ⊂ Rn of scattered points is given,
where the data points are assumed to lie on a compact
submanifold M of Rn, i.e. U ⊂ M ⊂ Rn. More-
over, the dimension k = dim(M) of M is assumed to
be much smaller than the dimension of the ambient space
Rn, k � n. Now, the primary goal in the dimensionality
reduction is the construction of a low-dimensional repre-
sentation of the data U .
In this paper, a novel concept for signal data analysis
through dimensionality reduction is proposed. To this end,
suitable techniques from manifold learning are combined
with convolution transforms. Moreover, another important
ingredient is a (suitable) projection map P : Rn → Rk
that finally outputs the desired low-dimensional represen-
tation for U . Note that for the sake of approximation qual-
ity, we need to preserve intrinsic geometrical and topolog-
ical properties of the manifold M, and so the construc-
tion of the composite dimensionality reduction method re-
quires particular care. In the proposed data analysis, the
geometric distortion of the manifold, being incurred by
the chosen convolution transform, plays a key role.
We remark that similar concepts from differential geom-
etry are enjoying increasing interest in related applica-
tions of sampling theory, including surface reconstruc-
tion in reverse engineering and image analysis [5]. Fur-
ther related concepts can be found in classical dimen-
sionality reduction schemes, such as in principal compo-
nent analysis and multidimensional scaling, while more
recent techniques are including Isomap and LLE meth-
ods [4, 7] Local Tangent Space Alignment (LTSA) [6],

Sample Logmaps [1], and, most recently, Riemannian
Normal Coordinates [2, 3].
The outline of the paper is as follows. In the following
Section 2, the main ingredients of the proposed nonlinear
dimensionality reduction scheme, especially the construc-
tion of the convolution and projection map, are explained.
Then, in Section 3 relevant aspects concerning distortion
analysis are addressed. Finally, Section 4 shows the good
performance of the resulting nonlinear dimensionality re-
duction method. To this end, numerical examples con-
cerning low-dimensional parameterization of scale modu-
lated signals and solutions to the wave equation at varying
initial conditions are illustrated.

2. Construction of the Data Analysis

Given a set of signals U = {ui}mi=1 ⊂M, that we assume
to lie in (or near) a low-dimensional Riemannian compact
submanifoldM, of Rn, we wish to analyse the given data
for the purpose of dimensionality reduction. Therefore,
we assume that there is an embedding A : Ω → M, giv-
ing a parameterization ofM, where the domain Ω ⊂ Rd
lies in a low-dimensional Euclidean space Rd, i.e., d� n.
But the parameter domain Ω is unknown. Therefore, the
goal of dimensionality reduction is to find a sufficiently
accurate approximation Ω′ of Ω, through which the de-
sired low-dimensional representation for U is obtained.
We remark that the construction of the data analysis is re-
quired to depend on intrinsic geometrical and topologi-
cal properties of the manifold M. To this end, we ap-
ply a particular convolution transform T : M → MT ,
MT = {T (p) : p ∈ M}, to each of the data sites ui,
followed by a suitable projection P :MT → Ω′, yielding
a nonlinear data transformation for dimensionality reduc-
tion. The following diagram reflects our concept.

Ω ⊂ Rd
A // U ⊂M ⊂ Rn

T
��

Ω′ ⊂ Rd UT ⊂MT ⊂ Rn
P

oo

(1)

Note that both the construction of the transformation T
and the projection need particular care. Indeed, in order to
maintain the intrinsic geometrical properties of the mani-
fold M, it is required to investigate the curvature distor-
tion ofM under the transform T . For this purpose, con-
volution filters are powerful tools for the construction of



suitable signal transforms T . This is supported by our nu-
merical results in Section 4., where wavelet transforms are
used for a customized construction of T .
Finally, let us remark that standard methods in signal pro-
cessing rely on on special characteristics of a discrete-time
signal uk ∈ Rn, such as frequency content, time duration,
phase and amplitude information, etc. In typical applica-
tion scenarios, signal data are not just isolated items of
information, but they are rather incorporating correlations
reflecting characteristic properties of the sampled object.
Therefore, when designing customized signal transforms,
one should exploit available context information on char-
acteristic properties of the target object in order to improve
the quality of the data analysis. In our particular applica-
tion scenario, special emphasis needs to be placed on in-
trinsic geometrical properties of the manifold M, where
a preprocessing distortion analysis of the curvature is of
vital importance.

3. Curvature Distortion Analysis

Our main objective is to estimate the curvature distortion
in the geometry of the manifold M incurred by the ap-
plication of the linear transformation T : M → MT ,
where T may, for instance, representing a wavelet or a
convolution filter. To this end, we first need to evaluate
relevant effects on the geometrical deformation ofM un-
der various specific transformations T . This then amounts
to constructing suitable transformations T which are well-
adapted to the characteristic properties of the specific data.
Preferable choices for T : M → MT are diffeomor-
phisms, in which case dim(M) = dim(MT ).

3.1 Sectional Curvature Distortions
In general, a fundamental invariant of a manifold with re-
spect to its isometries are the sectional curvatures. This
concept is derived from the idea of the Gaussian curvature
in the setting of 2-manifolds, and is defined as

KM =
< R(X,Y )Y,X >

‖X‖2‖Y ‖2− < X,Y >2
,

for the curvature tensor R, defined for a triple of smooth
vector fields X,Y, Z as

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

We recall that the affine connection (a Levi-Cevita con-
nection for our situation) is a bilinear map

∇ : C∞(M, TM)× C∞(M, TM)→ C∞(M, TM)

that can be expressed with the Christoffel symbols defined,
for a particular system of local coordinates (x1, . . . , xn),
as∇∂i∂j =

∑n
k=1 Γkij∂k. The Christoffel symbols can be

described with respect to the metric tensor via

Γkij =
1
2

m∑
`=1

(
∂gj`
∂xi

+
∂gi`
∂xj

+
∂gij
∂x`

)
g`k.

In order to estimate the distortion caused by the linear map
T : M→MT , we compare the Gaussian curvatures be-
tweenM andMT , denoted respectively KM, and KMT

,

DT
K(p) = KM(p)−KMT

(T (p)) for p ∈M.

If T is invertible, then the Gaussian curvature KMT
in

MT can be computed as a function of the metric g inM
by using a pullback of the curvature tensor R inM with
respect to the inverse map T−1 : MT → M, or, equiva-
lently, by using a pushforward of the curvature tensorR in
Mwith respect to T :M→MT . An alternative strategy
is to consider the composition of T with a particular sys-
tem of local coordinates (x1, . . . , xn) of M, along with
the metric tensor

gij(p) = gij(x1, . . . , xm) =
〈

∂

∂xi
,
∂

∂xj

〉
.

When considering the linear transformation T represent-
ing the convolution filter, an important case is when T is
represented by a Toeplitz matrix, with filter coefficients
H = (h1, . . . , hm), i.e.,

T =



h1 0 . . . 0
h2 h1 . . . 0
...

... . . .
...

hm hm−1 . . . h1

0 hm . . . h2

...
... . . .

...
0 0 . . . hm


.

Note that the curvature distortion caused by the map T will
be controlled by the singular values of T , which due to the
Toeplitz matrix structure, are obtained from the Fourier
coefficients of H .
Now, our primary objective is to investigate the influence
of the filter coefficients in H on the curvature distortion
DT
K . Moreover, we study filters being required to obtain a

given curvature distortion. The latter is particularly useful
for the adaptive construction of a low dimensional repre-
sentation of U .

3.2 Curvature Distortions for Curves

As for the special case of a curve r : I = [t0, t1] → Rm,
with arc-length parameterization s(a, t) =

∫ t
a
‖r′(x)‖ dx,

recall that the curvature of r is k(s) = ‖r′′
(s)‖. For an

arbitrary parameterizations of r, its curvature is given by

K2 =
‖r̈‖2‖ṙ‖2− < r̈, ṙ >2

(‖ṙ‖2)3
.

In the remainder of this section, we briefly discuss the cur-
vature distortion under linear maps (e.g. convolution trans-
form) and under smooth maps. To compute the curvature
distortion of a curve r : I = [t0, t1] → Rm under a linear
map T , we consider the curvature of rT = {Tr(t), t ∈ I},
computed as follows.

K2
T ≡ K2

T (t) =
‖T r̈‖2‖T ṙ‖2− < T r̈, T ṙ >2

(‖T ṙ‖2)3
. (2)

As for the general case of smooth maps F : Rm → Rr,
the curvature distortion can be approximated by using the



Jacobian matrix JF and its singular value decomposition,

JF (p) =


∂f1
∂x1

(p) . . . ∂f1
∂xm

(p)
...

. . .
...

∂fr

∂x1
(p) . . . ∂fr

∂xm
(p)


= UF (p)DF (p)V TF (p) for p ∈M.

The curvature distortion of a curve r : [t0, t1] → Rm un-
der F can in this case be analyzed through the expression

K2
F ≡ K2

F (p) =
‖JF r̈‖2‖JF ṙ‖2− < JF r̈, JF ṙ >

2

(‖JF ṙ‖2)3
,

where, unlike in the linear case (2), the Jacobian matrices
JF depend on p ∈M.

4. Numerical Examples

This section presents three different numerical examples
to illustrate basic properties of the proposed analysis of
high-dimensional signal data. Further details shall be dis-
cussed during the conference.

4.1 Low-dimensional parameterization of scale
modulated signals

In this example, we illustrate the geometrical effect of a
convolution transform for a set of functions lying on a
curve embedded in a high dimensional space. More pre-
cisely, we analyze a scale modulated family of functions
U ⊂ R64, parameterized by three values in Ω ⊂ R3,

U =

{
fα(t) =

3∑
i=1

e−αi(t)(· −bi)
2

: α(t) ∈ Ω

}
.

The parameter set for the scale modulation is given by the
curve

Ω =
{
α(t) = (α1(t), α2(t), α3(t))T ∈ R3, : t ∈ [t0, t1]

}
.

Figure 1 (left) shows the parameter domain Ω, a star
shaped curve in R3. A PCA projection in R3, applied
to the set U ⊂ R64, is also displayed in Figure 1 (mid-
dle). The projection illustrates the curvature distortion
caused by the nonlinear map A : Ω ⊂ R3 → U ⊂
R64, A(α(t)) = fα(t).

Figure 1: Parameter set Ω ⊂ R3, data U ⊂ R64, and
wavelet correction T (U) ⊂ R64.

Finally, Figure 1 (right), shows the resulting data transfor-
mation T (U) using a Daubechies wavelet w.r.t. a specific
band of the multiresolution analysis, resulting in a filter-
ing process for each element in U . The resulting T (U),

presents a curvature correction that recovers the original
geometry of Ω fairly well.
To explain the resulting curvature correction, we need to
analyze the singular values and singular vectors of the con-
volution map T . In fact, the singular values of T can be
viewed as scaling factors (stretching or shrinking) along
corresponding axis in the (local) embedding of U . More-
over, the spectrum of T depends on the particular filter
design.

4.2 Low dimensional parameterization of wave
equation solutions

In this second example, we regard the one-dimensional
wave equation

∂u

∂t
= c2

∂u

∂x
, 0 < x < 1, t ≥ 0, (3)

with initial conditions

u(0, x) = f(x),
∂u

∂t
(0, x) = g(x), 0 ≤ x ≤ 1. (4)

We make use of the previous example to construct a set
of initial values (i.e. functions) parameterized by a star
shaped curve U0 = U . Our objective is to investigate the
distortion caused by the evolution Ut of the solutions on
given initial values U0. Recall that the evolution of the
wave equation is constituted by the set of solutions

Ut = {uα ≡ uα(t, x) : uα satisfying (3) with
initial condition f ≡ fα in (4) for α ∈ Ω}.

Now, the solution of the wave equation can numerically be
computed by using finite differences, yielding the iteration

u(j+1) = Au(j) + b(j),

where for µ = γ∆t/(∆x)2, the iteration matrix is given
by

A =


1− 2µ µ
µ 1− 2µ µ

µ 1− 2µ µ
. . . . . . . . .

0 µ 1− 2µ

 .

Recall that in the convergence analysis of the iteration,
which can be rewritten as,

u(j+2) = Au(j+1) + b(j+1)

= A(Au(j) + b(j)) + b(j+1)

= A(2)u(j) +Ab(j) + b(j+1),

the spectrum of the matrices Ak play a key role. In fact,
due to the decomposition Ak = UDkUT , the geometrical
distortion in the evolution of Ut depends on the evolution
of the eigenvalues of A.

4.3 Topological Distortion via Filtering
In this final example, we illustrate one relevant phe-
nomenon concerning the topological distortion caused by



Figure 2: One solution of the wave equation u(t, x) and
one measurement u(tk, x), tk = 20.

Figure 3: Curvature distortion of the initial manifold un-
der the evolution of the wave equation. The outer curve
represents the initial conditions U0 while the inner curve
reflects the corresponding solutions Ut for some time t.

the utilized convolution transformation. In this couple of
two test cases, we take one 1-torus Ω1 ⊂ R3 and one 2-
torus Ω2 ⊂ R3 as parameter space, respectively. As in
the previous examples, we generate a corresponding set
of scale modulation functions U1 and U2 (see Figure 4),
using Ω1 and Ω2 as parameter domains. This gives, for
j = 1, 2, two different data sets

Uj =

{
fαj(t) =

3∑
i=1

e−α
j
i (t)(· −b

j
i )

2
: αj(t) ∈ Ωj

}
.

Figure 4: PCA projections of U1, U2 ⊂ R64 onto R3, gen-
erated by Ω1,Ω2 ⊂ R3, two tori of genus 1 and 2.

Now we combine the set U1 and U2 by

U =
{
ft = fα1(t) + fα2(t) : α1(t) ∈ Ω1, α

2(t) ∈ Ω2

}
.

The resulting projection of the dataU is shown in Figure 5.
For the purpose of illustration, we recover the sets U1 and
U2 from U . Note that this is a rather challenging task,
especially since the genus of surfaces U1 and U2 are dif-
ferent. Figure 6 shows the reconstructions of the two sur-
faces U1 and U2. Note that the both the geometrical and
topological properties of U1 and U2 are recovered fairly
well, which supports the good performance of our convo-
lution transform yet once more. The reconstruction of the

utilized convolution involves a selection of suitable bands
from the corresponding wavelet multiresolution decompo-
sition. Further details on this shall be explained during the
conference.

Figure 5: PCA projection of U ⊂ R64 onto R3.

Figure 6: Reconstruction of U1 (left), U2 (right) from U .
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