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ABSTRACT

In the last few years an important family of methods for single-
channel signal separation has been developed using tools from
time-frequency analysis. Given a mixture of signals f =

∑
i fi,

the task is to estimate the components fi using specific as-
sumptions on their time-frequency or statistical characteris-
tics. A well-known strategy, termed independent subspace
analysis (ISA), is to reduce the embedding dimension of the
time-frequency representation of f , prior to the application of
independent component analysis (ICA). In these methods, a
standard strategy for dimensionality reduction is (the linear)
principal component analysis (PCA), but also nonlinear meth-
ods have recently been proposed. In this paper, we compare
different dimensionality reduction methods for single channel
signal separation in the context of ISA. Our focus is on signals
with transitory components, and the objective is to detect the
locations in time where each individual signal fi is activated.

Keywords— Dimensionality reduction, independent sub-
space analysis, signal detection and separation, wavelets, STFT.

1. INTRODUCTION

Signal separation is a crucial task in many application fields,
and its modern development depends on experimental break-
throughs supported by a correct understanding of the underlying
mathematical framework. In the last decade, several approaches
have been proposed for the problem of blind source separa-
tion of single channel signals. A fundamental strategy proposed
in [1,2] combines independent component analysis (ICA) meth-
ods with time-frequency transforms. These ideas have been ex-
tended by considering other types of matrix decompositions in
addition to the statistically oriented strategy of ICA. In particu-
lar, methods using non-negative matrix factorization techniques
have gained significant attention in recent years.

A crucial step in many of these strategies is to reduce the di-
mension of the Euclidean space where the time frequency rep-
resentation is embedded. New methods for dimensionality re-
duction of point cloud data X = {xi}mi=1 ⊂ Rn have actively
been developed using geometrical and topological concepts [8].
Novel algorithms based on concepts from differential geome-
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try are Whitney embedding based methods, isomap, local tan-
gent space alignment (LTSA), Laplacian eigenmaps, Rieman-
nian normal coordinates (RNC), to mention but a few.

The objective of this paper is to evaluate the usage of new di-
mensionality reduction tools in signal detection and separation
algorithms. Recent developments on this topic were presented
in [2], but further investigations on the signal processing and
mathematical framework of these algorithms are essentially re-
quired. This paper discusses various important aspects concern-
ing the application of dimensionality reduction methods in the
context of ISA. In particular, we focus on the signal detection
problem in a complex mixture of transitory acoustic sounds. A
better mathematical understanding of these procedures, and ad-
ditional empirical insights, are fundamental for improving cur-
rent strategies and designing new methods for signal separation.

The outline of this paper is as follows. In Section 2, we dis-
cuss the utility of dimensionality reduction methods in combi-
nation with signal processing tools, with a particular focus on
the analysis of time-frequency data. We also present some ba-
sic ideas on ICA and dimensionality reduction strategies. In
Section 3, we briefly review current techniques proposed in the
literature for independent subspace analysis. Finally, in Sec-
tion 4, we present computational experiments illustrating the
signal detection capabilities of the ISA and dimensionality re-
duction framework using two different methods, the linear PCA
method and nonlinear Laplacian eigenmaps.

2. DIMENSIONALITY REDUCTION AND SIGNAL
PROCESSING

A basic characteristic of short term Fourier transforms (STFT),
is the high dimensionality of the Euclidean space where their
time-frequency data is embedded. In this context, for many ap-
plications a preprocessing step using dimensionality reduction
methods for time-frequency transforms can potentially improve
the quality of the data analysis. These preprocessing algorithms
are at the heart of many modern signal separation methods and,
in particular, they are fundamental for the ISA methods we dis-
cuss in this paper. We first formalize these ideas by describing a
general framework with a close integration of signal processing
tools with dimensionality reduction maps (see also [4, 5]).

We consider a band-limited signal f ∈ L2(R) and a seg-
mentation of its domain in such a way that small consecutive



signal patches are analyzed, as routinely performed in STFT or
wavelet analysis. For instance, the set of signal patches Xf can
be defined as a dataset of vectors in Rn , derived by drawing m
samples from a signal f :

Xf = {xi}mi=1 ⊂ Rn, xi = (f(tk(i−1)+j))n−1
j=0 ∈ Rn,

for k ∈ N a fixed hop-size. Here, the regular sampling grid
{t`}km−k+n−1

`=0 ⊂ R is constructed when considering the
Nyquist-Shannon theorem for f . Now, a fundamental and rea-
sonable assumption is that Xf lies inM, a (low-dimensional)
space (manifold or topological space e.g. CW-complex, sim-
plicial complex) embedded in the high dimensional space Rn.
Therefore, we have Xf ⊂ M ⊂ Rn with p := dim(M) � n.
The construction of time-frequency data can be described as
the application of a map T : M ⊃ Xf → T (Xf ) ⊂ MT ,
where MT := T (M), and T (xi) is the signal transforma-
tion of xi (Fourier transform, wavelet, etc). An additional
key concept is the consideration of an ideal model, Ω, repre-
senting M, being embedded in a low-dimensional space Rd

(with d � n), together with a homeomorphism (or even an
isometry) A : Rd ⊃ Ω → M ⊂ Rn. The space Ω repre-
sents an ideal representation ofM that would allow convenient
analysis procedures in a low-dimensional environment. For
instance, in the case where M is the well-known Swiss roll
dataset, Ω is a rectangle. However, in practice, we can only
try to approximate Ω with a dimensionality reduction map
P : Rn ⊃MT → Ω′ ⊂ Rd, where Ω′ is a homeomorphic copy
of Ω. The following diagram shows the basic framework.

Rd ⊃ Ω M⊃ Xf ⊂ Rn

Rd ⊃ Ω′ MT ⊃ T (Xf ) ⊂ Rn

A

T

P

We recall that there is a well-known framework for studying
properties of such sets Xf in the context of nonlinear time series
and dynamical systems (see e.g. [7]). But in our framework, we
are additionally considering a close interaction with signal pro-
cessing transforms T , together with specialized dimensionality
reduction techniques P .

We will now describe some general information on dimen-
sionality reduction methods P : Rn ⊃ MT → Ω ⊂ Rd,
and in particular, in Section 4 we use the well-known linear
PCA method, and modern nonlinear strategies such as Lapla-
cian eigenmaps.

Nonlinear Dimensionality Reduction

The high dimensionality property of many real-life signals is
a fundamental problem for data analysis algorithms. Analy-
zing and interpreting high-dimensional datasets can be a mathe-
matical and computational challenge for traditional statistical
and linear methods. In many cases, a dataset has an intrinsic
low-dimensional structure that is relevant for understanding its

underlying characteristics. Low-dimensional representations of
datasets are also easier to operate for classification, visualiza-
tion or compression purposes. Efficient dimensionality reduc-
tion algorithms are therefore crucial methods for finding useful
low-dimensional embeddings of datasets. This lower dimension
should ideally correspond to the intrinsic dimensionality of the
data, and different strategies are available for estimating these
dimensions [10].

There are two major types of dimensionality reduction meth-
ods: linear and nonlinear ones. In this context, linearity refers
to the idea that each element of the dataset is a linear combina-
tion of the other data points, see [3]. Nonlinear techniques are
usually based on the construction of a low-dimensional repre-
sentation of a datasets, with aiming at [10]:

1. preservation of global properties;

2. preservation of local properties;

3. composition of linear techniques.

Independent Component Analysis (ICA)

The ICA algorithm is a separation algorithm based on statis-
tical principles for unmixing a linear combination of signals.
In itself, ICA is not a dimensionality reduction method, but it is
frequently used in combination with classical dimensionality re-
duction methods such as PCA. The input of the ICA algorithm
is the point cloud data X = {xi}mi=1 ⊂ Rn written in matrix
form as X = (x1 . . . xm) ∈ Rn×m. The objective is to find a
matrix of source signals S = (s1 . . . sm) ∈ Rn×m, assuming a
linear dependence between X and S. By denoting the mixing
matrix as W ∈ Rn×n, this can be expressed as:

X = WS, X, S ∈ Rn×m, W ∈ Rn×n.

In this equation, the mixing matrix W and the source signals S
are unknown variables, and ICA estimates these matrices using
some assumptions on the statistical independence of the signals
{si}ni=1. The general strategy uses the following measure for a
set of random variables Y = {yi}ni=1:

I(Y ) = D(PY ,
∏

i

PYi
), D(p, q) =

∫
R

p(x)log
(

p(x)
q(x)

)
dx.

The measure I allows us to compute the degree of statistical
independence by comparing the joint distribution PY , and the
marginal distributions PYi

. The comparison function D, used
in the measure I , is the Kullback-Leibler distance, also known
as relative entropy. This allows us to formulate the ICA algo-
rithm as an optimization problem, where the solution space is
the general linear group, defined as the set of n × n invert-
ible matrices, GL(n, R) = {A ∈ Rn×n, det(A) 6= 0}, with
p(A) := I(A−1X):

W = argmin
A∈GL(n,R)

p(A).



3. ISA AND TIME-FREQUENCY DATA

With the previous background on dimensionality reduction and
unmixing methods based on ICA, we now describe ISA as an
important strategy for single-channel signal separation. We re-
cast the concepts with following along the lines of [1, 2, 9, 11].

The original meaning of the term independent subspace
analysis (ISA) is related to a generalization of independent
component analysis by considering a multidimensional version
of ICA. In very general terms, the main idea is to group the
source vectors {si} in subfamilies or linear subspaces, where
the elements within each subgroup are statistically dependent,
but elements of different groups are statistically independent
(see e.g. [6]). Due to the work of Casey and Westner [1], the
term ISA has frequently been used to denote methods using ICA
to decompose power spectrograms of single channel signals for
sound separation (see [11]).

The concept of ISA for single channel signal separation con-
sist of decomposing a signal f =

∑
fi, by applying ICA to

a dimensionality reduced representation of the power spectro-
gram. More precisely, given the function f , we compute the
power spectrogram by considering T (xi) as the magnitude of
the discrete Fourier transform FT of each element of the point
cloud data Xf = {xi}mi=1. Namely, T (xi)k = ‖FT(xi)k‖, for
k = 1, . . . ,m. The following step is to use the power spectro-
gram T (Xf ) for constructing its low-dimensional representa-
tion P (T (Xf )) using a linear or nonlinear method P (e.g. PCA,
Laplacian eigenmaps, LTSA, etc). We then apply ICA to the
dataset P (T (Xf )) for unmixing the resulting signals, to obtain
estimations of the components fi. We briefly explain these steps
as follows (cf. [1, 9, 11]).

1- Construct a dimensionality reduced power spectrogram
using principal component analysis, (i.e. P = PCA),

Xf T (Xf ) P (T (Xf ))T P

2- Unmix the resulting matrix P (T (Xf )) using ICA,

P (T (Xf )) {f̃i}
ICA

3- Group different components {f̃i} to estimate the signals
fi in f =

∑
i fi.

In order to reconstruct the spectrogram for each fi, we apply
the inverse short term Fourier transform with the phase informa-
tion of the original mixture signal f (see [1, 9, 11] for details).
We consider using different dimensionality reduction methods
P , with focussing on Laplacian eigenmaps and isomap. We
finally remark that in recent developments new types of unmix-
ing methods have been used in step 2 for replacing the statisti-
cally oriented ICA strategy. In particular, non-negative matrix
factorizations have gained increasing attention (see [11]).

4. COMPUTATIONAL EXPERIMENTS

To compare the signal detection quality for different dimension-
ality reduction methods, we construct a mixture of acoustic tran-
sient signals. We consider f = f1 + f2, where f1 is a sequence
of castanets and f2 a cymbal signal, as depicted in Figure 1.

(a) (b)

Fig. 1. (a) Cymbal signal f1; (b) castanets signal f2.

The combination f = f1 + f2 of the cymbal and castanets
is depicted in Figure 2. The power spectrogram in this figure
represents the point cloud data T (Xf ), where each column rep-
resents the FT of a segment xi of the signal f . Due to the com-
plex frequency characteristics of f , identifying and extracting
the castanets signals is a very challenging task.

(a) (b)

Fig. 2. Signal f = f1 + f2 and its power spectrogram T (Xf ).

In Figures 3-5, we present detection results for identifying
the positions of the castanets and cymbal signals. To this end,
we use the dimensionality reduction methods P = PCA, P =
LE (Laplacian eigenmaps), and P = isomap. In the case of the
two nonlinear methods (P = LE, P = isomap), a suitable near-
est neighbor parameter k can be selected 1. We have manually
identified some values for k that we display in Figures 4,5.

1Code available at www.math.uni-hamburg.de/home/guillemard/



Fig. 3. PCA. (a) cymbal (b) castanets (c) castanets (ICA).

Fig. 4. LE. (a) cymbal (b) castanets (c) castanets (ICA).

Fig. 5. Isomap. (a) cymbal (b) castanets (c) castanets (ICA).

In Figures 3-5, (a) shows a component fi that matches the
cymbal signal, and the two plots (b) and (c) correspond to the
components related to the castanet signal. Moreover, plots (a)
and (b) are obtained from the detection algorithm without the
ICA procedure, whereas in plot (c), the ICA procedure is acti-
vated. Note that the unmixing ICA algorithm slightly improves
the quality of the castanets detection by decreasing some back-
ground signal in the case of PCA and Laplacian eigenmaps. In
conclusion, these dimensional reduction strategies are able to
detect the relevant signals for this particular example fairly well,
but further steps are required to improve the detection quality
and the analysis of resynthesis algorithms.
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