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On Dimensional Reduction Techniques in Signal
Processing and Applications in EMG Analysis

Mijail Guillemard

We present an overview of background concepts related to recent developments in
signal analysis and dimensional reduction techniques, with a particular focus on new
aspects of frame theory and reproducing kernels Hilbert spaces. Frame theory is an
important generalization of wavelet and short term Fourier transforms which extends in
a significant way the standard concept of a basis in a vector space. On the one hand,
novel characterizations relating reproducing kernels with frame analysis have opened new
perspectives in approximation theory and radial basis functions. On the other hand,
the field of manifold learning and dimensional reduction has provided novel approaches
based on geometrical concepts for applications in data analysis. A recurrent aspect in
some of these subjects is the adequate usage of selected eigenvectors and eigenvalues in
order to obtain geometrical information of an underlying manifold. This property is used
as a motivation to shortly mention elementary aspects of spectral theory and Gelfand
transforms. We illustrate these interactions as a means for a better understanding of
the theoretical and algorithmic aspects of these topics. An illustrative toy example in
Electromyogram (EMG) signal analysis, combining dimensional reduction with wavelet
transforms, is finally discussed.

2



Contents

1 Fourier transform and spectral concepts 11
1.1 Fourier Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Efficient algorithms and group representations . . . . . . . . . . . . . . . 16
1.3 Elements of Spectral Theory . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Time-Frequency analysis and Frames 23
2.1 Continuous Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 Discrete Transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Reproducing Kernels and Approximation Theory 29
3.1 Reproducing Kernel Hilbert Spaces (RKHS) . . . . . . . . . . . . . . . . 29
3.2 Elementary Properties in Approximation Theory . . . . . . . . . . . . . . 36
3.3 Kernels and Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Dimensional Reduction and Manifold Learning 41
4.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 Elementary techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Isomap and Kernel Techniques . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Applications Examples 52
5.1 Action Potentials Background and EMG signals . . . . . . . . . . . . . . 52
5.2 EMG Analysis Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3



Introduction

In the last decades, a fast development in different areas of numerical and functional
analysis has delivered new tools and perspectives in pure and applied mathematics.
Frame theory, as a generalization of Fourier and time-frequency transforms, allows a
new range of possibilities in adaptive signal analysis. Recent developments in approx-
imation theory, reproducing kernel Hilbert spaces, and radial basis functions, allow
to efficiently interpolate and approximate functions in high dimensional spaces. The
emergent areas of manifold learning and dimensional reduction techniques, together with
the related setup of kernel methods, offer efficient tools for classification and analysis
of high dimensional data. Despite the seemingly different environments and objectives
of these topics, significant connections can be observed in these developments. Some
particular common points could be traced back in the framework of spectral theory and
Banach algebras, a machinery that explains essential aspects of the far-reaching concept
of spectrum. A better comprehension of these conceptual connections could be used as a
means to synthesize, improve and identify differences, as well as develop new strategies
that combine the strength of each subject. The objective of this report is to present
an overview of elementary concepts necessary for understanding these developments,
together with an illustrative toy-application example in Electromyogram signal analysis.

Harmonic Analysis. Harmonic Analysis is a fundamental framework for analysis
and synthesis of functions based on the concept of Fourier transform. Over the last two
centuries, this concept was an important source of ideas, examples, and open problems
in many fields, including analysis, topology, and differential equations. Nowadays, many
extensions and generalizations of this framework are playing an important role in new
theoretical and application programs. Time-frequency techniques are natural extensions,
where the two classical examples are the wavelet and the short term Fourier transforms.
The success of these extensions are now, once again, leading to novel analysis strategies,
open problems, and new research directions.

Frames. Frame theory was originated with the work of Duffin and Schaeffer in
1952 as a part of their investigations on non-harmonic Fourier series. The emergence of
wavelet theory in the late 1980s, and its success in application problems, reactivated the
theoretical and practical investigation of frame theory. A frame in a separable Hilbert
space H is a collection of vectors F = {fi}i∈I ⊂ H, such that there exist two constants
0 < A ≤ B, with A‖f‖2 ≤

∑
i∈I |〈f, fi〉|2 ≤ B‖f‖2, for any f ∈ H. This definition

generalizes simultaneously the concept of a basis and time-frequency transform, allowing
a greater flexibility and keeping the useful property of exact reconstruction. The strategy
behind this generalization is to design adaptable building blocks, while maintaining the
standard signal processing philosophy of analysis, filtering and synthesis. The flexibility of
the frame definition introduces a range of nontrivial examples and unexplored phenomena.

Adaptive Frames. A natural question is how to use the flexibility of this def-
inition for constructing frames that fits a particular application. This topic, denom-
inated adaptive frames, is currently an active research area, both in theoretical and
engineering domains. The engineering goal is to implement algorithms for constructing
frames adapted to a given experimental data set. The corresponding theoretical goal
is to guide the algorithm design by understanding the set of frames with predefined
properties. One particular question in this context is to analyze the set of all possible
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frames F = {fi}i∈I ⊂ Rn that lie in (or are close to) a given manifold M ⊂ Rn. Initial
results in this direction have been discovered recently, revealing a range of very rich
phenomena. In [22], it has been proved that the space of spherical tight frames FR

k,n, all

of whose vectors {fi}ki=1 lie on the unit sphere of Rn, is a real analytic manifold when k and
n are relatively prime. The starting point for addressing this problem is to consider the
orbit space GRk,n = FR

k,n/OR
n for the action of the group of n× n orthogonal matrices OR

n .
Even for frames in the low dimensional space R2, the structures are already surprisingly
rich: GR4,2 is a graph with twelve vertices and twenty-four edges, and GR5,2 is the orientable
surface of genus 25. It is to be expected that more complex constraints, adapted to
specific applications, would require a more detailed algorithmic and theoretical analysis,
as well as new research directions in adaptive frames.

RKHS. The development of frame theory, and the understanding of its role in other
areas of mathematics, is still in its early stages of development. Recent investigations
have uncovered a significant role of frame theory in the area of reproducing kernel
Hilbert spaces (RKHS) [48, 51]. For an arbitrary set X, a reproducing kernel Hilbert
space H is defined as the set of complex valued functions on X, with the additional
reproducing property f(x) = 〈f,Kx〉, for all f ∈ H. The unique function defined as
K(x, y) = Kx(y) is the kernel of the Hilbert space H. This concept has been a classical
ingredient in diverse fields of analysis such as partial differential equations and integral
operators. A very important property of a reproducing kernel is an expansion of the
form K(x, y) =

∑
i∈I ψi(x)ψi(y), with {ψi}i∈I an orthonormal basis of H. The novel

particularity described in [48, 51], is that this expansion can be generalized to a more
flexible situation where the set {ψi}i∈I is actually a frame. The implications of this new
property are current research problems, and it is to be expected that the interaction with
the adaptive frame domain will open new research questions.

RBF. The concept of Reproducing Kernel Hilbert Spaces is also an important tool
in modern approximation theory. Radial basis functions (RBF) are used to build flexible
and efficient interpolation procedures by using an adequate reproducing kernel Hilbert
space as an approximation tool. Given a point set X = {x1, . . . , xm} ⊂ Rn, that we
assume to be sampled from a manifoldM (that is X ⊂M), we want to approximate an
unknown function f :M→ R, using the sample values {f(xi)}mi=1. We consider HK(M),
a reproducing kernel Hilbert space of functions on M, with kernel K : M×M → R.
The main requirement for constructing efficient interpolation procedures is the positive
(semi)definiteness of the kernel, meaning that the matrix (K(xi, xj))1≤i,j≤m is positive
(semi)definite for any X = {x1, . . . , xm} ⊂ M. With this property we can solve a system
of linear equations in order to find an interpolant sf ∈ HK(M), with sf (xi) = f(xi), i =
1, . . . ,m. If the kernel can be written as K(x, y) = φ(‖x − y‖), for a scalar function
φ : R+ → R, we say that φ is a radial basis function. In our context, the natural questions
are the implications for the RBF theory in the recent discovered frames characterizations,
both in the adaptive frames, and reproducing kernel Hilbert space settings.

Dimensional Reduction and Manifold learning. In the context of the study of a
finite scattered set X = {x1, . . . , xm} ⊂ Rn, an emergent area of analysis are dimensional
reduction and manifold learning techniques. The primary objective in dimensionality
reduction is to construct a set Y = {y1, . . . , ym} ⊂ Rd in a low dimensional space (i.e.
d ≤ n) in a way that certain characteristics of the dataset X are conserved. Among
different options one example is to build Y in a way that the distances between the points
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in X are conserved. Namely, we search for a configuration Y with ‖yi − yj‖ ≈ ‖xi − xj‖
for all i, j ∈ {1, . . . ,m}. In the case of manifold learning, the new hypothesis is that
X ⊂ M, namely, X is sampled from M, a p-dimensional smooth compact submanifold
of Rn. As in dimensionality reduction, the objective is also to construct a low dimensional
representation Y = {y1, . . . , ym} ⊂ Rd, d ≤ n that conserves some characteristics of the
dataset X, but now, the geometrical environment introduced byM will play a crucial role
in the algorithm design. Due to the Whitney embedding theorem (which states that any
connected smooth p-dimensional manifold can be smoothly embedded in R2p+1 [18]) we
require some conditions for the dimensions in this formulation, namely, 2p + 1 ≤ d ≤ n.
Our problem can also be formulated as the search for an adequate embedding E of the
p-dimensional submanifold M ⊂ Rn in Rd, with E : M ⊂ Rn → Ω ⊂ Rd, X ⊂ M,
Y ⊂ Ω, Ω a p-dimensional submanifold, and 2p + 1 ≤ d ≤ n. An important additional
topic in this field are density conditions on the finite data set X with respect toM, which
need to be analyzed in order to guarantee a meaningful usage of the geometry ofM [47].

Decreasing the amount of information in X ⊂ M, and working with the low di-
mensional parameter space Y ⊂ Ω is crucial for many applications as in classification
techniques, regression methods, data storage, reliable prediction, etc. Many tools in this
domain have been derived on a statistical context, but with the exponential increase in
computer power, new alternative strategies have been proposed, with a more geometrical
and analytical background. An important topic of this framework are techniques based
on kernel methods, which have been successfully used in order to exploit the similarities
between elements in the dataset X. Many of these modern developments have their roots
in fundamental concepts of linear algebra, with a main example being the singular value
decomposition. The geometrical role of the eigenvectors of the matrix 1 XX t, has been
a key element in classical dimensional reduction methods such as principal component
analysis, multidimensional scaling, and several modern extensions.

Spectral theory. The significant role of the eigenproblem formulation in some
standard algorithms in dimensionality reduction, together with the crucial aspect of the
concept of spectrum in Fourier analysis is a motivation to better understand these subjects
in a unified environment. A branch of functional analysis with a remarkable power of
synthesis and generalization is the framework of spectral theory, Gelfand transforms, and
C∗-algebras, a machinery that unifies and explains multiple instances of the concept of
spectrum. Fourier analysis and linear algebra are two important subjects where different
perspectives of the notion of spectrum are fundamental. The spectral theory and Banach
algebras developed by Gelfand and his collaborators have explained and synthesized,
in a far-reaching design, diverse mathematical phenomena. A primal example of a C∗-
algebra is given by the space of continuous complex-valued functions C(τ) on a compact
Hausdorff space τ . A fundamental result of Gelfand theory reveals that the algebra C(τ)
carries all necessary information for the reconstruction of τ , the key ingredient is the
concept of spectrum of the algebra C(τ), denoted by σ(C(τ)). This environment is not
only useful in a conceptual level, but it has been successfully used to resolve complex
problems of numerical analysis [4,29]. A question might be how to understand the recent
developments in kernel methods, and manifold learning in the light of spectral theory.

1Here, we abuse the notation and use the symbol X also for denoting the matrix X = (xij)n×m, with
xi = (x1i, . . . , xni)

t, for all i = 1, . . . ,m.
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EMG analysis application. In order to present an application example illustrating
the usage of these frameworks, we describe a toy problem in Electromyogram (EMG)
signal analysis. The field of biological signal analysis has been increasingly demanding
refined mathematical algorithms for supporting the study of living bodies. An elec-
tromyogram signal is an electrical measurement combining multiple action potentials
propagating along motor neural cells. The analysis of these signals allows to obtain
significant physiological information about the underlying muscle and nerve interactions.
Standard applications of EMG analysis are diagnosis of diseases affecting the nervous
and muscular system [38, 42], but additional uses have been developed in prosthetic
and virtual devise interfacing [37], as well as athletic performance analysis [42]. An
important task in this area is to construct adequate mathematical models of the un-
derlying physiological mechanism. The understanding of the physical and biological
processes behind the concept of action potential are actually active research topics. The
standard explanation, the Hodgkin-Huxley model, is based on ionic exchanges on the
cell membrane, but a recently proposed alternative model is based on the concept of
soliton [30, 31], an important research topic in nonlinear PDE and wave propagation
phenomena. The role of these models for algorithm design could be significant when
constructing benchmark signals for evaluating and comparing new analysis algorithms.
In the recent years, an important trend in electromyography has been the extensive usage
of Fourier and wavelet transforms [26, 35, 38, 42]. In this report we experiment with a
simple and illustrative framework that combines dimensional reduction techniques with
standard signal transforms. A main goal is to describe, using a simplified environment,
a concrete signal analysis problem that can be addressed with the concepts discussed
in this report. The usage of nonlinear dimensional reduction techniques in application
oriented problems in biology is an increasingly active research area (e.g. [12, 57]).

The structure of this report is as follows. In Chapter 1, we review background ideas
in Fourier analysis and Spectral theory, stressing in particular the crucial concept of
spectrum, not only in the harmonic analysis framework, but also its main role in linear
algebra. In Chapter 2, we present a brief introduction to classical time-frequency trans-
forms, focusing on the short term Fourier analysis, wavelet operators, and the important
generalization of frame theory. Chapter 3 presents an introduction to reproducing kernel
Hilbert spaces, and some applications in approximation theory, with particular emphasis
in the recently discovered relations with frame analysis. Closely related concepts are
discussed in Chapter 4, with the special usage of eigenvectors and eigenvalues in manifold
learning and dimensional reduction techniques. Finally, the last chapter discusses the
illustrative application of EMG signal analysis based on a combination of dimensional
reduction techniques with Fourier and wavelet transforms.
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Main Plan
Multiresolutions

Frame Theory

Approximation Theory 

Radial Basis Functions

Time-Frequency

Wavelets-STFT

   Manifold Learning

Dimensional Reduction

    Fourier Analysis

    Spectral Theory

RKHS

Toy-Illustration:

 EMG Analysis

a

b

c

d

f

g

e

h

Link Description Section
a Fourier analysis: the conceptual and computational framework 1.1
b Role of spectral theory in Fourier analysis and manifold learning 1.3
c STFT and wavelets: two examples of time-frequency analysis 2.1
d Multiresolutions structures of some wavelet functions 2.1
e Frame theory generalizing bases and wavelet transforms 2.2
f Frame theory and connections to RKHS 3.3
g Role of RKHS in approximation theory 3.2
h Role of kernels in dimensional reduction and manifold learning 4.3

The central topic of this plan is to present some perspectives concerning the interac-
tion between frame theory and reproducing kernel Hilbert spaces (RKHS). In order to
understand the central role of Fourier analysis, the language of group representations
is required. A closely related framework is spectral theory and Gelfand transforms,
which presents in a unified way background concepts in Fourier analysis and Linear
Algebra. Kernel methods, under the scope of spectral theory, are important components
in manifold learning and dimensional reduction techniques. We illustrate this set of
interactions as a means for a better comprehension of the theoretical, practical, and
algorithmic aspects of these topics. A simplified framework in Electromyogram (EMG)
analysis is used as an illustrative example combining wavelet transforms and dimension-
ality reduction.
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1 Fourier transform and spectral concepts

Harmonic Analysis is an important cornerstone in modern mathematical techniques for
decomposition, reconstruction and transformation of functions based the concept of
Fourier transform. Historically this machinery has played an important role in many
topics such as linear algebra, spectral theory, functional analysis, group theory, probabil-
ity, and differential equations, among others. A notable amount of applications has been
developed in the last two centuries, ranged over multiple areas such as signal processing,
astronomy, differential equations, probability, chemistry, etc [10,52]. A fundamental idea
is that, given a function f defined in some space G, we build a two way mechanism that
translates the information in f into another space related to the original domain G. In the
case of the Fourier transform, the crucial aspect of such a scheme is the duality concept,
described for this situation in a convenient context of group theory, an environment rich
enough to explain most instances of Fourier transforms, while describing only the essential
properties required for an harmonic analysis program.

One of the main problems with the classical framework in harmonic analysis is the
difficulty when extracting time-dependent changes out of frequency information. Multiple
replacements of the basic concept in Fourier analysis have been devised over the last
decades, but despite its limitations, the principal conceptual features of harmonic analysis
have a crucial role in defining, understanding and improving these new extensions. One
example of these extensions is the Short Term Fourier Transform, which combines the
time information with the Fourier analysis, by adequately splitting a signal in smaller
chunks of information. The second extension is the wavelet transform that allows more
flexible analysis procedures, and leads to important concepts such as multiresolution
analysis and frame theory.

A very important domain, closely related to the harmonic analysis scheme, is the
modern view of spectral theory under the framework of Gelfand transforms, Banach
algebras and group representations, which allow to understand in a unified way core
aspects of the concept of spectrum in operator theory and Fourier transforms. These
subjects are not only crucial for an adequate understanding of the conceptual possibilities
and extensions of harmonic analysis, but they are increasingly playing an important role in
very concrete and applied subjects such as engineering aspects in robotics, image analysis,
tomography, [10], design of efficient numerical signal processing algorithms [24,25], etc.

1.1 Fourier Analysis

A basic strategy in signal processing is to construct an adequate transformation in order
to extract special features of a signal. In the case of periodic functions, the mapping
from the time to the frequency domain can be used for detecting harmonic content. A
similar mechanism is a time-frequency transform, which allows to conveniently identify
time-variable frequency features. An important characteristic of these transformations
is the exact reconstruction procedures, which can be rephrased as isometry properties.
Once an adequate isometric transformation is selected, a complete machinery for analysis,
filtering, and synthesis can be constructed. This isomorphic transformation introduces
the soul of this procedure: a duality mechanism that allows to construct two different
perspectives of the same function.
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There are different settings for developing this program, which mostly depend on the
domain of the function to analyze, but all of them share a common background that
represents a vital principle of harmonic analysis. The natural setting for this common
background is to consider the domain of the functions as locally compact groups, namely,
topological groups where the identity has a compact neighborhood. This environment is
rich enough to explain the many instances of Fourier transforms, while representing only
the essential properties of an harmonic analysis program. This accurate understanding
of the Fourier transform started with the work of H. Weyl and L. Pontryagin in 1925,
and has been since then an important motor for many branches in analysis [19]. The
starting point is then to consider a locally compact abelian group together with the
duality concept.

Definition 1.1 (Dual group). The dual of a group G is defined by the set of characters

Ĝ := {γ : G→ T, γ homomorphism}.

That is, the set of homomorphisms between the group G, and the multiplicative abelian
group of unit complex numbers T := {z ∈ C : |z| = 1} ∼= R/Z, which is a subgroup of
the multiplicative abelian group of all nonzero complex numbers C× := (C− {0},×). If
G is a topological group, the term character will mean continuous character.

The characters are elementary sort of functions that are used as analysis building
blocks. A classical interpretation is to consider the group G as a time space, and the
dual group Ĝ as the corresponding frequency space. In this framework, the characters
are constant frequency functions, whose structure depends on the domain G. The
commutativity condition of the group plays an important role: the case of locally compact
non-abelian groups belongs to the more elaborate area of non-commutative harmonic
analysis. Here we discuss only the simpler cases of locally compact abelian groups and
compact groups.

Remark 1.1 (Topology in Ĝ). In order to work properly with the dual Ĝ, an adequate
topology needs to be constructed. This is particularly important when constructing
a meaningful definition 1.2 of the Fourier transform. The strategy is to consider the
topology generated by the uniform convergence. Namely, the topology generated by the
uniform norm: ‖f‖∞ = sup{|f(x)| : x ∈ domain of f}.

Remark 1.2 (Characters in group representations). The concept of character belongs
to the important realm of group representations which studies the structure of a group
by mapping its properties to the richer environment of a vector space H. A group
representation generalizes the concept of character by considering homomorphisms of
the group into a vector space of operators in some Hilbert space: ρ : G → U(H).
These definitions are not only crucial from a conceptual point of view, but they are
also increasingly playing a main role in explaining and developing new efficient numerical
algorithms in the context of signal processing [24,25], or dealing with engineering aspects
of robotics or image analysis [10].

The dual group Ĝ contains the characters of the group G, a question that naturally
follows is to search for the characters of the dual group Ĝ. The answer of this question
is an important characteristic of locally compact abelian groups, namely, the Pontryagin
duality principle, which represents a landmark in Fourier analysis.
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Theorem 1.3 (Pontryagin duality [36]). There is a canonical isomorphism between a
locally compact abelian group and its dual:

f : G→ ˆ̂
G, f(g)(γ) := γ(g), g ∈ G, γ ∈ Ĝ.

The main idea of this duality procedure is to identify in a natural way the characters of
the dual group Ĝ, as elements of the group G, indicating the crucial “reflexive” property
of locally compact abelian groups [27, Sec.4.3].

In order to define integration procedures in a locally compact group, a proper measure
needs to be constructed. A remarkable fact discovered by Alfred Haar in 1932 is that
every locally compact group has an inherent measure invariant under the action of the
group:

Theorem 1.4 (Haar Measure [27]). For every locally compact group G there exists up to
a positive multiplicative constant, a unique left (resp. right) measure µ with µ(aS) = µ(S)
(resp. µ(Sa) = µ(S)), for each a ∈ G, and S ⊂ G a Borel subset. This measure will be
called left (resp. right) Haar measure.

Remark 1.5 (Lp spaces). With a convenient measure for any locally compact group
in hand it is now possible to construct classical Banach spaces of integrable functions:
Lp(G, µ) := {f : G→ C, ‖f‖p := (

∫
|f |p dµ)1/p <∞}. A natural consequence of the Haar

measure are the invariance properties of the integral:
∫
G
f(x)dµ(x) =

∫
G
f(gx) dµ(x).

The Fourier transform can now be defined as a linear operator that maps a function
in the group into a function in the dual group. The first natural setting relates the space
of integrable functions L1(G) with the space of continuous functions vanishing at infinity
on the dual group, denoted by C0(G):

Definition 1.2 (Fourier transform in a locally compact group [27]). The Fourier trans-
form is defined as a linear map

F : L1(G)→ C0(Ĝ) F(f)(γ) = 〈γ, f〉 =

∫
G

f(x)γ(x) dµ(x).

We denote F as the Fourier transform operator, but we use the notation f̂ for the Fourier
transform of f ∈ L1(G).

This map between the space of integrable functions L1(G) and the space C0(G),
has a natural interpretation in the context of spectral theory and Banach algebras: we
will see its potential in section 1.3. One of the following natural steps is to bring this
transformation into a richer structural environment, namely a Hilbert space. As the
space L1(G) has only a Banach structure, we move the map F to the Hilbert space
setting of L2(G) using a classical analysis strategy [2, Sec.5.18]: by restricting the map
F to L1(G) ∩ L2(G) it is possible to extend this transformation to L2(G). The key
observation is to notice that C0(G) ⊂ L1(G) ∩ L2(G) is a dense set in L2(G). We obtain
the following crucial result of Fourier transforms and L2 theory, namely, the Plancherel
theorem, which states that F is in actually an isometry of L2(G):
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Theorem 1.6 (The Plancherel Theorem [20, 27]). The Fourier transform F , extends to
an isometry of L2(G): ∫

Ĝ

|f̂(γ)|2 dµ̂(γ) =

∫
G

|f(x)|2dµ(x).

Two basic operational procedures of the Fourier transform are related to the shift in
the group translations. For the case of the time frequency interpretation these translations
can be rephrased as a time-shift and frequency modulation.

Proposition 1.7 (Group translations). By defining the group translation by a factor
y ∈ G as Sy : L2(G, dµ) → L2(G, dµ), Sy(f)(x) : = f(x − y), and the corresponding

modulation in the dual group Ey : L2(Ĝ, dµ)→ L2(Ĝ, dµ), Ey(r)(γ) := γ(y)r(γ), we have
the following relation:

FSy = EyF .

Proof. A direct computation shows that:

F(Syf)(γ) = 〈γ, Syf〉

=

∫
G

f(x− y)γ(x) dµ(x)

=

∫
G

f(x)γ(x+ y) dµ(x) = γ(y)

∫
G

f(x)γ(x) dµ(x)

= γ(y)F(f)(γ) = EyF(f)(γ).

Remark 1.8. For the standard case of the Fourier transform of periodic functions in
R we have the well known relations of translation in time and modulation in frequency:
F(f(.− a))(n) = eianf̂(n) and F(eik.f(.))(n) = f̂(n− k).

With this machinery in hand, it is now possible to understand all particular examples
of Fourier analysis. The case of the trigonometric series was the first historical example
considered by Joseph Fourier in the context of numerical solutions of the heat equation.
For this situation, the natural working environment are functions defined on a compact
support. The classical prototype is the multiplicative group of units G = T, which can
be used to analyze periodic functions. The corresponding dual group turns out to be the
set of integers T̂ = Z. The characters for this group are identified with the trigonometric
functions γn(x) = e2πinx, and by using directly the main construction, 1.2, we obtain the
classical case of Fourier series [36]:

Definition 1.3 (Fourier series in T). The Fourier transform of a square integrable
function on the torus T, considered as the multiplicative group of complex numbers
with absolute value 1, is defined as:

F : L2(T)→ `2(Z) F(f)(n) = cn =

∫ 1

0

f(x)e−2πinx dx.
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A similar situation arises when considering functions defined in a finite set. In order to
construct a Fourier decomposition, a basic requirement is to have a group structure, which
can be fulfilled by working with G = Zp, the group of integers modulo p. For this special

situation, the dual group turns out to the isomorphic to the original group: Ẑp = Zp.
The characters are described with the pth roots of unity by γn(x) = e2πinx/p, x, n ∈ Zp.
Again, using the main construction, 1.2, we obtain the well known formulas for the Finite
Fourier Transform [1]:

Definition 1.4 (Finite Fourier Transform in Zp). The Fourier transform of a function in
the group of integers module p is defined as:

F : L2(Zp)→ L2(Zp) F(f)(n) = cn =

p−1∑
k=0

f(x)e−2πinx/p

Remark 1.9. The general form of a character is γ(x) = eif(x), x ∈ G, and f : G → R.
For the case G = (R,+), the homomorphism property γ(xy) = γ(x)γ(y), can then be
rephrased as a Cauchy’s functional equation f(x+y) = f(x)+f(y). The general handling
of these equations is a non-trivial problem, but for our case of a continuous character
we have classical result stating a parameterization ˆ(R,+) = {γm(x) = eimx,m ∈ R} =
(R,+).

The third well known case of analysis corresponds to the functions defined on the real
line. For this situation the working group and its dual turn out to be isomorphic G = R,
and R̂ = R. The corresponding characters are defined by γλ(x) = e−2πiλx. Using the
main construction 1.2 we obtain the well known formulas for the Fourier Integral [36]:

Definition 1.5. The Fourier transform of a square integrable function in the real line is
defined as:

F : L2(R)→ L2(R) F(f)(λ) = f̂(λ) =

∫
R
f(x)e−2πiλx dx.

Convergence Issues

The questions raised by Joseph Fourier by the end of the 18th century for the expansions
of functions as trigonometric series introduced a new point of view. Most of the functions
used at that time where described with Taylor series, their good analytical behavior
was well known, and integration and differentiation properties where particularly easy to
handle. In contrast, the consideration of trigonometric functions as building blocks intro-
duced many pathological and wild phenomena. In 1872, Weierstrass used trigonometric
series to produce a classical example of a continuous and non differentiable function [2]:

f(x) :=
∞∑
n=0

bn cos(anx), 0 < b < 1, ab > 1, a ∈ N.

To understand these new constructions, a precise definition of a function had to be
worked out. These problems played an important role in the 19th century with the
creation and formalization of new areas, such as analysis, topology, set theory, and
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integration. The topic of Fourier series laid the ground of what is known today as classical
harmonic Analysis. The exploration of this new arena in the 19th century, contrasted the
well behaved constructions of analytic functions and Taylor series in the 18th century.

A main aspect of the theory of Fourier series are convergence problems. Given a
function in some space, it can be far from trivial the question of whether its Fourier
series converges to the function. These convergence problems have survived for a period
of two centuries. The first positive behavior was discovered by Dirichlet in 1829, where he
proved that the Fourier series of any piecewise smooth function is pointwise convergent
to the function.

Theorem 1.10 (1829 Dirichlet). The Fourier series of a piecewise smooth function is
pointwise convergent to the function.

After this result, the accepted conjecture was that the Fourier series of any continuous
function is pointwise convergent to the function. But this turned out to be wrong, and
in 1909 Du Bois-Reymond presented a counterexample of a continuous function whose
Fourier series diverge in a dense set.

Theorem 1.11 (1909 Du Bois-Reymond). There is a continuous function whose Fourier
series diverge in a dense set.

A second negative result came from Kolmogorov in 1926, where he proved that there
is a function in L1 whose Fourier series diverges almost everywhere.

Theorem 1.12 (1926 Kolmogorov). There is a function in L1 whose Fourier series
diverges almost everywhere.

The following accepted conjecture of this period was then the existence of continuous
functions whose Fourier series diverged everywhere. But once more, this intuition was
wrong, and in 1966 Carleson proved in a famous result (and one of the most complex
proofs in analysis) that the Fourier series of a function in L2 converges almost everywhere
[2, 20].

Theorem 1.13 (1966 Carleson). The Fourier series of a function in L2 converges almost
everywhere.

1.2 Efficient algorithms and group representations

The 20th century presented a major development in the theoretical and practical aspects
of harmonic analysis. A main technological milestone with a major economical and
scientific impact was the successful implementation of fast algorithms for the Fourier
transform. A main drawback of a direct application of the discrete Fourier transform in
digital computers is the increasing complexity and computational time of the Definition
1.4. An efficient algorithm for resolving this problem, the Fast Fourier transform (FFT),
was proposed by Cooley and Tukey in their celebrated paper of 1965 [13]. It was later
realized that this idea was reinvented several times in the last 200 years. The first
appearance dated back to Gauss, who used it for the interpolation of asteroidal orbits [52].

The importance of the Cooley and Tukey’s papers was the timing in combination
with the development of new computational resources in the 1960s. Two main aspects
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where responsible for the immediate success of this publication: on the one hand the
commercialization of transistor-based computers, and on the other hand the development
of analog to digital converters. The result was a unprecedent combination of availability
of raw data in many scientific domains, with the possibility of analysis with an efficient
algorithm.

Since the rediscovery of the FFT in the 1960s, several reinterpretations of this algo-
rithm have been devised leading to an important framework based on group representa-
tions that explains and extends the numerical efficient strategies used in the FFT [23–25].
This framework belongs to an important scheme that uses the language of group theory
for a correct understanding of the efficiency of the finite or Discrete Fourier transform
(DFT) [1]. Remember that the DFT is a linear map Fn : Cn → Cn that can be represented
as a particular Vandermonde matrix, which are generally defined as m × n matrices
containing a geometric progression on each row, that is Vij = αj−1

i for a given sequence
{αi}mi=1 with j = 1, . . . , n. The particular case of a DFT includes the powers of the nth
root of unity as entries: by denoting x, y ∈ Cn we have

y = Fnx, yj =
n−1∑
k=0

ωjkn xk, ωn = e−2πi/n.

Fn =


1 1 . . . 1
1 ωn . . . ωn−1

n
...

...
. . .

...

1 ωn−1
n . . . ω

(n−1)(n−1)
n


The standard observation that the DFT of a vector requires O(n2) operations, while

the FFT reduces the execution speed to O(nlog(n)), can be illustrated with the following
factorization of the Fourier matrix F4 [44], where we replace zeros by dots in order to
visually emphasize the reduction of number of operations, and depict the implementation
advantages of this factorization.


1 1 1 1

1 i −1 −i
1 −1 1 −1
1 −i −1 i

 =


1 · 1 ·
· 1 · 1

1 · −1 ·
· 1 · −1




1 · · ·
· 1 · ·
· · 1 ·
· · · i




1 1 · ·
1 −1 · ·
· · 1 1

· · 1 −1




1 · · ·
· · 1 ·
· 1 · ·
· · · 1


This elementary example is a basic observation of an important framework that

uses the theory of group representations for designing fast signal processing numerical
algorithms [23–25]. The principal idea is related to the notion of symmetry of a matrix
M , a concept based on a pair of group representations used to create a framework for
identifying redundancies in the matrix M . Constructing efficient factorizations of a
matrix M follows as a consequence of the properties of these representations and the
underlying group.

More precisely, we consider finite and complex representations (of degree n) of a group
G defined as homomorphisms φ : G → GLn(C) into the group GLn(C) of invertible
n × n matrices over the complex numbers. The first step when studying such objects
is to decompose them into “irreducible” ones, which for this case means that a given
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representation cannot be described as direct sums, namely, representations of the form

φ⊕ ψ : φ(g)⊕ ψ(g) =

(
φ(g) 0

0 ψ(g)

)
.

The concept of symmetry of a matrix M ∈ Cm×n is defined as a pair (φ1, φ2) of
representations of a group G such that φ2(g)M = Mφ1(g), for all g ∈ G. In other words,
the following commutative diagram holds for any g ∈ G:

GLn(C)
φ1(g)−−−→ GLn(C)yM yM

GLm(C)
φ2(g)−−−→ GLm(C)

As a shortcut, we use the notation φ1
M−→ φ2 for expressing the symmetry (φ1, φ2)

of M . Another way to describe this property is to say that M actually belongs to the
intertwining space of the representations φ1, and φ2, namely, M belongs to the space:

Int(φ1, φ2) := {M ∈ Cdeg(φ2)×deg(φ1) | φ2(g)M = Mφ1(g), g ∈ G}.
In order to consider meaningful representations we do not handle arbitrary sym-

metries, but instead we specialize our definition to particular types of representations
including permutation, monomial, irreducible, etc. We say that φ is a permutation (resp.
monomial) representation if all φ(g), g ∈ G are permutation matrices (resp. monomial
matrices). A monomial matrix is a generalization of a permutation matrix which has
exactly one non-zero entry in every row and column. It turns out that these types of
special representations allows to detect useful patterns in the matrix M .

Now, the procedure for constructing efficient numerical algorithms, described as spe-
cial factorizations of the matrix M , is based on the decomposition of the representations
in a symmetry (φ1, φ2) of the matrix M . First, we decompose the representations φ1

and φ2 with the matrices A1 and A2 by considering the representations ρi = φAii , with
φAii (g) := A−1

i φi(g)Ai for i = 1, 2. This procedure can be represented with the following
commutative diagram:

φ1
M−−−→ φ2yA1

yA2

ρ1
D−−−→ ρ2

In order to obtain a factorization of M which can be used for implementing efficient
numerical algorithms (as illustrated in the previous factorization of the Fourier matrix
F4) we consider the matrix D := A−1

1 M A2, which turns out to have a critical property
of being sparse, and we obtain the desired efficient decomposition

M = A1DA−1
2 .

This scheme can be further generalized when considering general fields F instead of
our original case C, and the resulting framework allows to answer the question of finding
efficient methods for evaluating Mx, for x ∈ Fn, M ∈ Fm×n with as few arithmetic
operations in the base field F as possible.
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1.3 Elements of Spectral Theory

The Fourier Analysis generalization based on locally compact groups allows to better
understand, unify and extend the analysis and synthesis philosophy devised in classical
harmonic analysis. An intimately related framework is spectral theory and Gelfand
transforms, a machinery that unifies and explains the multiple instances of the concept
of spectrum. Fourier analysis and linear algebra are two fundamental domains where
different perspectives of the notion of spectrum are deeply integrated. The multiple
application contexts of these two domains indicates the far-reaching influence of spectral
theory, but its strategy goes far beyond this unification procedure, it also allows to
identify the same important mathematical structures in different working environments.
One of the primal examples of spectral and Gelfand theory is the recovery of a topo-
logical Hausdorff space using the ring of continuous complex-valued functions defined
on it. This framework underlines a deep interaction between geometrical and algebraic
structures providing a main motor in the modern developments of differential geometry
and algebraic topology. But in the last two decades this conceptual framework has begun
to infiltrate more numerical and computational domains. In [4], for instance, the analysis
of numerical problems related to Toeplitz matrices has been analyzed with C∗-algebra
methods. In this section we present very elementary ideas of spectral theory, and refer
to the main references for a comprehensive introduction [19,27,32,39]. We follow closely
the presentation in [27], extracting only elementary relevant results for understanding
our context.

Definition 1.6 (Banach Algebra). A vector space is a group (A,+) with a scalar multi-
plication, F×A → A, over the field F (= R,C) compatible with the group operation. An
associative algebra is a vector space A with a multiplication (bilinear map A×A → A)
which is distributive and associative. If the multiplication operator has an identity, we
have an unital algebra, which can be rephrased as a ring (A,+,×) with a scalar product
in F. A Banach algebra is an normed algebra A that is a Banach space in which the
multiplication and the norm relates as ‖xy‖ ≤ ‖x‖ ‖y‖, for all x, y ∈ A.

Definition 1.7 (C∗-algebra). A *-algebra is an algebra with an involution, namely, an
automorphism ∗ : A → A, such that (x + y)∗ = x∗ + y∗, (λx)∗ = λ̄x∗, (xy)∗ = y∗x∗, and
x∗∗ = x. A C∗-algebra is Banach *-algebra such that ‖xx∗‖ = ‖x‖2, for all x ∈ A.

Remark 1.14 (Examples of C∗-algebras). The following list enumerates some important
examples of Banach algebras, indicating the rich diversity and breath of this theory.

1. Mn(C). The set Mn(C) of all n× n matrices over C is a C∗-algebra with the usual
addition and multiplication of matrices. The involution is given by the complex
transpose (T ∗)ij = Tji, and the operator norm ‖T‖op = min{c : ‖Tx‖ ≤ c‖x‖ ∀x ∈
Cn} is used to construct a Banach space.

2. C(X). If X is a compact Hausdorff space, the space C(X) of continuous complex-
valued functions on X is a unital Banach algebra. The addition and multiplication
are the usual pointwise operations. The involution is given by the pointwise complex
conjugation, and we use the uniform (supremum) norm ‖f‖∞ = sup{|f(x)| : x ∈
domain of f}.
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3. C0(X). If X is a locally compact Hausdorff, the space of continuous functions
vanishing at infinity C0(X) is a nonunital C∗-algebra. The addition, multiplication,
involution, and norm are defined as in the previous example. Notice that the
characteristic function, 1X , is not in C0(X).

4. L(H). For a Hilbert spaceH, the set of bounded linear operators L(H) is C∗-algebra
with the pointwise addition, and the composition, and adjoint, as the multiplication
and involution respectively. The norm is also given by the operator norm: ‖T‖op =
sup‖x‖≤1‖T (x)‖.

5. l1(Z). The set of complex-valued sequences a = (an)∞−∞ such that ‖a‖ =
∑∞
−∞ |an| <

∞ is denoted by l1(Z), and is a unital ∗-algebra with the pointwise addition, and
the convolution a ∗ b = c, with cn =

∑∞
−∞ akbn−k. The involution is given by

(a∗)n = a−n. This algebra is not a C∗-algebra.

6. L1(R). The space L1(R) of integrable functions is a nonunital Banach ∗-algebra
with the multiplication given by the convolution (f ∗g)(x) =

∫
f(y)g(x−y) dy, and

the involution defined as f ∗(x) = f(−x).

Definition 1.8 (Spectrum of an algebra). Suppose A is a commutative unital Banach
algebra. The spectrum of A is given by the set of all nonzero multiplicative functionals:

σ(A) = {γ : A → C, γ nonzero homomorphism}

An important aspect of the the spectrum of an algebra is that as σ(A) lies in the
set of bounded linear functionals A∗, the weak-* topology can be used to make σ(A) a
topological space. Additionally, with the help of the map h ∈ σ(A) → ker(h), we can
identify σ(A) with the set of maximum ideals of A, providing an identification between
topological and algebraic information related to A.

The motivation for calling σ(A) the spectrum is based on the fact that, in general,
we have

range(x̂) = σ(x),

and for particular cases (e.g. when A is generated by x0 and e), x̂ as a function in σ(A)
is an homomorphism from σ(A) to σ(x0).

Definition 1.9 (Gelfand transform). Suppose A is a commutative unital Banach algebra.
The Gelfand transform is the homomorphism defined by

Γ : A → C(σ(A)) Γ(x)(h) = x̂(h) := h(x) ∀x ∈ A, h ∈ σ(A).

One of the main characteristics of the Gelfand transform is the possibility to identify
an arbitrary commutative unital C∗-algebra with a C∗-algebra of continuous functions
defined over the spectrum, which is the celebrated Gelfand Naimark theorem:

Theorem 1.15 (Gelfand Naimark theorem: Gelfand transform of commutative unital
C∗-algebras). For any commutative unital C∗-algebra A, the Gelfand transform is an
isometric *-isomorphism from A to C(σ(A)).
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Spectral theorem

The classical spectral theorem of linear algebra, together with the standard concepts of
spectrum, eigenvalue and eigenvectors can be generalized and embedded in the Gelfand
theory scheme. Remember that the finite dimensional spectral theorem says that if T
is a self-adjoint operator on H, then there is an orthonormal basis of H consisting of
eigenvectors of T with the following decomposition:

T =
∑
λ∈Σ

λPλ,

where Σ is the spectrum of T , and Pλ is the orthogonal projection onto the eigenspace
for λ. The extension of this property to a general scheme using Gelfand transforms has
several variations, one particular situation considers an arbitrary C∗-subalgebra A of
L(H) instead of a single operator T . We have in this scheme the following three basic
ingredients:

(1) A Hilbert space H.

(2) A commutative C∗-subalgebra A of L(H) containing the identity.

(3) Σ := σ(A) the spectrum of A.

Another crucial ingredient in this framework is the Gelfand transform T̂ for any
T ∈ A, and the inverse operation Tf ∈ A, well defined for any f ∈ C(Σ) thanks to the
Gelfand-Naimark Theorem 1.15.

An additional important component is the concept of projection valued measure, which
extends the standard measure definition by mapping an element of a σ-algebra A of a
measurable space (Ω,A) to a bounded linear operator in L(H). A projection valued
measure P : A → L(H) fulfills an extended version of the properties of a standard
measure.

(1) P (E) is an orthogonal projection for any E ∈ A.

(2) P (∅) = 0 and P (A) = I.

(3) P (E ∩ F ) = P (E)P (F ), for E,F ∈ A.

(4) P (∪Ei) =
∑
P (Ei) for any disjoint sequence E1, E2, . . . , where the sum converges

in the strong operator topology.

We can now extend the finite dimensional spectral theorem by considering the previous
ingredients in one single package:

Theorem 1.16 (Spectral Theorem). Let A be a commutative C∗ subalgebra of L(H)
containing the identity, and let Σ be its spectrum. Then there is a unique projection
valued measure P on Σ such that for all T ∈ A we have:

T =

∫
T̂ dP.
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Fourier analysis and Spectral theory

The Fourier analysis methods described in the previous sections, together with the
standard concept of spectrum used in Fourier transforms, is another crucial structure
that can be described and explained in the context of the Gelfand theory. In order to
explain this remark, we can interpret the internal machinery in the harmonic analysis
of a locally compact group G as an interplay between two frameworks: the study of
representations of the group G, and the analysis of the Banach algebra L1(G).

On the one hand, one of the objectives of group representation theory is to analyze
arbitrary representations of G, where a crucial example is the analysis of the regular
representations, that is, homomorphisms based on left and right translations of the group.
For instance, the left regular representation is defined as

πL : G→ L(L1(G)),

with (πL(x)f)(y) = Lxf(y) := f(x−1y), for x, y ∈ G, and f ∈ L1(G). In this situation,
the term analysis means an explicit description of these representations in terms of
basic building blocks, which are, for this environment, the irreducible representations,
namely, representations that have no trivial invariant subspaces. If G is abelian, every
irreducible representation is one dimensional, and a direct link with the set of characters Ĝ
is established. In general, there are three particular situations that have to be considered
when analyzing the structure of Ĝ: the case of G being a locally compact abelian group,
compact group, and locally compact nonabelian group.

On the other hand, we want to analyze complex-valued functions in the group G,
belonging to the Banach algebra L1(G), that is we are dealing with the Gelfand theory
domain. Now, these two issues (the general group representation problematic, and the
analysis of L1(G)) are intimately related via the concept of the Fourier transform, which
turns out to be an instance of the Gelfand transform. More precisely, we can identify the
dual group Ĝ with σ(L1(G)), the spectrum of the algebra L1(G), by considering, for any
character ξ ∈ Ĝ, the functional

f → ξ(f) :=

∫
ξ(x)f(x) dx.

We can now obtain, as explained in Definition 1.9, an explicit description of the Gelfand
transform on the Banach algebra L1(G):

Γ : L1(G)→ C0(Ĝ) Γ(f)(ξ) := ξ(f).

But, as explained in Definition 1.2, this functional rephrases the concept of the Fourier
transform:

F : L1(G)→ C0(Ĝ) F(f)(ξ) := ξ(f).

We obtain therefore an important connection between the task in group representation
theory of analyzing the irreducible representations (described for the case of abelian
groups as the character group Ĝ), and the fundamental objective of Gelfand theory when
analyzing the Banach algebra L1(G). The key synchronizing link turns out to be the
identification of the dual group Ĝ with the spectrum σ(L1(G)), and the Fourier transform
F with the Gelfand transform Γ.
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2 Time-Frequency analysis and Frames

2.1 Continuous Transforms

A main problem in classical harmonic analysis is how to obtain the time evolution of
a frequency component in a signal, using only the information provided by the Fourier
Transform. In the first half of the 20th century, D. Gabor and other researchers proposed
a scheme known today as the Gabor transform, whose first step consist of partitioning
the signal in short consecutive and overlapped sections, using a Gauss function as a
transformation window. In the second step of this procedure, the sequence of short
sections are analyzed with the Fourier transform, in such a way that a the time evolution
of the frequency components can be obtained. This procedure can be generalized by
using other types of windows functions resulting in the well known Short term Fourier
Transform (STFT).

The previous scheme is a one side of a two way road in which the first direction is the
analysis of a function using the STFT as a decomposition tool, and the second direction
is the synthesis of a function implemented using the STFT as a composition tool.

Due to the Heisenberg uncertainty principle, a tiling of the time-frequency space
is inherent in each STFT transformation, with the particular characteristic of being
uniform over all frequencies. In many applications this is not a desirable feature, as high
frequency information requires a small resolution in the time domain while, inversely,
a large window in required in order to correctly detect low frequency information. In
the 1980s a remarkable collaboration between mathematicians, physicists, and engineers,
improved the STFT scheme by formalizing the wavelet theory. One key idea of this new
procedure is to design more adequate tilings of the time-frequency plane by using special
basis functions called wavelets. Many important components of this framework where
already known in the literature, but the main concepts where spread out over diverse
subfields of classical harmonic analysis, group representations, and filterbank theory.
The understanding of these ideas in the unified framework of wavelet theory allowed a
deeper comprehension of time-frequency analysis, and led to further developments such
as multiresolution structures and frame theory [50].

Short Term Fourier Transform

The Fourier transform provides information about the frequency content of a function,
but an important question in signal processing is how to obtain the time evolution of
the main frequency components of a signal. Standard procedures include the modulus
of the Fourier transform, also known as spectra, as a main analysis tool, where a local
maxima indicates the presence of an harmonic element. The crucial problem is that this
procedure ignores the time evolution of this frequency local maxima. A similar problem
happens when analyzing signals with different waveforms but similar frequency content,
in which a direct consideration of the spectra information cannot be used to differentiate
the signals. One solution strategy for revealing the relation between time and frequency
content, is the framework proposed by A. Gabor and other researchers in the first half of
the 20th century. The main idea is to use a window function for partitioning the signal
before the application of the Fourier transform [11]:
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Definition 2.1 (Short Term Fourier Transform (STFT) analysis). The Short Term
Fourier Transform in L2(R) is defined as a map G : L2(R)→ L2(R× R), with

Ggf(b, ω) := 〈f, gb,ω〉 =

∫
R
f(t)gb,ω(t) dt, gb,ω(t) := g(t− b)eiωt.

In this framework several possibilities are available for the window function g. For
the case of a Gaussian window gα(x) = 1/(2

√
πα)e−x

2/4α the corresponding map Ggα
is known as Gabor Transform. Other window functions with different time-frequency
behavior are available, such as the Hann, Hamming, Triangular, Kaiser, Blackman, etc.
Many applications traditionally based on the Fourier transform could be improved by
using the additional structure provided by the STFT scheme. In the last decades of the
20th century this framework opened several new areas of theory and applications under
the name of time-frequency analysis.

The previous step is considered as an analysis procedure, where the map Ggf delivers
a time-frequency view of the original function f . The second crucial component of this
framework is a synthesis procedure, which corresponds to the possibility of reconstructing
the original function f , using the analysis performed with Ggf . The heart of the synthesis
step is an isometry property of the STFT, which allows in a further step to construct an
explicit reconstruction function.

Theorem 2.1 (Isometry of the STFT [11]). If g ∈ L2(R), with ‖g‖ = 1, tg(t) ∈ L2(R)
and ωĝ(ω) ∈ L2(R), then

2π〈f1, f2〉 = 〈Ggf1,Ggf2〉

=

∫
R

∫
R
〈f1, gb,ω〉〈f2, gb,ω〉 db dω ∀f1, f2 ∈ L2(R).

The reconstruction formula can now be directly obtained from the isometric property,
providing the two way mechanism that translates information between f and Ggf :

Corollary 2.2 (Reconstruction with STFT synthesis). Using the hypothesis of the The-
orem 2.1, we have for any t ∈ R where f is continuous:

f(t) =
1

2π

∫
R

∫
R
Ggf(b, ω)gb,ω(t) db dω.

Wavelet Transforms

The STFT proved to be a very important tool for many problems where simultaneous
time-frequency information is required. But this technique has some limitations, as its
time-frequency tiling has a fixed resolution for all frequencies, providing an inconvenient
scheme that handles high and low frequencies with the same fixed analysis tool. To resolve
this problem, a new range of improvements came from a notable collaboration between
mathematicians, physicists, and engineers in the 1980s, constructing the framework
known today as wavelet theory. The new procedure extends the previous STFT construct
by using a different strategy for analyzing time-frequency information. The core idea is to
use a special type of window function, called wavelet, that is localized both in the time and
the frequency domain and which, additionally, allows to replace the frequency modulation
by a scaling operation. This new property introduces the possibility of constructing more
adequate tiling of time-frequency plane [11,33]:
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Definition 2.2 (Wavelet Transform analysis). The wavelet transform in L2(R) is defined
as a map W : L2(R)→ L2(R× R∗) with

Wψf(b, a) := 〈f, ψb,a〉 =

∫
R
f(t)ψb,a(t) |a|−1/2 dt, ψb,a(t) := ψ

(
t− b
a

)
,

where we require ψ ∈ L2(R) to be an “admissible” function, that is:

Cψ :=

∫
R

|ψ̂(ω)|2

|ω|
dω <∞.

In the same spirit as in the STFT, the crucial component that pairs the analysis
procedure with the synthesis mechanism is the isometry property of the wavelet transform.

Theorem 2.3 (Isometry of the Wavelet transform). If ψ is a basic wavelet, we have:

Cψ〈f2, f2〉 = 〈Wψf1,Wψf2〉

=

∫
R∗

∫
R
(Wψf1)(b, a)(Wψf2)(b, a)

da

a2
db. ∀f1, f2 ∈ L2(R).

As in the case of the STFT, we can derive a reconstruction formula for the wavelet
transform, constructing a new translation mechanism between a function f and its
transform Wψf :

Corollary 2.4 (Reconstruction with wavelet transforms Synthesis). With the hypothesis
of the Theorem 2.3, we have for any t ∈ R where f is continuous:

f(t) =
1

Cψ

∫
R∗

∫
R
Wψf(b, a)ψb,a(t)

da

a2
db.

Remark 2.5 (Admissibility condition). We notice that the admissibility condition is
clearly necessary in the reconstruction formula of the wavelet transform. Additionally,
this requirement provides an intuitive explanation for the term “wavelet”, meaning a
“small wave”. We remark that Cψ < ∞ implies ψ̂(0) = 0, which in turn implies the
following property, intuitively related to the idea of a “small wave” localized over time:∫

R
ψ(t) dt = 0.

A significant aspect of this framework is that several of the original ideas where
scattered concepts already present in diverse fields as classical harmonic analysis, group
representations and filterbank structures. For instance, the way the modulation and the
scaling operators act in the STFT and wavelet transforms is reminiscent of the action of
two important examples of locally compact non abelian groups used in physics: the Weyl-
Heisenberg and Affine group. This remark opens a very important link with the field of
group representations, a fact that was presented in the seminal paper of Grossmann,
Morlet, and Paul in 1985 [28]. Similarly, a well known area in the engineering literature,
filterbank theory, had some initial components of the discrete version of the wavelet
transform, that where further developed with the the concept of multiresolution analysis.
One of the very first examples of wavelets are the Haar functions, designed by A. Haar
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in his PhD thesis in 1909. An impressive result of his work is that the Haar function
generates a basis of L2(R) for which the expansion of any function converges uniformly.
A phenomenon that contrast completely with the seemingly better behaved Fourier basis
[50]. This result of classical harmonic analysis played an important role in the initial
development of wavelet theory. But the unification work of this new framework placed in
a coherent structure many aspects of these, in appearance, different areas of mathematics,
engineering, and physics. This unification opens at the same time further directions for
theoretical and application research.

A Global View

An important concept behind the STFT and Wavelet transforms lies in the way a locally
compact group G acts in a Hilbert space of functions H. This action is an irreducible and
unitary group representation, π : G → U(H), that fulfills square integrable conditions.
It is important to notice that the group G plays a different role than the one used
in the Fourier transform definition, here G acts in the space of functions, and in the
case of the Fourier transform the group G is the domain of the functions. With this
representation the so called voice transform is constructed by setting Vψ : H → L2(G),
with Vψ(f)(x) := 〈f, π(x)(ψ)〉. The STFT and Wavelet transforms are typical examples
where ψ corresponds to a window function for the former and to a wavelet for the latter.
These transforms represent an interplay between H and L2(G), that allows to analyze the
function f , by porting its information to a setting defined by G. Another way to rephrase
this phenomenon is that the transformation Vψ “unfolds” data present in f , using G as
an analysis environment. In the case of the STFT transform, the Weyl-Heisenberg group
represents the time-frequency background to which information from f is translated. In
the case of the wavelet transform, the affine group is responsible for providing a time-
scale representation of the function. In these situations, a fundamental objective is to
understand the components of f , using G and Vψ as new observation tools.

The first crucial concept upon which the voice transform results useful are the orthog-
onality relations. This means that for the square integrable representation π, there is a
unique self-adjoint positive operator C onH, such that for f1, f2 ∈ H and ψ1, ψ2 ∈ domC,
we have: ∫

G

〈f1, π(x)ψ1〉 〈π(x)ψ2, f2〉dµ(x) = 〈f1, f2〉 〈Cψ1, Cψ2〉.

These relationships imply that the transform Vψ is an isometry from H into L2(G).
Another way to express this idea is that the energy of f is conserved by Vψ. It will then
be possible, by restricting to the range of the transform, to build inversion formulas.

The second crucial concept of the voice transform is the characterization of its range.
In this case it turns out that Vψ(H) ⊆ L2(G) is a reproducing kernel Hilbert space,
meaning in particular that a reproducing formula is valid: Vψ(f) = Vψ(f) ∗ Vψ(ψ), ∀f ∈
H. This reproducing formula can be rephrased by saying that a function F ∈ L2(G)
belongs to Vψ(H), if and only if F = F ∗ Vψ(ψ).

2.2 Discrete Transforms

The discretization of the STFT and wavelet transforms is a field with many aspects that
are today very active research topics. The objective is, as in the case of the continuous
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environment, to find conditions that ensure adequate analysis and synthesis algorithms.
The fact that now we handle a discrete environment introduces additional requirements
to be checked for a correct analysis/synthesis functionality. Given a discrete set of
functions {ψj,k}j,k∈Z to be used in a analysis framework, a crucial aspect to consider is
the correct construction of the corresponding set of functions in the synthesis framework,
usually denominated the dual set {ψj,k}j,k∈Z. In general, given a set of analysis functions
{ψj,k}j,k∈Z, it is sometimes not immediately clear how to construct the corresponding
dual {ψj,k}j,k∈Z. The general problem can then be described as the search for adequate
functions {ψj,k}j,k∈Z, with a corresponding dual set {ψj,k}j,k∈Z that can be used for
constructing adequate analysis and synthesis procedures:

Analysis Synthesis

Wψf(j, k) := 〈f, ψj,k〉 f =
∑
j,k∈Z

〈f, ψj,k〉ψj,k. (2.1)

Two aspects that we will now shortly describe are the very active topics of frame the-
ory and Multiresolution analysis, presenting two particular and crucial examples of the
previous analysis/synthesis scheme.

Multiresolutions

After the initial understanding of continuous wavelet transforms in the middle of the
1980s, Y. Meyer and S. Mallat proposed an efficient algorithm for constructing wavelet
functions. This algorithm consist of a decomposition of L2(R) in a nested sequence
of spaces generated by the scaling function or father wavelet φ. It turns out that a
multiresolution is a very natural structure that can be conveniently identified in many
applications. Once a scaling function φ generating a multiresolution is found, the next
step is to construct the wavelet ψ, sometimes denominated in this context as the mother
wavelet. The crucial aspect is the usage of the relations between φ and ψ, explicitly
described by the useful multiresolution structure.

Definition 2.3 (Multiresolution). A multiresolution of L2(R) is defined as a sequence of
subspaces of L2(R), denoted by {Vi}i∈Z with the following properties:

1. Vi ⊂ Vj, ∀i, j ∈ Z, i < j.

2. f ∈ Vj ⇒ f(t) ∈ Vj+1.

3. f ∈ Vj ⇒ f(t+ k/2j) ∈ Vj, ∀j, k ∈ Z.

4.
⋃
j∈Z Vj = L2(R).

5.
⋂
j∈Z Vj = {0}.

6. V0 = span{φ(x− k), k ∈ Z}.

This machinery was used by I. Daubechies in her celebrated discovery of compact
supported wavelets [15], developing an important step in multiresolution analysis which
today has grown into a theory with many interactions to diverse fields such as multiscale
analysis, radial basis functions, diffusion wavelets, image processing, etc.
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Frame Theory

The standard concept of a basis is of fundamental importance for analysis and synthesis
of arbitrary functions in a given vector space H. Given a basis {bi}i∈Z of H, the
analysis procedure maps an arbitrary element of H into a set of coefficients in a more
controllable environment such as a sequence space. The synthesis algorithm is based on a
reconstruction method that uses the vectors {bi}i∈Z defined in the analysis procedure. In
each case, we use the same elements of the basis {bi}i∈Z as fundamental building blocks.
Frame theory takes one step further and, in a same spirit as in the analysis/synthesis
framework of Equations 2.1, it generalizes the concept of a basis while introducing
additional flexibility for selecting the building blocks. One fundamental difference, is
that a elements of a frame do not need to be linearly independent

Definition 2.4 (Frame of a Hilbert space). A Frame is defined as a sequence of vectors
{fi}i∈Z in H if there exist numbers A,B > 0 (the lower and upper frame bounds) such
that for all f ∈ H we have:

A‖f‖2 ≤
∑
i

|〈f, fi〉|2 ≤ B‖f‖2.

Remark 2.6 (Frame Operators). It is sometimes convenient to rephrase this definition
using the language of operators in order to better understand, and usefully related frame
theory to basic aspects in operator theory. For a finite frame {fi}ri=1, the first operator
that a frame produces is the analysis operator, defined as

T : H → Cr, (T (f))i := 〈f, fi〉.

The definition 2.4, can be rephrased as that in order {fi}ri=1 to be a Frame, we require T
to be injective. A second fundamental operator used is the adjoint operator of T , which
plays the role of synthesis operator:

T ∗ : Cr → H, T ∗((ci)
r
i=1) :=

r∑
i=1

cifi.

The composition of these maps is the Frame operator, which naturally links the original
Definition 2.4, and the analysis/synthesis framework in Equations 2.1:

G = T ∗T : H → H, G(f) :=
r∑
i=1

〈f, fi〉fi.

The first basic result of this scheme relates the operator G to the frame bounds with the
property that A = σmin(G), and B = σmax(G). Namely, the smallest eigenvalue of the
operator G is the lower frame bound, and the largest eigenvalue is the upper frame bound.
The second result illustrates frame theory as a crucial example of the analysis/synthesis
framework in the Equations 2.1:

f = GG−1f = G−1
( r∑
i=1

〈f, fi〉fi
)

=
r∑
i=1

〈f, fi〉G−1(fi), ∀f ∈ H.

In this case, the set of vectors {G−1fi}ri=1, also denoted as {fi}ri=1, correspond to the
dual frame of {fi}ri=1, exactly in the same spirit as in the Equations 2.1.
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3 Reproducing Kernels and Approximation Theory

In the last decades, the concept of kernel, and its related notion of reproducing kernel
Hilbert space (RKHS), has played an increasingly important role in a broad range of
applied and theoretical fields. Interpolation and approximation theory, signal sampling
techniques, solution spaces of PDEs, characterization of the range of integral opera-
tors, and modern dimensional reduction and machine learning methods, are examples
of important topics where the concept of kernel is of fundamental importance. Some
interesting recent developments have revealed a significant interaction of frame theory
with function kernels, adding further perspectives to the applicability of frame analysis.
In this chapter, we present a short overview of the concept of kernels, reproducing kernel
Hilbert spaces, and some selected applications. We focus primarily on interpolation and
approximation methods, and the new interactions with frame theory. For the main ideas
of these concepts we follow closely [43, 45,60].

3.1 Reproducing Kernel Hilbert Spaces (RKHS)

Despite the multiple and diverse contexts in which the concept of RKHS appears, the
main principles can be cast in one unified framework. As a starting point, there are two
important, closely related, concepts: a kernel, and an underlying RKHS. Even though
there is a close relationship between them, it is important to distinguish the differences
of these points of view. One of the main motivations for defining a kernel is to analyze
arbitrary unstructured sets by mapping its elements to a set with some useful structure:
in the current case, the target will be a Hilbert space.

Definition 3.1 (Kernel, Feature map, Feature space [60]). Given a nonempty set E, a
kernel is a function K : E×E → R, such that a Hilbert space H, and a map Φ : E → H,
exists with:

K(x, y) = 〈Φ(x),Φ(y)〉H, ∀x, y ∈ E. (3.1)

The map Φ, and the space H, are denominated feature map and feature space.

The informal idea behind the concept of the kernel K is to measure and analyze the
similarity between the elements of E, a set without any predefined structure, by using the
scalar product of the Hilbert space H. Notice that if we use as the scalar field C instead
of R, we have to take care of defining K(x, y) = 〈Φ(y),Φ(x)〉 due to the sesquilinearity
of the scalar product in C. There are no special constraints on the feature space H, but
as we will see in Proposition 3.16, the interesting candidates are essentially equivalent,
and the prototypical examples will be given by reproducing kernel Hilbert spaces.

Definition 3.2 (Reproducing Kernel Hilbert Space). The Hilbert space HK of real
functions defined on a nonempty set E is a reproducing kernel Hilbert space (RKHS),
if there exist a map, the reproducible kernel, K : E × E → R with:

1. For Kx : E → R, Kx(y) := K(x, y), y ∈ E, we have Kx ∈ HK , ∀x ∈ E.

2. Reproducing property:

f(x) = 〈f,Kx〉, ∀x ∈ E, ∀f ∈ HK . (3.2)

29



We have, as in the previous definition, an arbitrary nonempty set E as a starting
point, but the focus now is on the particular type of Hilbert space HK , and the set of
functions {Kx}x∈E used to generate the reproducing property (the crucial characteristic
for the applications of this framework). The work that follows is to analyze the relation
of these definitions by constructing adequate feature maps Φ, and presenting specific
examples of RKHS with a given kernel K.

Remark 3.1 (Symmetric and positive semi-definite properties [43]). The reproducing
property allows to immediate obtain several basic aspects of reproducing kernels:

1. K(x, x) ≥ 0, for any x ∈ E.

2.
∑n

i=1

∑n
j=1 λiλjK(xi, xj) ≥ 0, for any {xi}ni=1 ⊂ E, {λi}ni=1 ⊂ C.

3. K(x, y) = K(y, x), for any x, y ∈ E.

Defining Ky(x) : = K(x, y), x ∈ HK , and using the equation 3.2, we obtain Ky(x) =
〈Ky, Kx〉 for all x ∈ E. When setting x = y, we obtain

K(y, y) = 〈Ky, Ky〉 = ‖Ky‖2
HK ≥ 0.

In a similarly spirit, if we select n points {xi}ni=1 ⊂ E, and n complex numbers {λi}ni=1 ⊂
C, when using the relation K(xi, xj) = Kxi(xj) = 〈Kxi , Kxj〉, we obtain the positive-
semidefinite property:

n∑
i=1

n∑
j=1

λiλjK(xi, xj) =
n∑
i=1

n∑
j=1

λiλj〈Kxi , Kxj〉 = 〈
n∑
i=1

λiKxi ,
n∑
j=1

λjKxj〉 ≥ 0.

The symmetric relation follows directly from K(x, y) = Kx(y) = 〈Kx, Ky〉 = 〈Ky, Kx〉 =

Ky(x) = K(y, x).

Remark 3.2 (RKHS Prototype I). Given a symmetric positive-definite kernel K, there
is a prototypical example of RKHS that can be constructed by generating a vector space
with the functions Kx : E × E → R, Kx(y) = K(x, y):

HK := span{Kx : x ∈ X}. (3.3)

The scalar product is given by 〈Kx, Ky〉HK := K(x, y), and the feature map is given by

ΦK : E → HK , ΦK(x) := Kx (3.4)

We will see alternative ways of constructing prototypical RKHS with a main result based
on the Mercer’s theorem 3.14.

One important characteristic of a Hilbert space, equivalent to the reproducing prop-
erty is the continuity of the point evaluation functionals (or dirac functionals), namely,
that given x ∈ E, the map f → f(x) is continuous for all f ∈ H. This fact is a
straightforward consequence of the Riesz representation theorem. Remember than in any
Hilbert space H, the map Lg : H → R, Lg(f) = 〈f, g〉, f ∈ H is a linear and bounded
(continuous) functional for any g ∈ H. Conversely, the Riesz representation theorem, a
fundamental property of Hilbert spaces [17], specifies that for any linear and bounded
functional L : H → R, there exist a unique vector g ∈ H with L(f) = 〈f, g〉, for any
f ∈ H.
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Theorem 3.3 (RKHS and continuous point evaluation functionals). Let H be a Hilbert
space of real functions defined in a nonempty set E, and let Lx : H → R, with

Lx(f) := f(x), (3.5)

the point evaluation functionals. The linear maps Lx are continuous for any x ∈ E, if
and only if H has a reproducing property, f(x) = 〈f,Kx〉, for a set {Kx}x∈E ⊂ H, and
any f ∈ H, x ∈ E.

Proof. If the functional Lx is continuous, with the Riesz representation theorem, we have
a vector Kx ∈ H with the reproducing property Lx(f) = f(x) = 〈f,Kx〉, for any x ∈ E,
and f ∈ H. Conversely, with the reproducing property, we can construct a bounded
linear functional Lx(f) = 〈f,Kx〉 due to the continuity of the scalar product: that is, the
point evaluation functionals are continuous.

Remark 3.4 (Pointwise, uniform, strong and weak convergence). Another quite partic-
ular property of reproducing kernel Hilbert spaces is the fact that the strong convergence
implies the pointwise convergence. Remember that for any nonempty set A, and any
metric space (M,d), a sequence of mappings fn : A→M converges pointwise (or simply)
to f : A→M , if fn(x) converges to f(x), for any x ∈ A, namely, limn→∞ d(fn(x), f(x)) =
0. The convergence is called uniform if limn→∞ supx∈E(d(fn(x), f(x))) = 0. It is clear
that uniform convergence implies pointwise convergence, but a classical example, fn(x) =
xn, x ∈ [0, 1], shows that the opposite is, in general, not true.

We recall two other important notions of convergence: the strong (or norm) conver-
gence, and the weak convergence. In order to set these definitions we require a normed,
(or Banach) space B. The sequence xn converges weakly to x, if f(xn) converges to f(x)
(i.e. limn→∞ f(xn) = f(x) in C), for every bounded linear operator f in B. If B is a
Hilbert space, with the Riesz representation theorem we can write 〈xn, y〉 → 〈x, y〉 (in C),
for any y ∈ B. The sequence xn converges in norm (or strong), if ‖xn− x‖B converges to
0. Due to the Cauchy Schwarz inequality, it is not difficult to see that strong convergence
implies weak convergence (see [43],p18). But the converse is, in general, not true: take
for instance any complete orthogonal system {φn}n∈N of a Hilbert space H. The sequence
φn converges to zero weakly (as

∑
n∈N |〈φn, f〉H| <∞,∀f ∈ H), but it is clear that ‖φn‖H

must not converge to 0.
Now, notice that, in general, it is not true that the strong convergence implies

pointwise convergence. A standard example is a Lp space, where we can have point-
wise divergence in any set of measure 0, without affecting the norm convergence. The
interesting issue is that (due to the reproducing property) in a RKHS this counterintuitive
fact actually holds.

Proposition 3.5 ( [43]). In a RKHS, strong convergence implies pointwise convergence.

Proof. If for a reproducing kernel Hilbert space H, each point evaluation functional is
continuous, we have |f(x)| ≤ ‖f‖HMx, and therefore |fn(x) − f(x)| = |(fn − f)(x)| ≤
‖fn − f‖HMx. As the metric in the Hilbert space H is given by d(f, g) := ‖f − g‖H,
strong convergence implies pointwise convergence.

The following elementary, but important, properties concerning the uniqueness of
reproducing kernels, characterization of linear subspaces of RKHS, and orthogonal pro-
jections on RKHS are straightforward applications of the reproducing property.
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Proposition 3.6. The reproducing kernel K in a RKHS HK is unique.

Proof. Let K ′ another reproducing kernel of HK . We set Kx(y) := K(x, y), and K ′x(y) :=
K ′(x, y). With the reproducing property we obtain: ‖Kx−K ′x‖2 = 〈Kx−K ′x, Kx−K ′x〉 =
〈Kx −K ′x, Kx〉 − 〈Kx −K ′x, Kx〉 = Kx −K ′x −Kx +K ′x = 0.

Proposition 3.7 (Linear subspaces of a RKHS). Any linear subspace H of a RKHS HK

is also a RKHS.

Proof. Let the point evaluation functionals be Lx(f) = f(x), f ∈ HK , x ∈ E, and let
Lx|H be their restrictions to H . Using the Proposition 3.3, and the continuity of the
Lx|H, we can guarantee a RKHS structure for H.

Proposition 3.8 (RKHS as a subspace). If a RKHS HK is a linear subspace of a Hilbert
space H, the orthogonal projection in Hk is given by

PHK (f)(x) = 〈f,Kx〉, f ∈ H. (3.6)

Proof. For any f ∈ H, we can write f = f ′ + g, with f ′ ∈ HK , and g ∈ H⊥K . We have
then PHK (f)(x) = 〈f ′, Kx〉+ 〈g,Kx〉. As Kx ∈ HK , we obtain PHK (f)(x) = 〈f,Kx〉.

We will now explore a close and important relation between the reproducing kernel
K and a basis of the space HK (Theorem 3.11). This relation can be conveniently used
for checking whether a given Hilbert space has a reproducing kernel (Remark 3.13). We
will see now that in the case of a RKHS, the kernel can be expanded as a product of the
elements of the basis, provided that the Hilbert space is topologically separable. Even
though many spaces that we are working with are separable, it is important to be able
to recognize some important counterexamples.

Remark 3.9 (Separable spaces). A topological space (X, τ) is separable if there is a
countable dense subset D, namely, D = X, D ⊂ X. A classical result indicates that a
Hilbert space H is separable if and only if it has a countable orthonormal basis. Indeed,
let {ψi}i∈I ⊂ H be a orthonormal set, that is, 〈ψi, ψj〉 = δij, i, j ∈ I, with δij the
Kronecker delta. We have for any i, j ∈ I, i 6= j

‖ψi − ψj‖2 = 〈ψi − ψj, ψi − ψj〉 = 〈ψi, ψi〉 − 〈ψi, ψj〉 − 〈ψj, ψi〉+ 〈ψj, ψj〉 = 2.

If H is separable with a countable dense set D, and I is not countable, we have a
contradiction using the density condition of D. The argument is to consider an injective
map from I toD by selecting for every φi, i ∈ I an element inD. We have then a countable
identification which contradicts the hypothesis of a non countable I. Conversely, we can
use the countable property of the base field (C or R) ofH in order to construct a countable
dense set given a countable orthonormal basis.

Remark 3.10 (Counterexamples of separable spaces). As a topological concept, the
separability of a Banach space depends on the norm that is used. For instance, a classical
example of a nonseparable Banach space is the set of bounded operators in a Hilbert
space, B(H), with the norm topology, namely, the topology induced by the operator norm
‖T‖op := sup‖x‖H≤1‖T (x)‖H, T ∈ B(H). Even though this useful topology is a standard
one for the vector space B(H), it turns out to be too fine to allow the construction of
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countable dense sets. Another standard example of a non-separable topological set can
be described when considering sequences of complex numbers (cn)∞n=1, cn ∈ C. We recall
the space lp(C) := {c = (cn)∞n=1, ‖c‖p := (

∑
n∈Z |cn|p)1/p < ∞}, for 1 ≤ p < ∞, and for

p = ∞, l∞(C) : = {c = (cn)∞n=1, (cn) is a bounded sequence, ‖c‖∞ : = supn∈N cn < ∞}.
An important subset of l∞ is the bounded sequences converging to zero with the ‖ ‖∞
norm, c0 := {c = (cn), limn→∞ cn = 0, ‖c‖∞ < ∞}. Among these examples, the space of
bounded sequences, l∞, is the only case of a non-separable space.

If a RKHS HK is separable, a main property can now be presented, that not only
provides an important characterization of HK , but also allows to easily identify simple
examples and counter-examples of RKHS.

Theorem 3.11 (Basis and the Kernel decomposition in separable RKHS). Let HK be a
reproducing kernel Hilbert space. The following characterization of the reproducing kernel
holds:

K(x, y) =
∞∑
i=1

ψi(x)ψi(y), ∀x, y ∈ E, (3.7)

with {ψi}i∈N, a countable orthonormal system of HK, if and only if HK is separable.

Proof. If the kernel decomposition 3.7 holds, we can define a function Kx : E → R
with Kx :=

∑∞
i=1 ψi(x)ψj for any x ∈ E, we have then Kx(y) = K(x, y), and with the

reproducing property 3.2 we obtain:

f(x) = 〈f,Kx〉 =
∞∑
i=1

〈f, ψi(x)ψi〉 =
∞∑
i=1

〈f, ψi(x)〉ψi,

for any f ∈ HK and x ∈ E, and therefore the orthonormal system {ψi}i∈N is a countable
orthonormal basis, that is, HK is separable. Conversely, let HK be a separable RKHS,
with K its reproducing kernel. We can define Ky(x) : = K(x, y), with Ky ∈ HK , for
all y ∈ E. As HK is separable, there exist a countable orthonormal basis {ψi}i∈N with
Ky =

∑∞
i=1 ci(y)ψi. The coefficients ci(y) can be computed as scalar products ci(y) =

〈Ky, ψi〉 = ψi(y), we obtain then the decomposition 3.7.

Remark 3.12 (Kernel decomposition is Basis independent). Notice that the only re-
quirement for the set {ψi}i∈N in the proof of the decomposition 3.7, is to be a countable
orthonormal system. For another countable orthonormal system {φi}i∈N, we obtain,
under the same hypothesis, the decomposition K(x, y) =

∑∞
i=1 φi(x)φi(y).

Remark 3.13 (Simple examples and counterexamples of RKHS [62]). With the ma-
chinery that has been just developed, we can now present elementary examples and
counterexamples of RKHS. It is easy to check that the space l2 is actually a RKHS.
Using the expression |cn| ≤ 1,∀c ∈ l2, ‖c‖l2 = 1, we can verify that the point evaluation
functional Ln(c) := cn for any c := (cn)∞n=1 ∈ l2 and n ∈ N, is continuous with operator
norm ‖Ln‖op = 1. The kernel for this case turns out to be K(n,m) = δnm.

Conversely, it is not difficult to verify that the important space of square integrable
functions L2([−π, π]), is not a RKHS. A countable orthonormal system {ψl}l∈N exist, the
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classical option is given by ψl(t) = sin(tl)/
√
π, and the space L2([−π, π]) is therefore

separable. We can check, for instance, that the expression

K(t, s) :=
1

π

∞∑
l=1

sin(tl) sin(sl),

is not always convergent (take for instance t = s = π/2), rejecting the possibility of a
reproducing property. Alternatively, we can analyze the point evaluation functionals, and
check that Lx(f) := f(x), f ∈ L2([−π, π]), x ∈ [−π, π] is not continuous (for a fixed x,
the expression |f(x)| for ‖f‖2 = 1 is unbounded). We will see in the following paragraphs
more elaborate examples of RKHS.

Mercer’s theorem, feature maps and feature spaces

We are now prepared to address an important result in RKHS theory, the Mercer’s
theorem, which allows to construct a concrete example of a feature map and a feature
space, providing a main link between the concepts of kernel, and RKHS (definitions 3.1
and 3.2). Up to know we have worked in a very general setting (a nonempty set E
without any particular structure), which is an important requirement when considering
the multiple and diverse applications of kernel methods. Now, for technical convenience
when setting the framework of the Mercer’s theorem, we assume a measurable space
(E, µ), with E ⊂ Rn and µ a Borel measure. The following step is to construct our main
tool, which is an integral operator LK defined on the space of square integrable functions
L2
µ(E) := {f : E → C,

∫
E
|f(x)|2 dµ(x) <∞}.

The main strategy we will follow, and the intuitive idea behind these new require-
ments, is to transport the information we have in the rarefied environment given by (E, µ)
and K, into the richer structural setting of the linear space L2

µ(E) and the linear operator
LK . Once we ensure that the spectral theorem machinery can be applied to the operator
LK , we obtain a useful decomposition for K, which allows to construct a prototypical
example of RKHS HK .

Theorem 3.14 (Mercer’s Theorem [45]). Let K be a continuous, symmetric, positive-
semidefinite kernel defined in a measurable space (E, µ), with E ⊂ Rn, closed, and µ a
Borel measure. We assume that

∫∫
E2 K(x, y)2 dµ(x) dµ(y) <∞. Let the integral operator

LK : L2(E)→ L2(E) with

LKf(x) :=

∫
E

K(x, y)f(y) dµ(y). (3.8)

Then we have the following decomposition

K(x, y) =
∞∑
i=1

λiψi(x)ψi(y), (3.9)

where {λi}∞i=1 and {ψi}∞i=1 are the eigenvalues and eigenvectors of the operator LK.

Proof Sketch. The first step in the strategy of the proof is to verify that LK is a positive,
self-adjoint compact operator, we can then construct an orthonormal basis {ψi}∞i=1 of
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L2(E), consisting of eigenvectors, with corresponding positive eigenvalues λi. This basis
is then used for building the kernel expansion 3.9. In order to compute the adjoint of
LK , we use 〈LHf, g〉 = 〈f, L∗Hg〉, with:

〈LHf, g〉 =

∫
E

∫
E

K(x, y)f(y)g(x) dµ(x) dµ(y) =

∫
E

f(z)L∗Hg(z)dµ(z),

by setting, L∗Hg(z) : =
∫
E
K(x, z)g(x) dµ(x) =

∫
E
K∗(z, x)g(x) dµ(x), with K∗(x, z) : =

K(z, x). Using the symmetric property of K, we obtain LK = L∗K (see also [36, p91]).
With the spectral theorem we obtain the orthonormal basis {ψi}∞i=1 and corresponding
eigenvalues λi, used to construct the decomposition 3.9.

Remark 3.15 (RKHS Prototype II [45]). Given a symmetric positive-semidefinite kernel
K, the Mercer’s theorem allows to construct another prototypical example of a RKHS.
Based on the decomposition 3.9, we can construct a feature map Φµ : E → l2(C), with
Φµ(x) = (

√
λiψi(x))∞i=1. If the number of nonzero eigenvalues is N <∞, we use the vector

space RN instead of l2. As explained in [45], the eigenvectors {ψk} and eigenvalues {λi}
depends on the measure µ, namely, by selecting a different measure, we obtain a different
feature map Φ.

We will now verify that the different RKHS prototypes we have obtained so far,
and any other that can be constructed, are essentially equivalent. The main idea is to
construct an isometry between the first RKHS prototype we described in Remark 3.2, and
an arbitrary feature space H with feature map Φ : E → H, and 〈Φ(x),Φ(y)〉 = K(x, y).

Proposition 3.16 (Equivalence of Feature maps [45]). Let E be a nonempty set, K :
E × E → R a positive-semidefinite kernel, and Φ an arbitrary feature map with feature
space H, that is, Φ : E → H, with 〈Φ(x),Φ(y)〉H = K(x, y). We define the following
vector spaces:

HΦ := span{Φx, x ∈ E}, HK := span{Kx, x ∈ E}, (3.10)

with Φx := Φ(x), and Kx(y) := K(x, y), for any x, y ∈ E. Denoting by RE the vector
space of real-valued functions on E, we define the linear operator

LΦ : H → RE, LΦ(v)(x) := 〈v,Φx〉H. (3.11)

Then, the restriction LΦ|HΦ
is an isometry (isometric isomorphism) from HΦ to HK.

Proof. If LΦ(v) = 0, we have 〈v,Φx〉 = 0,∀x ∈ E. Then, kerLΦ = H⊥Φ , and therefore
LΦ|HΦ

is bijective. Notice now that LΦ(Φy)(x) = 〈Φy,Φx〉 = K(x, y) = Ky(x) for any
x ∈ E, therefore LΦ maps the function Φy to Ky, which implies that span{Φx, x ∈ E}
is isomorphic to span{Kx, x ∈ E}. The isometry property follows from 〈Φx,Φy〉H =
K(x, y) = 〈Kx, Ky〉HK .

Remark 3.17 (Applications to Sampling theory [62]). With the general framework of
RKHS we have just obtained we get a deeper understanding of the important field
of sampling theory. Given a RKHS HK with kernel K : E × E → R, the main
component for constructing a sampling procedure is an adequate selection of points
{tk}k∈N ⊂ E, such that {Ktk}k∈N is a complete orthogonal system of HK . In this context
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we have ‖Ktk‖2 = 〈Ktk , Ktk〉 = K(tk, tk), f(tk) = 〈f,Ktk〉, and therefore the sampling
reconstruction formula is:

f(x) =
∑
k∈N

〈f,Ktk〉
Ktk(x)√
K(tk, tk)

=
∑
k∈N

f(tk)
Ktk(x)√
K(tk, tk)

, ∀f ∈ HK , x ∈ E. (3.12)

We can use this scheme to obtain the well known case of Nyquist-Shannon sampling frame-
work when using Bω, the space of square integrable functions whose Fourier transform is
supported in the interval [−ω, ω] (also known as the space of bandlimited functions, or
the Paley-Wiener space). This space turns out to be a RKHS with kernel:

K(x, y) =
sin(ω(x− y))

ω(x− y)
. (3.13)

Using the function sinc(x) := sin(x)/x, and the sequence {tk := k∆, k ∈ Z}, for a
sampling step ∆, we obtain the corresponding well-known sampling formula:

f(x) =
1

2ω

∑
k∈Z

f(tk) sinc

(
ω

π
(x− tk)

)
, ∀f ∈ Bω, x ∈ R. (3.14)

3.2 Elementary Properties in Approximation Theory

The field of approximation theory includes a combination of numerical, functional and
linear analysis techniques in order to design computationally feasible methods for function
reconstruction. A main problem consist in recovering a function f : Ω→ R, from a finite
set of values f(x1), . . . , f(xn), with X := {x1, . . . xn}, and Ω ⊂ Rd. In order to set an
adequate environment for measuring the error behavior, execution speed, and quality of
the approximation procedures, the first step is to identify the structure of the spaces
where the function f lies. An important scenario in approximation theory is to consider
a normed, or Banach space, and use the structural rich possibilities of linear spaces for
building efficient approximation methods. But the fundamental definitions concerning the
existence and unicity of approximation schemes can already be conveniently presented in
the context of a metric space.

Definition 3.3 (Best approximation). Let (M,d) be a metric space, and U ⊂ M . The
best approximation of f ∈M in U is the element u? ∈ U with

d(f, u?) = d(f, U) for d(f, U) := inf{d(f, u), u ∈M} (3.15)

The basic questions that have to be addressed are the existence, uniqueness, and
construction of best approximations. An elementary property for a subset U to fulfill
in order to guarantee the existence of a best approximation, is the compactness. These
basic properties can be found in a standard text on Approximation theory (e.g. [58]).

Proposition 3.18 (Existence of best approximation for compact sets). If U ⊂ M is
a compact set in the metric space (M,d), then for every f ∈ M , there exist a best
approximation element.
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Proof. When defining d := inf{d(f, u), u ∈M}, we can construct a sequence {uk}k∈N ⊂ U
such that d(f, uk)→ d, when n→∞. The main question whether there exist an optimum
element in U is answered by the compact property of U , which ensures that for any
sequence {uk}, a limit point u? ∈ U exist. In order to verify that u? fulfills the Equation
3.15, we use the triangle inequality d(f, u?) ≤ d(f, uk) + d(uk, u

?). We can assume that
d(uk, u

?)→ 0, when n→∞, and therefore d(f, u?) = d.

We will refine now the situation by selecting a normed linear space V instead of a
metric space when searching for conditions for best approximations.

Proposition 3.19 (Existence of best approximation finite dimensional normed spaces).
Let U a finite dimensional subspace of a normed space V . For every f ∈ V there exist a
best approximation in U .

Proof. We can construct a compact subset U0 : = {u ∈ U, ‖f − u‖ ≤ ‖f − u0‖}, for
an arbitrary u0 ∈ U . The previous Property 3.18, ensures then the existence of a best
approximation.

Up to know we have addressed the case of existence of best approximations. In order
to guarantee uniqueness, an important property of the space V to fulfill is the strict
convexity of the norm.

Remark 3.20 (Strictly convex norm). A norm ‖ ‖ in a vector space V is said to be
strictly convex if ‖αv + βw‖ < α‖v‖ + β‖w‖, for α + β = 1, α, β ∈ [0, 1]. (We mean a
convex norm when ‖αv + βw‖ ≤ α‖v‖ + β‖w‖). Due to the sublinearity every norm is
convex, but in the case of Lp spaces, the ‖‖∞ and ‖‖1 are the only cases that are not
strictly convex.

Proposition 3.21 (Uniqueness of best approximation). If U if a subspace of a strictly
convex normed space V , then every element f ∈ V , has at most one best approximation.

Proof. Let f ∈ V , and assume that we have two different best approximation elements
u1, u2 ∈ U , with d := ‖f − u1‖ = ‖f − u2‖, we can use the strict convexity property to
compute:

‖f − 1

2
(u1 + u2)‖ < 1

2
‖f − u1‖+

1

2
‖f − u2‖ = d, (3.16)

which contradicts the main assumption, and therefore at most one best approximation
element exist.

Now, we are going to refine even more our framework, and consider a pre-Hilbert
space H as a main environment for characterizing best approximations.

Proposition 3.22 (Best approximations in pre-Hilbert spaces). Let H be pre-Hilbert
space, and U ⊂ H a linear subspace. The element u? ∈ U is a best approximation of an
element f ∈ H, if and only if:

〈f − u?, v〉 = 0, ∀v ∈ U. (3.17)
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Proof. Assuming that an element u? ∈ U fulfills the orthogonality Equation 3.17, we have
with the Pythagoras theorem, for any u ∈ U :

‖f − u‖2 = ‖(f − u?) + (u? − u)‖ = ‖f − u?‖+ ‖u? − u‖ > ‖f − u?‖. (3.18)

In other words, we have ensured that u? is a best approximation of f .
Now, assuming that the orthogonality Equation 3.17 does not hold for some v ∈ U ,

we can select a λ := −〈f − u?, v〉/‖v‖2, and compute:

‖f − u? + λv‖2 = ‖f − u?‖+ 2λ〈f − u?, v〉+ λ2‖v‖2

< ‖f − u?‖2.

In other words, u? cannot be a best approximation.

RKHS and approximation theory

With these elementary background ideas in approximation theory, we can now address an
important goal: the possibility of constructing approximation schemes using an RKHS
as a main tool. We follow closely the presentation in [56], and refer to [34, 54, 55], for
further details.

Remark 3.23 (RKHS best approximation scheme). The plan of the approximation
procedure based on RKHS is as follows. The first component of this framework is
a (unknown) function f : Ω → R to be reconstructed from a set of (known) values
f(x1), . . . , f(xn), based on the sampling elements X = {x1, . . . , xn} ⊂ Ω ⊂ Rd. The
second component is a RKHS HK with kernel K : Ω× Ω → R, and the hypothesis that
f ∈ HK . Now, the core idea is to construct a finite dimensional linear subspace of HK

that will be used as an approximation tool:

SX := span{Kx, x ∈ X}, with Kx : Ω→ R, Kx(y) := K(x, y). (3.19)

With these ingredients, we can directly apply the basic framework of approximation
theory in order to construct efficient reconstruction procedures. From an application point
of view, an important step is to carefully select a meaningful kernel K, with corresponding
RKHS HK . We will now see two important properties of this scheme: the uniqueness
and optimality of the best approximation procedures.

Theorem 3.24 (Approximation in RKHS [56]). Let HK be a RKHS, with kernel K : Ω×
Ω→ R, and Ω ⊂ Rd. Let f ∈ HK a function, and let the sampling values f(x1), . . . , f(xn)
defined over the finite set X := {x1, . . . , xn} ⊂ Ω. Then there exist a best approximation
element f ∗X ∈ SX := span{Kx, x ∈ X}, where its coefficients can be found by solving the
linear system:

f ∗X(xk) =
n∑
i=1

a∗iK(xi, xk) = f(xk), 1 ≤ k ≤ n. (3.20)

Proof. As SX ⊂ HK is a finite Hilbert space, with the Propositions 3.19 and 3.22, we
ensure that there exist a best approximation f ∗X ∈ SX of f ∈ HK , with

〈f − f ∗X , s〉 = 0, ∀s ∈ SX . (3.21)
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We have, in particular, with the reproducing property (Equation 3.2), and the function
Kxk(y) := K(xk, y):

0 = 〈f − f ∗X , Kxk〉 = f(xk)− f ∗X(xk), 1 ≤ k ≤ n. (3.22)

Being f ∗X an element of SX , we can now obtain the Equation 3.20.

Theorem 3.25 (Optimal approximation in RKHS [56]). Under the conditions of the The-
orem 3.24, we have, additionally, an optimality condition of the interpolant f ∗, namely:

min
g∈OX(f)

‖g‖K = ‖f ∗‖K , OX(f) := {g ∈ SX , g|X = f |X}.

Proof. For any g ∈ OX(f), we can write with the law of cosines:

‖g‖2
K = ‖f ∗X + (g − f ∗X)‖2

K = ‖f ∗X‖2 + 2〈f ∗X , g − f ∗X〉+ ‖g − f ∗X‖2. (3.23)

The scalar product in this equation can now be analyzed by considering the functions
Kxi(y) := K(xi, y), y ∈ X:

〈f ∗X , g − f ∗X〉 = 〈
n∑
i=1

a∗iKxi , g − f ∗X〉 =
n∑
i=1

a∗i 〈Kxi , g − f ∗X〉

=
n∑
i=1

a∗i (g(xi)− f ∗X(xi))

As f ∗X(xi) = f(xi), and g(xi) = f(xi), for i = 1, . . . , n, we have 〈f ∗X , g − f ∗X〉 = 0.
Therefore, using the Equation 3.23, we obtain ‖g‖ ≥ ‖f ∗X‖, for all g ∈ OX(f).

3.3 Kernels and Frames

In this final section we reach or main objective: connecting the background ideas we
have seen in the last two chapters, by presenting a conceptual interaction between frame
theory and reproducing Kernel Hilbert spaces. These results have been reported in the
literature over the last years [48, 51], and its development and further consequences are
current active research topics.

One of the main objectives of this framework is to use the additional flexibility of a
frame over a basis in a Hilbert space in order to extend the choice for construction of
kernels and RKHS tailored to a given problem and application.

Theorem 3.26 (RKHS from a framable Hilbert space [51]). Let H be a Hilbert space of
functions over Ω ⊂ Rd, with a frame {φi}i∈I ⊂ H. (I being a finite or infinite index set)
Let Kx(y) :=

∑
i∈I φi(y)φi(x), (here {φi}i∈I is the dual frame of {φi}i∈I). If the following

condition holds
‖Kx‖H <∞, ∀x ∈ Ω,

then H is a reproducing kernel Hilbert space.
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Proof. The strategy of the proof consist of using the frame analysis property in order to
verify the continuity condition of point evaluation functionals (Theorem 3.3), together
with a straightforward application of the the Cauchy Schwarz inequality.

Due to the frame analysis property, we have:

f =
∑
i∈I

〈f, φi〉φi, ∀f ∈ H. (3.24)

The scalar product used here is defined inH, and to make more precise this statement,
we use the following seminorn in H: ‖f‖x = |f(x)| for x ∈ Ω, which allows to rephrase
the Equation 3.24 equivalently as a pointwise convergence f(x) =

∑
i∈I〈f, φi〉φi(x), for

all x ∈ Ω. Now, this frame analysis property can also be written as:

f(x) = 〈f,
∑
i∈I

φiφi(x)〉, ∀x ∈ Ω, (3.25)

and using the Cauchy Schwarz inequality, we obtain:

|f(x)| = |〈f,
∑
i∈I

φiφi(x)〉| ≤ ‖f‖ ‖
∑
i∈I

φiφi(x)‖. (3.26)

As the main hypothesis of this theorem is that Kx =
∑

i∈I φiφi(x) is bounded, we
have a bounded linear operator Lx(f) := f(x), which implies that H is a RKHS due to
the Theorem 3.3.

Theorem 3.27 (Reproducing Kernel of a framable RKHS [51]). If HK is a reproducing
kernel Hilbert space of functions over a Ω ⊂ Rd, which contains a frame {φi}i∈I , then the
reproducing kernel can be written as:

K(x, y) =
∑
i∈I

φi(x)φi(y). (3.27)

Proof. On the one hand, in a similar spirit as in the previous Theorem 3.26, any function
in HK can be written (thanks to the frame property) as:

f(x) = 〈f,
∑
i∈I

φiφi(x)〉, ∀x ∈ Ω, ∀f ∈ HK . (3.28)

On the other hand, since HK is a reproducing kernel Hilbert space, we have a kernel K,
with

f(x) = 〈f,Kx〉, ∀x ∈ Ω, ∀f ∈ HK . (3.29)

Now, due to the unicity of the reproducing kernel proved in Proposition 3.6, we obtain
the kernel decomposition based on a frame {φi}i∈I of Equation 3.27.
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4 Dimensional Reduction and Manifold Learning

In the last decades there has been an important demand of new analysis tools for dealing
with the remarkable increase of raw data in many scientific fields. More efficient computer
hardware and the extensive growth of storage capacity allows to easily record, transmit
and store scientific data in diverse fields such as medicine, geography, social sciences,
physics, chemistry and biology, to name just a few. At the same time, the exponential in-
crease of processing power allows to design new approaches in data analysis, intertwining
abstract mathematical tools with numerical techniques. In this context, a significant
development in the last years has been observed under the name of dimensionality
reduction and manifold learning, whose objective is to analyze a high dimensional dataset
in order to extract a low dimensional parameterization. The main emphasis in these
modern tools is on the usage of geometrical and analytical based approaches, which can
be considered as a complementary strategy to more classical statistical oriented methods
used in machine learning and data mining.

In the following sections we present elementary dimensional reduction techniques, in-
cluding the well known Principal Component Analysis (PCA) method, and the alternative
strategy of Multidimensional Scaling (MDS). We then mention modern frameworks for
handling non-linear manifolds, focusing in particular on the recent Isomap algorithm, and
its crucial usage of kernel techniques. This overview indicates a natural link with our
previous chapter, while completing the necessary background for the following chapter,
where an illustrative algorithm is presented combining signal processing techniques with
dimensional reduction methods.

4.1 Basic Definitions

A standard way for representing experimental information is given by the concept of
Point Cloud Data, defined as a finite set of vectors X = {xk}mk=1 ⊂ Rn. As we will
now see, the frameworks we present have a similar objectives, but contrary to the plain
dimensional reduction scheme, the additional hypothesis in manifold learning allows to
introduce more refined tools from differential geometry.

Remark 4.1 (Dimensional Reduction). The dimensional reduction problem considers the
case when much of the information described by X is redundant and can be discarded
by constructing a low dimensional representation Y = {yk}mk=1 ⊂ Rd, with d ≤ n.

The main objective is to design a dataset Y in a way that certain desired characteristics
of X are conserved. For instance, the strategy in Multidimensional scaling (MDS) is to
build Y in a way that the distances between the points in X are conserved. Namely, we
search for Y with ‖yi − yj‖ ≈ ‖xi − xj‖ for all i, j ∈ {1, . . . ,m}. Another example is the
case when the dataset X lies in the vicinity of an hyperplane in Rn: for this situation
the strategy of Principal Component Analysis is to construct Y by projecting the set X
in the hyperplane. The reduced dataset Y can then be used for analysis or classification
purposes, allowing, for instance, to run more efficiently different numerical algorithms.

Remark 4.2 (Manifold Learning). In manifold learning, the main hypothesis is that
the elements xi are vectors lying in (or are close to) a manifold M. We consider
the case X ⊂ M, namely, X is sampled from M, a p-dimensional smooth compact
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submanifold of Rn. The existence of this manifold is a reasonable hypothesis often
fulfilled in many applications. As in dimensionality reduction, the objective is also to
construct a low dimensional representation Y = {y1, . . . , ym} ⊂ Rd, d ≤ n that conserves
some characteristics of the dataset X, but now, the geometrical environment introduced
by M will play a crucial role in the algorithm design.

Due to the Whitney embedding theorem (which states that any connected smooth
p-dimensional manifold can be smoothly embedded in R2p+1 [18]) we require some con-
ditions for the dimensions in this formulation, namely, 2p + 1 ≤ d ≤ n. Our problem
can also be formulated as the search for an adequate embedding E of the p-dimensional
submanifold M ⊂ Rn in Rd, with E : M ⊂ Rn → Ω ⊂ Rd, X ⊂ M, Y ⊂ Ω, Ω a
p-dimensional submanifold, and 2p+ 1 ≤ d ≤ n.

An important additional topic in this field are density conditions on the finite data
set X with respect toM, which need to be analyzed in order to guarantee a meaningful
usage of the geometry of M: recent results for ensuring the correct computation of the
homology of a manifold from finite random sampled data have been presented in [47]. In
a similar spirit, persistent topology is an algorithm developed for computing homological
information of M using as input the finite sample {xk}mk=1 [66].

4.2 Elementary techniques

Elementary techniques in the manifold learning and dimensional reduction framework
have already been developed over the last century, with the principal component anal-
ysis as a core method with a long history of applications in multiple fields. A main
characteristic of this algorithm is to express the dimensional reduction framework as an
eigenproblem involving the singular value decomposition, and underlying the primal role
of spectral concepts in this field. This procedure includes a direct construction of a linear
projection using a selected set of eigenvectors. Another important dimensional reduction
method, using an alternative strategy to the PCA technique, is Multidimensional scaling
(MDS), which also uses as a core component special eigenvalues and eigenvectors. But
the internal machinery in MDS is significantly different: contrary to the case of PCA, the
MDS scheme constructs a low dimensional configuration without considering an explicit
projection map.

Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a technique with multiple origins and different
applications developed since the beginning of the last century [49]. Equivalent formu-
lations arising from different backgrounds are the Karhunen-Loève, and the Hotelling
transforms. The core component of this algorithm is one of the basic tools in the
dimensional reduction framework, and its main input, as in any standard reduction
algorithm, is a set of vectors X = {xk}mk=1 ⊂ Rn, represented also (by abuse of notation)
in matrix form as X = (x1, . . . , xm) ∈ Rn×m. Two standard ways of formulating the PCA
algorithm is as an optimization problem or in a linear algebra setting. The PCA transform
can be described as a search for a hyperplane H minimizing the sum of the distances from
the elements of {xk}mk=1 to their projections in H. An equivalent formulation is the search
for a hyperplane H maximizing the variance of the set of projections of the elements of
{xk}mk=1 in H. These formulations can be equivalently described in the context of the
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singular value decomposition. A fourth possible equivalent context is the manipulation
of the eigenvectors of the covariance matrix XX t.

The Figure 1 represents the general idea in PCA transforms. Given the data set
{xk}mk=1, the task is to find an hyperplane in such a way that the projections {P (xk)}mk=1

are distributed with maximum variance, or equivalently, the sum of the distances between
the points and their projections,

∑m
i=1 ‖xi − P (xi)‖, is minimum. The solution is given

by the hyperplane specified by the eigenvectors of the matrix XX t, which can also be
described with the singular value decomposition of X.

Figure 1: PCA main idea

Theorem 4.3 (Principal component analysis). Let X = (x1 . . . xm) ∈ Rn×m be a matrix
with vector entries representing a centered (or zero-mean) dataset (i.e. 1

m

∑m
k=1 xk = 0).

The following characterizations for a projection P : Rn → Rn, rank(P ) = p < n, are
equivalent:

(1) err(P,X) :=
∑m

k=1 ‖xk − P (xk)‖2 is minimum.

(2) var(P (X)) :=
∑m

k=1 ‖P (xk)‖2 maximum.

(3) The matrix representation of P is composed by the p eigenvectors corresponding to
the p largest eigenvalues of the covariance matrix XX t ∈ Rn×n.

Proof. The equivalence between (1) and (2) is a direct consequence of the orthogonality
property of the linear projection P , and the Pythagoras theorem relating the norm of the
vectors xk, P (xk), and xk − P (xk):

‖xk‖2 = ‖xk − P (xk)‖2 + ‖P (xk)‖2, k = 1, . . . ,m. (4.1)

We obtain, as a consequence, the following relation between err(P,X), and var(P (X)):

err(P,X) =
m∑
k=1

‖xk‖2 − var(P (X)). (4.2)

With this expression, it is clear that a minimization of err(P,X) is equivalent to a
maximization of var(P (X)). Now, in order to study the property (3), we analyze in more
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detail the expression var(P (X)) =
∑m

k=1 ‖P (xk)‖2. By considering an orthonormal basis
{vi}pi=1 ⊂ Rn of the Euclidean space Rp, we have P (xk) =

∑p
i=1〈vi, xk〉vi, and therefore,

due to the Pythagoras theorem, we obtain:

m∑
k=1

‖P (xk)‖2 =
m∑
k=1

p∑
i=1

|〈vi, xk〉|2. (4.3)

By exchanging the sums, and recalling that we use the scalar product over the field
R, we can reformulate the term

∑m
k=1 |〈vi, xk〉|2 as

m∑
k=1

|〈vi, xk〉|2 =
m∑
k=1

〈vi, xk〉〈xk, vi〉 = 〈vi,
m∑
k=1

xk〈xk, vi〉〉 = 〈vi,
m∑
k=1

xk

n∑
j=1

xjkvji〉. (4.4)

Now, by considering the matrix S := XX t =
(∑m

k=1 xlkxjk

)n
l,j=1

, we have:

(Svi)l =
n∑
j=1

m∑
k=1

xlkxjkvji =
m∑
k=1

xlk

n∑
j=1

xjkvji. (4.5)

With the Formulas 4.4 and 4.5, we obtain
∑m

k=1 |〈vi, xk〉|2 = 〈vi, Svi〉, and therefore:

var(P (X)) =
m∑
k=1

‖P (xk)‖2 =

p∑
i=1

〈vi, Svi〉. (4.6)

Finally, the maximization of
∑p

i=1〈vi, Svi〉 occurs, due to the Lemma 4.4, when {vi}pi=1

are the p eigenvectors, corresponding to the largest p eigenvalues of the matrix S.

Lemma 4.4. The function W (v) := 〈v, Sv〉, v ∈ Rn, ‖v‖ = 1, with S ∈ Rn×n, a real
symmetric matrix, is maximized when v is the eigenvector corresponding to the largest
eigenvector of S.

Proof. The symmetric property of the matrix S implies the existence of a set of eigenval-
ues {λi}ni=1 with λ1 ≥ λ2 ≥ · · · ≥ λn, and a corresponding orthonormal set of eigenvectors
{ei}ni=1. For any v ∈ Rn, ‖v‖ = 1, we have v =

∑n
i=1 αiei, and

∑n
i=1 α

2
i = 1. Therefore,

W (v) = 〈v, Sv〉 =
∑n

i=1〈αiei, αiλiei〉 =
∑n

i=1 α
2
iλi. It follows that W (v) ≤ λ1, which is

an equality only for v = e1.

Remark 4.5 (SVD and PCA). It is an important and easy observation the fact that
the PCA transform is closely related to the Singular Value Decomposition (SVD) of X.
Namely, for any X ∈ Rn×m, the SVD is a factorization X = UDV t, with D ∈ Rn×m a
diagonal matrix with the singular values, and U ∈ Rn×n, V ∈ Rm×m unitary matrices.
We obtain the expression XX t = U(DDt)U t, using the computation of the SVD of X,
in order to obtain the eigendecomposition of the covariance matrix XX t.

Independent Component Analysis (ICA)

Even though the spirit of the algorithm we describe in this section does not directly
belongs to the dimensional reduction framework, its frequent use in combination with
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PCA, makes it an important component in the field of data analysis and signal separation.
For completeness, we present in this section a very short description of its core ideas, and
relation to the dimensional reduction framework.

In the late 1980s the signal processing community presented an algorithm for signal
separation known as Independent Component Analysis. The main idea uses the crucial
concept of independent random variables, and represented a major milestone in blind
source separation techniques. The importance of this algorithm was quickly recognized,
and multiple applications were implemented in the area of audio analysis, telecommu-
nications, biomedical signal processing, electrical engineering, and many others. Today,
several generalizations and new applications of this framework are mainstream research
topics.

The input of the ICA algorithm is a Point cloud data, defined as a finite sequence of
vector values, written in matrix form as X = (x1 . . . xm) ∈ Rn×m. The objective is to
find a sequence of source signals S = (s1 . . . sm) ∈ Rn×m, assuming a linear dependence
between X and S. By denoting the mixing matrix as W ∈ Rn×n, this property can be
expressed as:

X = WS with X = (x1 . . . xm), and S = (s1 . . . sm).

In this equation, the mixing matrix W and the source signals S are the unknown
variables to be found with the ICA procedure. The second core assumption of the ICA
algorithm is the statistical independence of the signals {si}ni=1. In order to resolve this
problem, a general strategy can be described with the following measure for a set of
random variables Y = {yi}ni=1:

I(Y ) = D(PY ,
∏
i

PYi) with D(f, g) =

∫
R
f(x)log

(
f(x)

g(x)

)
dx.

The measure I allows to compute the degree of statistical independence by comparing
the joint distribution PY , and the marginal distributions PYi . The comparison function
D, used in the measure I, is the Kullback-Leibler distance, also known as relative entropy.
The function I allows to express the ICA algorithm as an optimization problem, where
the solution space is the General Linear Group, defined as the set of n × n invertible
matrices: GL(n,R) = {A ∈ Rn×n, det(A) 6= 0}, with f(A) := I(A−1X), and X =
(x1 . . . xm) ∈ Rn×m:

min f(A) with A ∈ GL(n,R)

Multidimensional Scaling (MDS)

Another important tool in the dimensional reduction framework is a technique with a long
tradition of over 80 years, and extensive applications, denominated Multidimensional
scaling (MDS) [14]. The objective is similar as in the PCA scheme, but its internal
strategy is significantly different, and the alternative formulations it includes will be of
particular importance when designing important generalizations as we will see with the
Isomap algorithm.

Given a dataset X = (x1, . . . , xm) ∈ Rn×m, the MDS algorithm looks for a config-
uration of points Y = (y1, . . . , ym) ∈ Rp×m, with p ≤ n, in such a way that a given
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relationship between the data elements {xi}mi=1 is conserved. A prototypical example
of such a relation is the distance function, but a different type of similarity measures
might be considered. An important difference with the PCA framework is that the
MDS does not find an explicit projection map, instead, an optimization procedure is
implemented in a way that an optimal configuration in the low dimensional space is
found. The problem of finding an explicit function mapping the elements {xi}mi=1 to
their low dimensional representation {yi}mi=1, can be considered as a separate task, where
particular interpolation and approximation techniques can play an important role.

Definition 4.1 (Distance Multidimensional Scaling (Distance MDS)). Let a matrix data
X ∈ Rn×m and its distance relationships dij be given as:

X = (x1, . . . , xm) ∈ Rn×m, dij := ‖xi − xj‖, i, j = 1, . . . ,m. (4.7)

The multidimensional scaling problem is defined as the search for a configuration of points
Y ∈ Rp×m, with p ≤ n, that minimizes the error function err(Y, {dij}mi,j=1) with:

Y = (y1, . . . , ym) ∈ Rp×m, err(Y, {dij}mi,j=1) :=
m∑

i,j=1

(dij − ‖yi − yj‖)2. (4.8)

In other words, the lower dimensional configuration of points {yi}mi=1 ⊂ Rp preserves the
distance relationships of the higher dimensional dataset {xi}mi=1 ⊂ Rn.

Figure 2: Distance MDS concept: preserve distance relations

Besides this original optimization problem, there are several important reinterpreta-
tions of the MDS that can be used for designing alternative algorithmic solutions. An
important formulation translates the MDS scheme to an eigenproblem by relating the
distance between two vectors with their scalar product. In order to differentiate these
perspectives, the formulation that uses the distance and the optimization problem pre-
viously defined is sometimes denominated distance MDS. The eigenproblem formulation
that follows is sometimes denominated classical MDS, and it has been used to design
important generalizations, as we will see in the definition 4.10 of the continuum Isomap.
We will now describe in more detail the eigenproblem formulation, which allows to design
one possible solution strategy for the MDS framework.
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Theorem 4.6 (MDS Eigenproblem formulation (Classical MDS) [65]). Let D = (d2
ij)

m
i,j=1,

be the symmetric square distance matrix with dij : = d(xi, xj) = ‖xi − xj‖, and X =
(x1, . . . , xm) ∈ Rn×m, which we assumed to be centered (that is

∑m
i=1 xi = 0).

The matrix X can be recovered, up to an orthogonal transformation, by considering

Y = diag(λ
1/2
1 , . . . , λ1/2

m )U t,

where λ1 ≥ · · · ≥ λm ≥ 0, and U ∈ Rm×n are the eigenvalues and the corresponding
eigenvectors of the matrix B with

B := −1

2
JDJ, with J := I − (1/m)eet, e := (1, . . . , 1)t ∈ Rm. (4.9)

Proof. The core idea of this construction is to use a straightforward relation between the
matrix of scalar products XX t, and the given matrix of square distances D. This relation
can in turn be used to compute X up to an orthogonal transformation.

The distance and the scalar product between two vectors xi and xj can be related as

d2(xi, xj) = ‖xi − xj‖2 = 〈xi, xi〉 − 2〈xi, xi〉+ 〈xj, xj〉. (4.10)

Using A := [〈x1, x1〉, . . . , 〈xm, xm〉]t, the expression 4.10 can then be used to construct
the matrix relation D = Aet − 2XX t + eAt. In order to recover the matrix of scalar
products XX t, we use the m ×m square matrix J with the value 1 − 1/n in the main
diagonal, and −1/n elsewhere, that is: J := Im − (1/m)eet. We notice that Je = 0 (as
1 − 1/m + (m − 1)(−1/m) = 0), and therefore we obtain a relation between the matrix
of scalar products XX t, and the given matrix of square distances D:

XX t = −1

2
JDJ.

The eigendecomposition of the matrix B := −1
2
JDJ = Udiag(λ1, . . . , λm)U t, allows to

construct X, up to an orthogonal transformation Y = diag(λ
1/2
1 , . . . , λ

1/2
m )U t.

Remark 4.7 (Entries of the matrix B 4.9 [14]). Each entry of the matrix B can be
explicitly formulated with the following expressions, derived from the relation between the
distance and the scalar product (formula 4.10), and the zero-mean property (

∑m
i=1 xi = 0):

1

m

m∑
i=1

d2
ij =

1

m

m∑
i=1

〈xi, xi〉+ 〈xj, xj〉,

1

m

m∑
j=1

d2
ij = 〈xi, xi〉+

1

m

m∑
j=1

〈xj, xj〉.

By combining these two relations we have:

1

m2

m∑
i=1

m∑
j=1

d2
ij =

2

m

m∑
i=1

〈xi, xi〉.

We obtain, finally, an expression for the entries of the matrix B:

Bij = 〈xi, xj〉 = −1

2

(
d2
ij −

1

m

m∑
i=1

d2
ij −

1

m

m∑
j=1

d2
ij +

1

m2

m∑
i,j=1

d2
ij

)
. (4.11)
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This formula will play an important role when generalizing important extensions of the
MDS framework, as we will see in the following sections with the continuum Isomap
concept.

4.3 Isomap and Kernel Techniques

There are several ways in which the fundamental techniques of PCA and MDS can be
generalized for dealing with non-linear manifolds. An important strategy is the context
of kernel techniques, which uses the fundamental tools of Reproducing Kernel Hilbert
Spaces, and the crucial role of the Mercer theorem, represented in the prototypical
framework of the kernel PCA algorithm [59]. In the recent years, significant developments
have provided additional perspectives for dealing with the non-linear case. An important
trigger was the publication, in the year 2000, of two reports proposing the Isomap and
Local linear embedding (LLE) techniques. These reports have attracted a considerable
and renewed interest for geometrical based methods in data analysis. Further results in
the manifold learning and dimensional reduction setting have been devised using tools
from differential geometry and algebraic topology [5, 47, 61, 66]. In the following list,
adapted from [6], we present a very short snapshot of the developments in this field over
the last years:

2000: Whitney Embedding based method [5]

2000: Isomap, LLE [53,65]

2002: Laplacian Eigenmaps [3]

2003: Hessian Eigenmaps [21]

2004: Diffusion Maps, Local Tangent Space Alignment (LTSA) [64]

2005: Sample Logmaps [7]

2005: Riemannian Normal Coordinates [8]

In the following paragraphs we will describe the main components of the Isomap
algorithm, a standard benchmark example for these algorithms denominated Roll Swiss
dataset, and an important conceptual framework, the continuum Isomap, which clarifies
fundamental properties of the Isomap algorithm.

Remark 4.8 (From MDS to Isomap). When dealing with non-linear manifolds, a main
problem with the MDS framework is the usage of the Euclidean distance in the formu-
lation of the optimization problem. A typical example that illustrates this point is the
Swiss roll dataset, defined as a finite sampling on surface parameterized by

f(u, v) = (u cos(u), v, u sin(u)), u ∈ [3π/2, 9π/2], v ∈ [0, 1]. (4.12)

48



Figure 3: Isomap: Euclidean Distances vs Geodesic Distances

As can be seen in this example, using the Euclidean distance dij is not a meaningful
strategy for describing the distance relationship between the points xi and xj, instead
using the geodesic distance Dij, represents a sensitive option adapted to the geometry of
the dataset.

Remark 4.9 (Isomap Strategy). In order to handle these kind of non linear manifolds,
an elementary strategy, used in the Isomap algorithm, is to compute geodesic distances
by considering the shortest path between groups of neighboring points. This procedure
first identifies neighbor points using a k-nearest neighbors or ε radius criteria algorithms.
Once the neighboring points are identified, the geodesic distance is computed by finding
minimum paths between two given points using the neighborhood connections. Once the
new geodesic distances for the given data set are obtained, the same procedure used in
the MDS setting can be applied: by resolving an optimization problem, we construct a
configuration of points Ω in a lower dimensional space that matches the distances in the
original dataset M.

1 Neighborhood graph construction: Define a graph where each vertex is a
datapoint, and each edge connects two points if they fulfill an ε-radius or k-nearest
neighbors criteria

2 Geodesic Distance construction: Compute the geodesic distance between each
point using the previously constructed graph by finding the shortest paths between
points.

3 d-dimensional embedding: Use the geodesic distance previously constructed in
a MDS algorithm for computing a d-dimensional embedding.

Figure 4: Isomap Algorithm

The fact that now we use the geodesic distances allows to construct a configuration of
points that represents a more accurate picture of the original dataset. As a comparison,
we can see in the following picture the 2-dimensional parameterization of the Swiss roll
dataset obtained with Isomap and PCA.
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Figure 5: Isomap projection vs PCA projection

Continuum Isomap

The strategy proposed in the Isomap algorithm is an significant step in classification and
data analysis of information lying on nonlinear manifolds, but fundamental questions
concerning its functionality have not been clearly addressed in its original formulation.
An important issue is that Isomap, originally designed as an algorithmic solution, does not
include a well defined theoretical framework that could be used for a better understanding
of its properties. In particular, no clear conditions where provided for Isomap that
guarantee a correct reconstruction of the parameter space. For an accurate understanding
of this algorithm, plain numerical experiments are unreliable verification procedures, and
a better understanding of the underlying conceptual machinery is required. This problem
has been recently addressed in a more conceptual framework denominated continuum
Isomap [65], identifying some conditions on the manifold M for which the Isomap
algorithm correctly constructs the low dimensional parameterization.

Remark 4.10 (Continuum Isomap formulation [65]). The idea of the continuum Isomap
consist in generalizing the Isomap algorithm by constructing a kernel function K defined
over the manifoldM given the geodesic distances. The first step is the construction of a
similarity kernel K :M×M→ R generalizing the Equation 4.11:

K(x, y) =
1

2M

∫
M

(d2(x, t) + d2(t, y)− d2(x, y)) dt− 1

2M2

∫
M

∫
M
d2(t, s) dt ds. (4.13)

Here, M :=
∫
M dt. In a second step, following the original Isomap framework, we

consider the eigenvectors φi of the integral operator with kernel K:

FK(φ)(x) :=

∫
M
K(x, y)φ(y) dy = λφ(x).
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The main result of [65] is a theorem indicating necessary conditions for reconstructing
the parameterization space Ω of a manifoldM, given only geodesic distance information.
This result is a very particular and easy situation that implies the simplest structure in
M: as a manifold, its atlas consist of one single chart with Ω being its domain. Despite
the simplicity of this situation, the result in [65] provides a controlable environment
where we can garantee that the Isomap algorithm perfectly succeeds its objective. The
key feature is that the d largest eigenvectors of the integral operator with kernel K allows
to reconstruct the parameter space Ω:

Theorem 4.11 (Zha, Zhang, 2003). If f : Ω ⊂ Rd → M ⊂ Rn is an isometry with Ω
open and convex, then the vector function θ build with the first d eigenvectors of FK can
be written as:

θ := (φ1, . . . , φd)
t = P (τ − c),

with τ ∈ Ω, P is a constant orthogonal matrix, and c is a constant vector.

Consequences of the main theorem

An immediate application of this theorem allows to correctly interpret the usage of the
Isomap algorithm in the following parameterization of the Swiss roll data set:

f(u, v) = (u cos(u), v, u sin(u))t, (4.14)

The Jacobian matrix of this transformation can be used to verify that f is not an
isometry: Jf (u, v)tJf (u, v) = diag(

√
1 + u2, 1). The initial assumption that for this

particular Swiss roll data the Isomap algorithm constructs a perfect rectangular shape as
a parameterized space must then be verified. The strategy proposed in [65] is to search
for a suitable change of variable that will produce an isometry. The resulting map can
then be analyzed with the Theorem 4.11, and the actual parameterization space can
be revealed. Applied to our particular case, the change of variable transforms the map
f(u, v) = [u cos(u), v, u sin(u)]t to an isometry, and the resulting vector function is

θ = ((u
√

1 + u2 + arcsinh(u))/2, v)t.

In this expression, we found an explanation for the slightly distorted rectangular shape
obtained empirically in Figure 5, as the term u

√
1 + u2 +arcsinh(u) produces a non linear

curve revealing what really the Isomap algorithm computes:

Figure 6: Isomap distortion: u
√

1 + u2 + arcsinh(u), u ∈ [3π/2, 9π/2], of the Swiss Roll
from Equation 4.14 (see also Figure 5 and Reference [65])
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5 Applications Examples

5.1 Action Potentials Background and EMG signals

Many living organisms are composed of a highly complex conglomeration of cells present-
ing a rich variety of interaction mechanisms, many of which are far from being understood,
and represent very active research topics. One important example of cell interaction
involves the propagation of electrical potentials along cell membranes. For instance, in
the case of vertebrates, a voluntary muscular contraction includes an elaborate sequence
of steps for the generation, transmission and translation of electrical discharges in neural
cells. The analysis and mathematical signal interpretation of these electrical pulses,
usually denominated action potentials, allows to obtain significant information about
the underlying muscle and nerve interactions. The increasing demands in the field of
biological signal analysis requires refined mathematical algorithms for supporting the
physiological study of living tissues.

An important technique for measuring the electrical potentials generated by the
muscular and neuronal activity are Electromyogram (EMG) signals. A standard EMG
measurement procedure consist of inserting intramuscular needle electrodes in order to
detect electrical potentials in a small localized muscular area. A less invasive method
is denominated surface EMG, and consist of using skin surface electrodes for recording
the electrical activity of wider muscular areas. The advantage of this second approach is
the simplicity and comfortability of the measurement operation, but the drawback is the
complexity of the recorded signal, which requires refined decomposition algorithms for
extracting meaningful information. Standard applications of EMG analysis in medicine
are diagnosis of diseases affecting the nervous and muscular system, but additional
uses have been recently developed for prosthetic and virtual devise interfacing [63], as
well as athletic performance analysis. The potential applications of EMG signals, and
the complexity of the inherent physiological processes, are important stimulations for
developing new mathematical and signal analysis techniques.

An important task in these developments is to construct accurate mathematical
models of the action potential and its physiological reactions. In our context, an essential
usage of these models is to design methods for evaluating and comparing new analysis
algorithms. The accurate understanding of the generation and transmission of action
potentials in neuronal cells is actually a very active research area. Standard descriptions
are based on the Hodgkin-Huxley model, which explains an action potential as a purely
electrical phenomenon based on the ionic exchange mechanisms in the cell membrane. But
several experimental observations, in particular some temperature fluctuations along the
cell membrane, cannot be explained with the Hodgkin-Huxley model. Recent alternative
proposals [30, 31] have clarified these properties with the notion of a soliton, which can
be roughly defined as a solitary wave pulse that conserves its energy while propagating
in some medium. The concept of soliton is found in several physical wave propagation
phenomena, ranging from nonlinear optics to fluid dynamics, and a precise definition can
be specified in the very active research context of nonlinear partial differential equations.
In the context of action potential mechanisms, the soliton model offers an alternative
explanation based on thermodynamical properties of the cell membrane. From a signal
processing point of view, the components of this new framework might be important to
consider when designing refined models for studying EMG analysis algorithms.
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Our purpose in this chapter is to illustrate a toy-example EMG analysis problem,
together with a straightforward solution strategy that combines dimensional reduction
methods with Fourier and wavelet transforms. An important incentive behind our plan
is the problem of accurately detecting muscle fatigue factors from complex EMG mea-
surements. The framework we present can be seen as an initial step towards this goal,
addressing first a very simplified version of this problem with elementary conceptual
and numerical settings. The first objective is to evaluate the feasibility of the strategy
with easy controllable benchmark signals, before attempting to address more elaborate
EMG models. In short, our toy-problem is to extract the inherent parameterization
characterizing a set of EMG signals composed of a complex mixture of action potentials.
Our main hypothesis is that the standard Fourier-based analysis techniques used in the
EMG literature are not sensitive enough for some type of signals with complex spectral
characteristics. The alternative strategy we analyze, combines dimensional reduction
methods, (PCA and Isomap), with Fourier and wavelet transforms. Further work, in a
theoretical, numerical, and EMG modeling context, should evaluate the applicability of
these strategies in real EMG signals.

The plan of this chapter is as follows. We first present elementary information on
cell physiology required for a general understanding of the action potential concept.
For completeness, and as a trigger for further steps, we shortly mention the Hodgkin-
Huxley mechanism, and the more recent soliton model. We then explain the framework
of our EMG analysis problem, together with the simplified model for simulating action
potentials. In the final section, we discuss the settings used in our numerical experiments,
and different results illustrating the error behavior and algorithm quality.

Basic Motor System Physiology

In order to better understand the mathematical models describing the propagation of
action potentials, some elementary background concepts in physiology are required. The
high complexity of the motor system will only allow us to mention minimal aspects of
the topics we require, including: neuron and muscle cell interactions, cell membrane
biology, and models for action potentials propagation. The human motor system is a
very elaborate mechanism combining an intricate communication between the central
nervous system and the skeletal muscles. The concept of motor unit is the main building
block, which combines a motor neuron to several muscle cells.

Figure 7: Motor Unit: motor neuron and muscle fibers
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A motor neuron is highly specialized cell, dedicated to the processing and transmission
of information to one or multiple muscle cells. The communication medium are the nerve
fibers or axons, which are thin and long projections of the nerve cell, with a typical
diameter of 1 micrometer, and an extension which can be of one meter or longer. Each
axon can innervate several muscle cells, and the number of innervations depends greatly
on the muscles type, required strength and precision movement. One of the strongest
muscles in the human body is the mastication muscle, the masseter, with (approximately)
1020 motor neurons innervating each one 980 muscle fibers. The small muscles in the
hand are specialized for refined movement: for instance, the Lumbricalis 1 is controlled
by 98 motor neurons, each one innervating 110 muscle fibers:

Number of Number of Average number of
Muscle motor units muscle fibers muscle fibers
Arm Muscles
Biceps brachii 774 580.000 750
Brachioradialis 330 130.000 390
Hand Muscles
Lumbricalis 1 98 10.300 110
Opponens Pollicis 133 79.000 595
Mastication Muscles
Masseter 1020 1.000.000 980
Temporalis 1150 1.500.000 13000

Figure 8: Approximate number of motor units in some human muscles [9, 46]

As most eukariotic cells found in multicellular organisms, an important component of
a neuron is the cell nucleus containing genetic material in form of DNA molecules. There
is a rich variety of neurons that can be classified according to different specializations, but
in the case of motorneurons, a crucial characteristic are the long axons terminating in the
neuromuscular junction that transmits information originated in the neuron cell’s body
to the muscular cells. A main transmission mechanism is the action potential, which can
be defined as a signal that travels along the axon to the neuromuscular junction, where
a complex set of processes is triggered, communicating with the muscle cells.

Figure 9: Neuron: central part and axon characteristics
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A skeletal muscle is one type of muscle tissue specialized in voluntary muscle contrac-
tions, whose elaborate structure includes in particular a tight group of elongated muscle
cells, also denominated fibers. There are several types of muscle fibers depending on
particular characteristics as resistance to fatigue, force production, contraction time, size
of motor neuron, etc. A crucial component of a muscle fiber are the myofibrilis, which are
cylindrical units responsible for muscle contraction. Each myofibril of a skeletal muscle
contains consecutive subunits called sarcomeres, which are protein complexes serving as
the basic unit in the muscle contraction process.

Figure 10: Muscle Fiber and its basic unit, the Sarcomere

Models for action potentials

The information transmission mechanism based on the action potential, occurs along
the axon in the cell membrane, which is composed of a phospholipid layer, a structural
unit containing a variety of molecules, such as proteins and lipids, and separating the
extracellular from the intracellular environment.

Figure 11: Cell Membrane: Phospholipid Bilayer and Protein channels

The Hodgkin-Huxley model, a major achievement in physiology of the second part of
the 20th century, explains the action potential mechanism as an exchange of potassium
and sodium ions through the ion channels in the phospholipid layer. The complex se-
quence of phases activating and deactivating the ion channels, results in the transmission
of a signal down to the axon with a well defined bell shaped waveform that includes a
slow repolarization phase (Figures 12 and 13). An alternative model recently proposed
in [30, 31], clarifies some temperatures fluctuations occurring in the cell membrane that
cannot be explained with the Hodgkin-Huxley model. The primary hypothesis of this
model consist of a thermodynamical effect occurring when a soliton wave travels along
the axon, producing a local change in density and thickness in the cell membrane.
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EMG Background concepts

Electromyogram (EMG) signals are important examples of physiological data obtained
by measuring electrical potentials generated by muscle cells. A typical electromyogram
measurement consist in inserting needle electrodes in order to measure electrical activity
in a small, localized muscular area. But an important alternative procedure, the surface
electromyogram, consist in recording electrical activity in the skin surface, covering a
wider muscular area with multiple muscle fibers. The surface electromyogram has clear
advantages for manipulation and recording procedures, but the drawback are the more
complex recorded signals that require refined analysis procedures.

Figure 12: Action potential and Surface EMG

In Figure 12 we can compare a clear, well defined shape of an action potential origi-
nated from a single motor neuron, and the more complex combination of action potentials
originated from multiple motor neurons, illustrating the surface electromyogram scheme.

One important application of these concepts is the analysis of EMG signals for the
assessment of muscle fatigue. In the context of muscular activity (or any general biological
process), the notion of fatigue is a very difficult concept to define, but there has been some
important characterizations, developed over the last years, using the spectral behavior of
EMG signals. It is a well known observation that the mean of the amplitude of the Fourier
transform decreases during voluntary sustained contractions. This property offers a good
example for the usage of several signal processing methods for extracting physiological
information from EMG signals.
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5.2 EMG Analysis Algorithms

With the elementary background information on motor unit potentials from the previous
sections, we now address our particular EMG signal analysis problem. Given a set of
EMG signals describing the muscular activity over a given period of time, our primary
objective is to compute a function describing the fatigue evolution. The toy environment
we present uses motor action potential models for setting fatigue parameters that can be
used for constructing benchmark EMG signals. The philosophy we use is based on the
fact that, as defined in our particular toy-environment, the fatigue evolution is an inherent
parameterization of the set of EMG signals, which allows to consider its estimation as a
low dimensionality reduction problem of the set of EMG signals. The challenge is to find
an adequate transformation of these signals, such that a low dimensional representation
can be used to reasonably estimate the fatigue evolution.

The synthetic and controlled framework we prepare can be seen as a very preliminary
step for studying more realistic and complex situations of real life EMG signals. A typical
real-life scenario would be to consider EMG signals recorded from a subject performing
regular muscle contractions over a given period of time. One particular application of
these experiments is to evaluate the athletic performance of highly trained subjects. A
standard strategy is to analyze the time evolution of the EMG spectral characteristics for
estimating the fatigue evolution. But in some situations, it can be the case that the high
performance nature of the athlete does not allow to clearly identify the fatigue evolution
with standard spectrum analysis tools. In order to address these situations, we evaluate
the alternative analysis strategies using first a simplified and controlled environment of
synthetic EMG signals.

We have therefore two main steps to perform. On the one hand, we construct a set
of EMG benchmark synthetic signals where a given parameter can be use to simulate a
very simplified and schematic version of the fatigue evolution. On the other hand, we test
several strategies for estimating the fatigue evolution out of the EMG signal dataset. In
this work, we place particular emphasis on techniques combining dimensional reduction
techniques with Fourier and wavelet transforms.

Even though we use the problem of muscle fatigue estimation as a main motivation
and application problem, our focus is primarily on illustrating a toy-example where the
proposed techniques, combining dimensional reduction with standard signal transforms,
could provide some meaningful information. In order to eventually apply these strate-
gies in more realistic situations, further conceptual and experimental work is required.
In the following subsections we present the result of this toy-example, illustrating the
possibilities of this particular combination of methods.

Problem Setting

In order to describe in more concrete terms our hypothesis and settings, we define the
basic elements required for defining the working environment. The main input of the
algorithms we describe is a set of synthetic EMG signals where a given parameter can be
used to implement a toy-example of the fatigue concept.

Definition 5.1 (EMG dataset). We define our EMG dataset as a set of functions U =
{uk : I → R}k∈J , with I = {1, . . . , n}, and J = {1, . . . ,m}. The motivation for the the
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index sets I, and J is to describe time parameters: I corresponds to the time evolution
along one single EMG signal, and J describes the time evolution along the complete
dataset of EMG signals.

Remark 5.1 (Main hypothesis: low dimensional representation as fatigue measure).
The main hypothesis of our setting is that an there exists an inherent low dimensional
parameterization that we represent by a continuous function A : Ω ⊂ Rd → Rn, with
d ≤ n, which simulates (in a simplified way) the fatigue concept. Given a dataset
U = {uk}mk=1, the main task is therefore to delete redundant information from this high
dimensional set, in a way that only essential data characterizing the time evolution is
kept, reconstructing the parameterization set Ω.

Ω ⊂ Rd A−−−→ U = {uk}mk=1 ⊂ Rn (5.1)

The standard strategy is to construct the frequency spectrum of each EMG signal
uk, and compute the mean values in order to estimate the fatigue evolution. In this case
we can consider the mean value as a low dimensional parameter characterizing the EMG
dataset. But our second main hypothesis is that the EMG dataset presents a complex
time evolution, in such a way that the mean values cannot provide sensible information for
estimating the fatigue evolution. The numerical experiments we present in the following
sections will illustrate this point.

Definition 5.2 (Fourier and Wavelet transforms of a EMG dataset). We denote the
Fourier and Wavelet transform of uk by F(uk) and W(uk) respectively, and the corre-
sponding sets F(U) : = {F(uk), k ∈ J}, and W(U) : = {W(uk), k ∈ J}, with U : =
{uk, k ∈ J}.

Algorithm Strategy

The main strategy we will now explore is a straightforward application of dimensionality
reduction or manifold learning techniques combined with wavelet and Fourier transforms
for estimating the fatigue measure of a EMG dataset.

Remark 5.2 (General description of the Analysis Strategy). Given a EMG dataset
U = {uk : I → R}mk=1, with I = {1, . . . , n}, where each uk represents one EMG signal,
the strategy is to find an adequate signal transformation T , and a (possibly nonlinear)
map P : Rn → Rd to a lower dimensional space (e.g. d = 1, 2, or 3) in a way that the
resulting set P(T (U)) approximates the fatigue measure function. The map P depends
on the type of method that is applied M, and the set S constructed out of the dataset U
(i.e. S = T (U)). We can use a diagram for depicting this procedure, where the main
input is the dataset U , the unknown components are the low dimensional characterization
Ω, and the embedding map A.

Ω ⊂ Rd A−−−→ U = {uk}mk=1 ⊂ RnyT
Ω′ ⊂ Rd P←−−− S = {T (uk)}mk=1 ⊂ Rn

(5.2)

We will see in the following paragraphs what kind of methods M do we use, and how
to build exactly the set S, and the corresponding low dimensional representation Ω′.
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Remark 5.3 (General problem description). We can synthesize the previous observations
by noting that the input of our main problem (Diagram 5.2) is the dataset of signals
U = {uk}mk=1, and the main hypothesis is existence of a continuous function A : Ω ⊂
Rd → U ⊂ Rn describing a low dimensional parameterization Ω of the dataset U . The
principal problem is to find adequate signal transforms T , and dimensional reduction
techniques P , (with S = T (U)) that can be used to approximate the parameterization
space Ω.

Remark 5.4 (Method M, and the projection P). The questions to address now is how
to construct the map P , and what is exactly the input set S. The dimensional reduction
and manifold learning machinery provides several possibilities for constructing maps P .
In the following experiments, we will focus on three basic options: the elementary PCA
procedure, Multidimensional Scaling and the Isomap algorithm.

Remark 5.5 (Nonexplicit construction of the map P). It is important to notice that the
map P is not always explicitly constructed as already indicated in the MDS or Isomap
frameworks. In other words, our primary task will be to construct the set P(T (U)) ⊂ Rd

out of the dataset U ⊂ Rn, without necessarily computing an explicit construction
of the map P . This situation is the case, for instance, of the original formulation
of the MDS algorithm, where an optimization procedure is described in order to find
an adequate configuration of points in a low dimensional space 4.1. For these cases,
an explicit computation of the map P can be considered as a separate problem, and
modern approximation methods (e.g. [34]) are available for implementing efficient solution
strategies.

Remark 5.6 (Construction of the set S from the dataset U). In the map P , we consider
the input set S as constructed out of the the Fourier or wavelet transforms F(uk), and
W(uk) of the EMG signals. The map can then be described as a transformation P(F(uk)),
or P(uk)). An important reference option to consider is the case when no particular
transformation is applied to the EMG signals, and we apply directly the method M to the
set S = U .

The idea behind the application of the Fourier or wavelet transforms is that the origi-
nal dataset uk is usually overloaded with information that does not directly contribute to
the low dimensional characterization approximating the fatigue evolution. The objective
of the Fourier and wavelet operators is to filter out some of this data, providing an
important preprocessing step for the dimensional reduction algorithm.

Remark 5.7 (Mean and Median of the EMG power spectra). Notice that the classical
strategy of computing the mean values of the spectral frequencies of the signals uk, is
a particular case of this framework: the map for this case is P : U → R with P(uk) =
‖F(uk)‖2, and U := {uk, k ∈ T}.
Remark 5.8 (Algorithm strategy examples). We will use the following dimensional
reduction techniques M, where the goal is to approximate the parameterization set Ω:
M ∈ {Mean,Median,PCA,MDS, Isomap} and the set S will be constructed out of of the
Fourier or Wavelet transforms (i.e. {M,F(M),W (M)}.

The main problem to analyze is to find a good combination of maps P and T , in
a way that the resulting configuration of points Ω′ = P(T (U)) delivers an accurate ap-
proximation of the fatigue measure. We will test several dimensional reduction strategies
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P , and signal transformations T , that depend on the complexity of the EMG dataset
U = {uk}mk=1.

The concept of dimensionality reduction involves a geometrical understanding of
W(U), together with optimization procedures for finding a meaningful map P . The key
problem of this procedure can then be explained as how to correctly identify the geometry
of the dataset W(U) in order to construct a meaningful parameterization space.

In the following subsections we will present several experiments for evaluating the
extraction of a low dimensional parameterization of a EMG dataset based on dimensional
reduction techniques combined with Fourier and wavelet transforms. There are two main
steps in these experiments: preparation of the EMG dataset with a predefined fatigue
measure function, and analysis of the EMG dataset with different algorithm strategies.

EMG Analysis Experiments: Dataset Construction

For constructing the EMG dataset, we use three steps which combines the concepts of
action potential, a simplified fatigue measure parameter, and a schematic version of a
EMG function:

1. Construction of a prototype action potential waveform.

2. Construction of a fatigue parameter evolution.

3. Construction of EMG dataset signals.

There are several important parameters of this dataset that will play an crucial role
when selecting different analysis strategies. These include in particular the dimension
d in which the parameterization space Ω ⊂ Rd lives, and several values describing the
complexity of the construction of the EMG signals (Remark 5.14).

Remark 5.9 (Construction of the action potential waveform). In the construction of an
action potential function, used as a basic building block of a EMG signal, we follow the
model used in [40], which is described in further detail and used in a special application
in [37,41]. This model of an action potential waveform is constructed from the derivative
of the function V , which includes the fast depolarization represented as a narrow spike
shape, and the slow repolarization step, also known as the exponential afterpotential.

Vtac(t) := ag(t) + b(g ∗ sr)(t), sr(t) := e−t/tac1[0,∞[(t). (5.3)

The function sr is used to construct the slow repolarization component. As described
in [40], the main parameters are a, the size of the spike, b, the size of the afterpotential,
and tac, the time constant of the afterpotential. A possible option of the spike function g
is based on the gamma function and two parameters, k and n, used to control the width
and asymmetry of the spike:

g(t) :=
kn+1

Γ(n+ 1)
tne−kt1[0,∞[(t). (5.4)
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Figure 13: Construction of the action potential waveform

Remark 5.10 (EMG Signal Construction: MUAP). In our toy-environment, we con-
struct a simplified version of a EMG signal (which for our toy-framework will be also be
identified as a Motor Unit Action potential MUAP) by adding several action potentials
occurring at different time positions. In the following expression, our prototypical EMG
signal is composed of a combination of q action potentials located at the positions
pj, j = 1, . . . , q.

u(t) :=

q∑
j=1

V
pj
tac(t), V

pj
tac(t) := Vtac(t− pj). (5.5)

In the following paragraphs, we will generalize this expression and we will construct a
EMG dataset, by considering a set of uk signals, where both tac, and pj will depend on
the parameter k.

Remark 5.11 (Simplified version of the fatigue parameter). A real understanding of the
muscle fatigue concept requires the assessment of multiple complex physiological phe-
nomena. Our objective here is not to deal with this difficult problem, but instead to use
this environment as a motivation for constructing toy-frameworks for testing alternative
EMG signal analysis strategies. Our simplified framework is based on considerations of
the effects of muscle fatigue on EMG signals properties discussed, for instance, in [42,
Section 9.7.1], and [16]. The core idea is that the effects of the muscle fatigue on the
power spectral characteristics of the EMG signal are, up to some extend, controlled by the
shape of the waveform of the motor unit action potential. We use this information, and
we oversimplify these properties, by considering the fatigue parameter to be controlled by
tac, the time constant of the afterpotential. This allows to handle a simple toy framework
that we can use for an initial testing and verification of our alternative analysis strategies.

Remark 5.12 (Construction of the EMG dataset). In order to construct the EMG
dataset we extend the definition of a EMG signal described in the Remark 5.10, by
combining a set of action potentials in a sequence of signals parameterized by a given
fatigue function. Specifically, based on the definition 5.1, we construct a sequence of
signals U = {uk}mk=1, with:
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uk(t) :=

q∑
j=1

V
pjk
tac(k)(t), V

pjk
tac(k)(t) := Vtac(k)(t− pjk). (5.6)

In our toy-environment, the function tac(k) describes the fatigue evolution that will
play the role of unknown function. We can illustrate this construction of an EMG dataset
with the following diagram, where we present a prototype motor unit action potential
waveform, Vtac parameterized by the time of the after potential tac, which changes over
time with a given function tac(k), k = 1, . . . ,m. Here the parameter k, plays the role
of another time variable, used also as an index for each entry of the EMG dataset. By
adding q motor unit action potentials at different time positions, we obtain the dataset
U = {uk}mk=1.

Figure 14: Construction of the EMG dataset

Remark 5.13 (Selection of the fatigue evolution). In order to consider the approximation
obtained with the different analysis strategies, we select a particular non trivial fatigue
evolution depicted in the lower left graph of the Figure 14. This function has been
constructed by interpolating random values over the range of the time span of the EMG
dataset. The main objective of the algorithms strategies we present in this chapter is
to approximate this function under special settings in the construction EMG dataset
construction.

Remark 5.14 (Main Parameters and Functions in the EMG dataset). Among the
multiple settings of the EMG database, there are three main parameters playing a
significant role in the analysis results:

q: number of action potentials used in a MUAP signal.
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pj: time shift behavior for the action potentials.

tac: range of fatigue parameterization values.

We will distinguish two principal situations depending on the behavior of the phase
shift pj: the case of constant phase shifts (i.e. pjk = pj, k = 1, . . . ,m, j = 1, . . . , q), and
the case of of phase shifts varying randomly over time (i.e. pjk varies randomly with the
variable k).

Remark 5.15 (Construction of the EMG Dataset: Extended version). We extend the
previous dataset construction to include a more refined version of EMG signals. We can
rephrase and generalize the construction of the parameterization space by considering
the function tac : J → Rd, such that Ω = tac(J). Each entries of this vector function
tac(k) = (t1ac(k), . . . , tdac(k)), for k = 1, . . . ,m, (with tαac : J → R), is used to control a
particular family of action potentials. We have therefore a more general description
of the construction of the EMG dataset that depends on the dimensionality of the
parameterization space Ω = tac(J):

uk(t) =
d∑

α=1

q∑
j=1

V α
tαac(k)(t− pαjk). (5.7)

In this equation, we consider d types of action potentials V α
tαac

, that are combined in a
single EMG signal, uk, that we use to construct our toy-example dataset. Each type α
of action potential V α

tαac
, has a particular set of formulas 5.3, 5.4, characterizing different

types of spike behaviors. The objective of our toy-framework will be to find strategies for
reconstructing the functions tαac (e.g the parameterization space Ω), as described in the
Diagram 5.2.

EMG Analysis Experiments: Results

We now apply the different analysis strategies discussed in the previous sections to the
EMG dataset U = {uk}mk=1. We will first address standard strategies involving the
Fourier power spectrum, and elementary measures as the mean or median values. We will
then consider more refined alternatives involving basic dimensional reduction strategies,
including PCA, MDS and Isomap techniques. We finally analyze the combination of this
methods with wavelet transforms.

Remark 5.16 (Case 1: Mean-Median, Power spectrum, constant phase shift). The
first test consist of applying standard strategies as the mean computation of the power
spectrum of the dataset signals uk. In Figure 15, we consider a dataset where each EMG
signal uk is composed of q = 10 synthetic action potential waveforms placed at some
arbitrary, but constant, positions pj. Namely, for each k = 1, . . . ,m EMG signal (here
with m = 200) we have uk(t) :=

∑q
j=1 V

pj
tac(k)(t), with V

pj
tac(k)(t) := Vtac(k)(t− pj).
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Figure 15: EMG synthetic signals examples and their Fourier spectra

As indicated in the Remark 5.14, there are two principal situations depending on the
behavior of the fatigue function: a constant, and a random shift position variation. The
case of the constant variation represents a very simple situation where the mean of the
Fourier power spectra recovers effectively the fatigue parameterization. In Figure 16 we
depict the function tac(k), together with the evolution of the mean and median values of
the Fourier power spectrum.

Figure 16: Mean, Median, and reference signal tac(k)

The mean values of the power spectral density allow to obtain an approximation of the
unknown parameterization tac. Due to Heisenberg uncertainty principle, reflected in the
inverse relation between the standard deviation of a function and its Fourier transform,
we obtain a reflection of the graph of the power spectra mean function with respect to the
parameterization tac. In the particular settings of this EMG dataset, the median value
appears to be a very poor approximator of our target function tac.

Remark 5.17 (Case 2: Mean-Median, Power spectrum, random phase shifts). We
address now the more complex situation of random phase shifts. Namely, we consider the
case where the phase varies randomly over time as described in equation 5.6. As depicted
in Figure 17, this situation represents a more complex situation for the mean and median
parameters which are far from providing an approximation for the function tac.
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Figure 17: Mean, Median, and reference signal tac(k): random phase shifts

Remark 5.18 (Dimensional reduction techniques vs standard power spectral mean
values). The mean or median values of the Fourier power spectrum used so far in the
literature represent a characterization that depends only on the particular signal being
analyzed. In our special context, it is more reasonable to consider a characterization that
takes into account not just a single, but a group of signals in our dataset. This sort
of characterization would be sensitive to the overall behavior of the EMG signals, and
as such, would provide a more reliable approximation of the fatigue evolution. In the
following steps we will illustrate this remark with additional experiments.

Remark 5.19 (Case 3: Power Spectrum, constant phase shifts, dimensional reduction).
The two previous cases indicate that, for this EMG dataset example, the standard
techniques used for fatigue characterization are unreliable as soon as we have random
phase shifts in the EMG signals. We now try a different strategy which consist on using
alternative characterizations using dimensional reduction techniques. As indicated in the
Remark 5.18, by considering the overall behavior of the EMG dataset, a dimensional
reduction strategy might provide a better approximation of the fatigue evolution.

Figure 18: PCA, MDS and Isomap of Power Spectrum, constant phase shifts

The Figure 18 indicates that in the simplified situation of constant phase shifts we
can approximate the fatigue parameterization tac, as it was in the case of the mean value
characterization in Figure 16.

Remark 5.20 (Case 4: Power Spectrum, random phase shifts, dimensional reduction).
We introduce now a random phase shift pj, and we check whether the Fourier Spectrum
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would be sensitive enough for detecting the parameterization function. The result,
indicated in Figure 19, illustrates that for these kind of examples, the combination of
dimensional reduction techniques, with Fourier Spectrum appears to be problematic for
approximating the fatigue parameterization tac.

Figure 19: PCA, MDS and Isomap of Power Spectrum, random phase shifts
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Remark 5.21 (Case 5: Plain Signals, constant phase shifts, dimensional reduction). As
an additional check, we test the results of dimensional reduction techniques applied to the
plain signals, without considering any particular transformation. The case of constant
phase shifts is presented in Figure 20, and, as expected, all dimensional reduction methods
are approximating the fatigue parameterization without strong distortions.

Figure 20: PCA, MDS and Isomap of Plain Signals Database, constant phase shifts

Remark 5.22 (Case 6: Plain Signals, random phase shifts, dimensional reduction).
The case of random phase shifts is more challenging for this combination of dimensional
reduction with Plain EMG dataset signals. Isomap is the only method that appears to
poorly approximate the fatigue parameterization, indicating that some transformation of
the signals, as in the case of figure 19 is indeed required.

Figure 21: PCA, MDS and Isomap of Plain Signals Database, random phase shifts
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Remark 5.23 (Case 7: Wavelet transformations with dimensional reduction). In order
to consider wavelet transforms with dimensional reduction techniques in our particular
framework, we first experiment with the different possibilities provided by the multireso-
lution structure. The finite wavelet transform examples we apply converts a EMG signal
represented as a vector of size n = 1024 into a vector of the same size, whose contents
are computed according to a particular multiresolution scheme. For instance, if we select
a multiresolution structure with 8 bands, the resulting scheme maps a vector uk of size
1024 into a vector W(uk) of the same size with 9 components:

V4 ⊕W4 ⊕W8 ⊕W16 ⊕W32 ⊕W64 ⊕W128 ⊕W256 ⊕W512 = V1024 (5.8)

Here we use a particular notation for the multiresolution structure: for each linear
space in this decomposition we have dim(Wj) = dim(Vj) = j. We denote by PWj

(uk) ∈
Wj (resp. PVj(uk) ∈ Vj) the transformation mapping the vector uk into the space Wj

(resp. into the approximation space Vj).

Figure 22: Dimensional Projections of the sets {PV4(uk)}mk=1 and {PWj
(uk)}mk=1.

In Figure 22 we use a EMG dataset generated with random phase shifts, and we
present the results of projecting the set of coefficients {PV4(uk)}mk=1, and {PWj

(uk)}mk=1,
(for j = 4, 8, 16, . . . , 512) using Isomap as dimensional reduction method. As can be seen,
the set {PV4(uk)}mk=1 approximates up to some degree the parameterization function tac,
but the coefficients obtained with the spaces Wj and their dimensional reduction versions
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{PWj
(uk)}mk=1, are not as sensitive enough as the case of the approximation space V4.

In the following steps we will investigate in more detail the error behavior and further
possibilities of this property.

As an additional information, in Figure 23 we depict a more precise view of the dimen-
sional reduction projection of the signals in {PV4(uk)}mk=1 ⊂ R4, for the previous example.
The upper right figure presents the eigenvector obtained with the PCD constructed out
of the data depicted in the four signals with title Band8Coef1, up to Band8Coef4.

Figure 23: Four band 8 wavelet signals from V4 and its Isomap projection

The task that follows is to gather these numerical results, and present a more detailed
overview of some particular cases depending on the complexity of the database U =
{uk}mk=1. Our objective is to assemble some examples where the combination of wavelet
transforms and dimensional reduction methods provide some improvement over direct
implementations. The focus will be the error analysis of the strategy suggested by the
results in the previous example from Figures 22 and 23.
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EMG Analysis Experiments: Results Overview

We present the overview results of several examples illustrating different properties of
the analysis strategies. As depicted in the following pages, the increasing complexity
of the dataset examples requires more refined strategies, and the combination of wavelet
transforms and dimensional reduction techniques appears to improve, for some situations,
the approximation error. In the following remarks, we describe in more detail the strategy
we analyze, and the corresponding error analysis. The presentation of the dataset
examples includes a sequence of plots with the results of all implemented techniques,
and subsequently, the error analysis of our proposed technique.

Remark 5.24 (Multiresolution and Dimensional Reduction strategy). Based on the
numerical experiments described in the previous remarks, the strategy we will now
consider consist of using a multiresolution decomposition of each element of the dataset
U = {uk}mk=1, followed by a dimension reduction transform that will be used to approxi-
mate the parameterization function tac.

In order to generalize and formalize the procedure inspired by the experiments in
Remark 5.23, we can rephrase the strategy using the projection PV

2b
: Rm → V2b in the

approximation space V2b described in a multiresolution analysis. We recall that we use a
special notation for expressing the multiresolution:

V2b ⊕W2b ⊕W2b+1 ⊕W2b+2 ⊕ · · · ⊕W2k−1 = V2k (5.9)

Here we have dim(V2b) = 2b, and in our particular numerical examples we use k = 10,
and b = 0, . . . , 9. We can now formulate the approximation scheme as a particular case
of the Diagram 5.2, where T = PV

2b
, and the resulting approximation Ωb, depends on a

selected multiresolution level b.

Ω ⊂ Rd A−−−→ U = {uk}mk=1 ⊂ RnyPV2b

Ωb ⊂ Rd P←−−− Sb = {PV
2b

(uk)}mk=1 ⊂ R2b

(5.10)

As we will see in the following experiments, the main task is to investigate the levels
b that provide an adequate approximation Ωb of Ω, depending on the complexity of a
particular dataset U = {uk}mk=1.

Remark 5.25 (Error Analysis). In order to consider the error produced by the approx-
imation scheme described in Remark 5.24, we compute, for each level b, the difference
between the approximation space Ωb, and the original parameterization Ω. The procedure
we use depends on our particular toy-framework, and the design of Ω. As described in
Remark 5.15, we use in our numerical experiments the space Ω constructed as a curve in
Rd. Now, the error we define will compare each entry tαac with a corresponding component
of the dimensional reduction map Pα (to be defined shortly):

errPα (b) := errPα (Ω,Ωb) := ‖tαac − (Pα(PV
2b

(uk)))mk=1‖2. (5.11)

Here, we use a special vector normalization (denoted as tαac), resulting in a zero-mean,
unit-norm vector, defined as follows:
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v :=
v − ve
‖v − ve‖2

, with v :=
1

m

m∑
i=1

vi, v ∈ Rm, and e := (1, . . . , 1)t ∈ Rm.

In order to explain the Pα component, we recall that with the image of the dimensional
reduction map P we have a d-dimensional vector P(PV

2b
(uk)) ∈ Rd, corresponding to the

d eigenvectors from the biggest d eigenvalues constructed in a Isomap or PCA reduction
technique. By taking each entry of P = (Pα)dα=1, and considering the evolution over
the m EMG signals uk, we obtain a m dimensional vector (Pd(PVd(uk)))mk=1 that we can
compare with the entries of the parameterization map tαac. Notice that we still have to
correctly identify the components of the vector P that correspond to the ones in tac, a
problem that we resolve in our numerical experiments by trial and error.

In our particular experiments, we have uk ∈ R1024, and therefore the options b =
0, . . . , 9 can be considered. The resulting error analysis graph will contain several entries
corresponding to the different multiresolution decompositions available for a vector of size
1024. For instance, in Figure 24 we have a prototypical error plot used in the experiments
presented in the following sections (e.g. Figures 27, 30, 33, 36).

Figure 24: Example of an Error Analysis Plot (from Figure 36)

The first 9 entries of the graph correspond to the values errPα (b), b = 0, . . . , 8 (denoted
in the plot as E(k), k = 1, . . . , 9). In order to visualize whether the dimensional reduction
improves the approximation, we include also the error committed when considering di-
rectly the entries of the wavelet coefficients. Namely, as in the previous error construction,
we use the entries of the vector Pα

V
2b

with α = 1, . . . , 2b, for creating a m dimensional
vector that can be compared with the original parameterization tαac. We define the error
components E(k), for k > 9, with E(k) = errPα (b), b = k − 1, and:

errPα (b) := errPα (Ω,Ωb) := ‖tαac − (Pα
V

2b
(uk))mk=1‖2. (5.12)

Notice that, for instance, in the particular example of Figure 24, we have the first
multiresolution structure V20 , represented by the corresponding error E(1), and computed
with the signal (P 1

V20
(uk))

m
k=1. In this case, we have one single signal, and therefore no

dimensional reduction is required (see the first line of Figure 25, and the corresponding
plot in Figure 24).
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Multiresolution
Level V2b

Dimensional
Reduction Error

Multiresolution Error
Start, . . . ,End

b = 0, V0 E(1) −−−
b = 1, V2 E(2) E(10), E(11)
b = 2, V4 E(3) E(12), E(13), E(14), E(15)
b = 3, V8 E(4) E(16), . . . , E(23)

Figure 25: Structure of Error Analysis plot in Figure 24

For the following multiresolution structure, V21 , we have the values E(10), and E(11),
which corresponds to the error committed by (P 1

V21
(uk))

m
k=1, and (P 2

V21
(uk))

m
k=1, respec-

tively. The error of the first eigenvector, (P1(PV21 (uk)))
m
k=1, of the dimensional reduction

of these vectors is represented by E(2). For this case, we don’t observe a significant
increase in the approximation quality when using dimensional reduction (see the second
line of Figure 25, and the corresponding plot in Figure 24).

The following multiresolution structure, V22 , is used to compute the errors E(3)
for the dimensional reduction version, and E(k), k = 12, . . . , 15, for non dimensional
reduced wavelet coefficients. In this situation, we observe a significant improvement in
the approximation quality when using dimensional reduction, illustrating the possibilities
of the framework indicated in Diagrams 5.2 and 5.10.
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Example 1: Constant phase shifts, One parameterization curve

Figure 26: All Techniques: Example 1

In this example, we used one single parameterization curve for controlling the time
evolution of the dataset. Constant phase shifts are used in the construction of the EMG
signals. Example 1 parameters rndFluct=0; reps=10; dim=1; (pos1,len1)=(100,700);:

uk(t) :=

q∑
j=1

Vtac(t− pjk) , q = 10, pjk = pj, 100 ≤ pj ≤ 700, uk ∈ R1024. (5.13)

We notice that most of the methods are capable of approximating, up to some degree,
the reference parameterization signal, depicted in the right upper corder of this diagram.
As we will see in the following examples, this stable behavior will not be the case as soon
as the complexity of the signals is increased when random phase shifts are used.
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Example 1: Constant phase shifts, dim=1, Error Analysis

Figure 27: Error Analysis: Example 1

In Figure 27, the red dotted curve represents the reference signal, and the blue curves
are the corresponding approximations. In this error analysis, we observe a local minima
in E(3) which corresponds to a multiresolution structure V22 . This value represents the
first eigenvector of the dimensional reduction projection of the vectors used to compute
the errors E(k), k = 12, 13, 14, 15.

E(3) E(12) E(13) E(14) E(15)
0.0087 0.0839 0.0041 0.2805 0.0699

Figure 28: Error values: Eigenvector 1, case E(3)

As can be seen E(13) is actually smaller than E(3), and therefore no significant
improvement has been achieved with the dimensional reduction. However, we can argue
that in a standard situation where no further information is available, the dimensional
reduction procedure could help to identify a optimal vector among the corresponding
values E(k), k = 12, 13, 14, 15.
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Example 2: Random phase shifts, One parameterization curve

Figure 29: All Techniques: Example 2

In this example, we used one single parameterization curve for controlling the time
evolution of the dataset, and random phase shifts varying between 0 and 70 samples
for the construction of the EMG signals. Example 2 Parameters: rndFluct=70; reps=80;

dim=1; (pos1,len1)=(100,700);

uk(t) :=

q∑
j=1

Vtac(t− pjk), q = 80, pjk = pj + 70rand, 100 ≤ pj ≤ 700 (5.14)

We notice that only PCA and Isomap are capable of approximating, up to some
degree, the reference parameterization signal, depicted in the right upper corder of this
diagram. Due to the random phase shifts pjk, all other methods are unable to identify
correctly the main fatigue evolution tac.
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Example 2: Random phase shifts, dim=1, Error Analysis

Figure 30: Error Analysis: Example 2

In Figure 30, the red dotted curve represents the reference signal, and the blue curves
are the corresponding approximations. In this error analysis, we observe, once more, a
local minima in E(3) which corresponds to a multiresolution structure V22 . This value
represents the first eigenvector of the dimensional reduction projection of the vectors used
to compute the errors E(k), k = 12, 13, 14, 15.

E(3) E(12) E(13) E(14) E(15)
0.1518 1.4108 0.5046 0.7398 0.4119

Figure 31: Error values: Eigenvector 1, case E(3)

In this case, the value E(3) constructed with a dimensional reduction map, represents
a significant improvement with respect to all other vectors used to compute the errors
E(k), k = 12, 13, 14, 15. This illustrates an example of the positive contribution of
combining dimensional reduction techniques with wavelet transforms.
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Example 3: Random phase shifts, Two parameterization curves

Figure 32: All Techniques: Example 3

In this example, we used two parameterization curves for controlling the time evolution
of the dataset, and random phase shifts varying between 0 and 70 samples for the
construction of the EMG signals. Example 3 Parameters: rndFluct=70; reps=80; dim=2;

(pos1,len1)=(100,500);

uk(t) :=

q∑
j=1

V 1
tac(t− p

1
jk) +

q∑
j=1

V 2
tac(t− p

2
jk), (5.15)

q = 80, pαjk = pαj + 70rand, α = 1, 2 (5.16)

100 ≤ p1
j ≤ 500, 300 ≤ p2

j ≤ 800. (5.17)

Here, as before, we have as good approximation candidates, the dimensional reduction
procedures obtained with PCA and Isomap. It is important to remember that these
graphs are describing only on parameterization curve. In the following error analysis, we
consider both components tαac, α = 1, 2.
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Example 3: Random phase shifts, dim=2, Error Analysis

Figure 33: Error Analysis: Example 3

In Figure 33, the red dotted curve represents the reference signal, and the blue curves
are the corresponding approximations. In this error analysis, we observe, contrary to
the previous example, a significant distortion caused by the dimensional reduction in all
cases of error components E(2), E(3), E(4). This happens for both eigenvectors 1 and
2, suggesting that the best strategy for this case, is to consider the first multiresolution
structure V20 . This indicates that further analysis is required to fully understand when,
why, and how new improvements can be achieved with this combination of dimensional
reduction and wavelet transforms.

E(3) E(12) E(13) E(14) E(15)
0.9028 0.6750 0.6842 0.9881 0.9700

Figure 34: Error values: Eigenvector 1, case E(3)
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Example 4: Random phase shifts, Three parameterization curves

Figure 35: All Techniques: Example 4

In this example, we used three parameterization curves for controlling the time evolution
of the dataset, and random phase shifts varying between 0 and 70 samples for the
construction of the EMG signals. Example 4 Parameters: rndFluct=70; reps=80; dim=3;

(pos1,len1)=(100,500);

uk(t) :=

q∑
j=1

V 1
tac(t− p

1
jk) +

q∑
j=1

V 2
tac(t− p

2
jk) +

q∑
j=1

V 3
tac(t− p

3
jk), (5.18)

q = 80, pαjk = pαj + 70rand, α = 1, 2, 3 (5.19)

100 ≤ p1
j ≤ 500, 300 ≤ p2

j ≤ 800 500 ≤ p2
j ≤ 800. (5.20)

Here, as before, we have as good approximation candidates, the dimensional reduction
procedures obtained with PCA and Isomap. We recall that these graphs are describing
only one parameterization curve. In the following error analysis plots, we consider all
components tαac, α = 1, 2, 3.
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Example 4: Random phase shifts, dim=3, Error Analysis

Figure 36: Error Analysis: Example 4

In Figure 36, the red dotted curve represents the reference signal, and the blue curves
are the corresponding approximations. In this error analysis we observe, contrary to
the previous Example 3, a significant improvement when using dimensional reduction
techniques in the cases of the Eigenvector 1 and 2, and the error value E(3). We have
a similar improvement for the Eigenvector 3, corresponding to the parameterization t3ac,
and the error value E(4) with respect to the non dimensional reduced values E(k), k =
16, . . . , 23.

E(3) E(12) E(13) E(14) E(15)
0.5011 0.8650 0.7934 0.9802 0.9597

Figure 37: Error values: Eigenvector 1, case E(3)

E(3) E(12) E(13) E(14) E(15)
0.7339 1.3302 1.2224 0.8382 0.8350

Figure 38: Error values: Eigenvector 2, case E(3)
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E(4) E(16) E(17) E(18) E(19) E(20) E(21) E(22) E(23)
0.7991 1.2966 1.3356 1.2656 1.2430 1.0329 1.0388 0.9808 1.3447

Figure 39: Error values: Eigenvector 3, case E(4)

The behavior we see in this example illustrates the potential advantages we are
attempting to understand of this combination of wavelet transforms and dimensional
reduction techniques. Even though we have a mixture of examples indicating that a
better comprehension and analysis is required in order to identify when and how this
combination provides a significant approximation improvement, the tendency we have
seen in some of this experiments, suggest that interesting perspectives.
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Conclusions and Overview

The objective of the toy framework we have presented is to illustrate some perspectives
combining dimensional reduction techniques with Fourier and wavelet transformations.
The input of our problem is a set of signals U = {uk}mk=1 ⊂ Rn, with the assumption that
there is a low dimensional parameterization space Ω ⊂ Rd, with d < n, (i.e. there exist
a continuous map A : Ω→ U relating the low and high dimensional representations). In
our particular example, the parameter space Ω is constructed as the image of a function
tac : Im = {1, . . . ,m} → Rd, with Ω = tac(Im). The main problem is to estimate an
approximation of the parameterization space Ω, given only the dataset U . The strategy
we analyze is to construct an approximation Ω′ = P(T (U)), by combining a signal
transformation T with a dimensional reduction method P .

Figure 40: Overall structure of the toy-framework and some properties

The motivation behind this toy-framework is to study alternative analysis strategies
for EMG signals, where one particular problem is to estimate a fatigue measure, repre-
sented in our examples as the parameterization function tac. The principal objective is
to experiment with this combination of signal transformations and dimensional reduction
methods. A main observation is that for a particular set of examples, a combination
of multiresolution decomposition with dimensional reduction methods allows to improve
the approximation of the parameter function tac. Further analysis is required for a better
understanding of the properties of this framework, but the empirical results obtained
with these examples might lead to a more robust and conceptual approximation scheme.
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