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ABSTRACT

The challenging task of separating or extracting compo-
nents from a signal has multiple applications in biomed-
ical signal analysis, speech and musical acoustics, or
image processing. Fourier analysis, wavelet transforms
and frame theory are powerful tools for addressing these
problems. However, due to the high complexity of many
real-world signals, more sophisticated analysis methods
are essentially required. During the last few years, there
has been a strong development in data analysis using
concepts from differential geometry and algebraic topol-
ogy for analyzing the dimensionality reduction problem
of high-dimensional data. In this paper, we propose a
novel approach for signal separation and classification
combining standard signal processing tools with geomet-
ric algebra and dimensionality reduction. Our concept
relies on geometrical transformations, defined in the
context of Clifford algebras, for modifying the geometry
of a point cloud data. The objective is to transform
signal components to elements of an orthonormal basis,
where filtering procedures can be applied. This new
framework is an addition to the manifold learning and
dimensionality reduction toolbox, combining ideas from
Clifford algebras, dimensionality reduction, cluster ana-
lysis via persistent homology, and filtering procedures in
signal analysis. Some computational experiments 1 are
presented indicating the potential and shortcomings of
this framework.

Index Terms— signal separation, STFT wavelets
frame theory, dimensionality reduction, Clifford alge-
bras, geometric algebra, Möbius transforms, radial basis
functions, cluster analysis and persistent homology.

1 Introduction and Overview

In the field of signal separation, a fundamental strategy
is the usage of Fourier transforms or wavelet analysis
for filtering particular components of a signal. These
concepts provide a powerful framework used in multiple

1Available at www.math.uni-hamburg.de/home/guillemard/clifford/

theoretical and application fields. But the ever increas-
ing complexity of signal data requires more sophisticated
analysis tools. In the last decade, significant progress has
been made in the field of data analysis and dimension-
ality reduction inspired by geometrical and topological
concepts [6]. New algorithms based on differential ge-
ometry are Whitney embedding based methods, Isomap,
LTSA, Laplacian eigenmaps, Riemannian normal coor-
dinates, to mention but a few. In parallel developments,
probabilistic conditions and numerical algorithms (e.g.
persistent homology) have provided new tools for recon-
structing the homology of a manifold M ⊂ Rn from a
finite dataset X = {xi}

m
i=1 ⊂ M. Inspired by these

developments, we propose a framework based on Clif-
ford geometry for signal separation, as an addition to
the manifold learning and dimensionality reduction tool-
box.

In our problem, we consider a bandlimited signal f ∈
L2([0, 1]) and a segmentation of its domain in such a
way that small consecutive signal patches are analyzed,
as routinely performed in STFT or wavelet analysis. For
instance, the set of signal patches can be defined as a
dataset

Xf = {xf
i }

m
i=1, xf

i = (f(tk(i−1)+j))
n−1
j=0 ∈ R

n,

for k ∈ N a fixed hop-size. Here, the regular sampling
grid {tℓ}

km−k+n−1
ℓ=0 ⊂ [0, 1] is constructed when conside-

ring the Nyquist-Shannon theorem for f . Now, a stan-
dard signal separation problem is to remove from f a
component xσ that appears at different time positions t,
with varying frequency characteristics. Note that many
relevant application problems dealing with a mixture of
signals can be considered in this setting. For instance,
in noise reduction we have a perturbation of a signal f
by nonstationary noise σ. A typical non-blind solution
scenario is to select a patch xσ of sufficient noise charac-
teristics such that an adequate removal can be performed
(for instance using spectral subtraction methods). A
more complex situation are cocktail party effect problems,
where f = g + h is a mixture of two signals g and h, and
the objective is to separate g and h from f (classically

1



addressed with independent component analysis in mul-
tichannel signals). For the sake of simplicity, we restrict
ourselves to the situation where some knowledge of Xg

and Xh is given (e.g. in form of representative patches
xg ∈ Xg, xh ∈ Xh). Moreover, for a signal transforma-
tion T (identity, Fourier, power spectrum, wavelet, etc),
and T (X) := {T (xi)}

m
i=1, we consider the case where

T (Xg) or T (Xh) are localized in small regions of Rn and
the size of T (Xg)∩T (Xh) is negligible. A concrete acous-
tical example is a one-channel signal f composed of two
different percussion instruments (g and h). It is reason-
able to obtain sample patches xg ∈ Xg and xh ∈ Xh, but
due to their complex frequency characteristics, an accu-
rate separation of f , specially when g and h are played
simultaneously, is a challenging problem. In the particu-
lar case of noise reduction, power spectral subtraction is
a fundamental strategy which removes the noise signal
g from f = g + h by subtracting the frequency content
‖f̂k‖ − ‖ĥk‖ at each frequency bin k [7]. A basic hy-
pothesis is that the noise and clear signal vectors are
orthogonal to each other. But this assumption is usually
wrong, and a generalized approach takes into account a
more accurate geometrical relation between the noise and
signal vectors [8]. In our framework we use this general-
ized scenario but considering point cloud data structures
instead of single frequency bins.

P
ĥk

(f̂k)

Pĝk
(f̂k)

f̂k

ĥn
k

ĝn
k

Diagram 1: Power Spectral Subtraction

1.1 General Algorithm Framework

In this section, we describe the basic ingredients of our
framework. We assume we are given the dataset Xf =

{xf
i }

m
i=1 ⊂ R

n sampled from a bandlimited signal f =
g + h. We consider a signal transformation T (power
spectrum, wavelet transforms, etc). Our main objective
is to use the point cloud data T (Xf) in order to ex-
tract the signal g from f . A fundamental component is
a dimensionality reduction map R which reduces the di-
mension of T (Xf), and provides an initial simplification
of its geometry. The resulting set, R(T (Xf)) = Ωf , is
further manipulated with a Möbius map f that rotates
and shrinks a particular cluster (Xh or Xg). With these
geometrical manipulations a filtering procedure T is now
implemented, extracting the signal of interest.

The crucial preprocessing step of this algorithm, is
the learning phase which constructs the Möbius map
f by considering the low dimensional representation
R(T (Xg) ∪ T (Xh))). The objective of f is to map the
elements of Ωg close to an element eg of an orthogo-
nal basis, while the elements of Ωh are transformed to
another region. The second component delivered by
the learning phase is the filtering procedure T , which
depends on eg and the geometrical modifications of f.

Xg T (Xg)

T (Xg) ∪ T (Xh)) Ωg∪h (f, T )

Xh T (Xh)

T

T

R

Diagram 2: Learning phase

With the resulting set f(Ωg+h), we can extract the
contents of g + h with the filter T . The final step is
the reconstruction of the high-dimensional data with the
inverse R−1 in order to recover T (Xg), and so g.

Xg+h T (Xg+h) Ωg+h

f(Ωg+h)

Xg T (Xg) Ωg

T R
f

T
R−1T−1

Diagram 3: Separation phase

As can be seen from this description, any gain in
understanding the geometry of Xf is useful for improv-
ing the quality of the algorithm. This is particularly
important since Xf may be embedded in a very high-
dimensional space Rn, although the dimension of Xf it-
self may be small (in audio analysis, for 44kHz signals,
n = 1024 is commonly used). In such situations, cus-
tomized dimensionality reduction methods are of vital
interest. For instance, if Xf ⊂ M, with M being a
manifold (or a topological space), a suitable dimension-
ality reduction map R : M ⊂ Rn → MR ⊂ Rd outputs
by MR a low-dimensional diffeomorphic (or homeomor-
phic) version of M, where d < n. If the map R−1 is com-
putationally not too expensive, then the Möbius trans-
forms and filtering procedures in the low dimensional
space R(Xf) will improve the algorithmic performance.

The remainder of this paper is structured as follows.
First, we briefly describe in Section 2 basic principles
of dimensionality reduction. This is followed by a short
description of radial basis functions as a tool for trans-
forming data from low to high dimensions. In Section 4,
we describe basic ideas of Clifford algebras as a setting
for defining Möbius transforms in high dimensions. In
Section 5, we discuss the potential relevance of cluster
analysis with persistent homology. Finally, in Section 6,
we present several computational experiments illustrat-
ing the separation and classification of signals.
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2 Dimensionality Reduction

A standard way for representing experimental informa-
tion is given by the concept of point cloud data (PCD),
defined as a finite set of vectors X = {xk}

m
k=1 ⊂ Rn. The

dimensional reduction problem considers the case when
much of the information described by X is redundant
and can be discarded by constructing a low dimensional
representation Y = {yk}

m
k=1 ⊂ Rd, with d ≪ n. The

main objective is to construct a dataset Y such that cer-
tain characteristics of X are conserved. For instance, the
objective in Multidimensional Scaling (MDS) is to find Y
satisfying ‖yi − yj‖ ≈ ‖xi − xj‖ for all i, j ∈ {1, . . . , m}.
Another example is the case when the dataset X lies in
the vicinity of an hyperplane in Rn: for this situation the
goal of Principal Component Analysis (PCA) is to con-
struct Y by projecting the set X in this hyperplane. The
low-dimensional dataset Y can then be used for analysis
or classification purposes.

In manifold learning, it is assumed that the elements
xi are points lying in (or close to) a manifold M. We
consider the case X ⊂ M, namely, X is sampled from
M, a p-dimensional smooth compact submanifold of R

n.
Assuming the existence of a manifold is a reasonable hy-
pothesis being fulfilled in relevant applications. As in di-
mensionality reduction, the objective is also to construct
a low dimensional representation Y = {y1, . . . , ym} ⊂
Rd, d ≪ n, that conserves some characteristics of the
dataset X . Now, the geometrical structure introduced
by M will play a crucial role in the algorithm design.
Due to the Whitney embedding theorem (which states
that any connected smooth p-dimensional manifold can
smoothly be embedded in R2p+1) we require some con-
ditions for the dimensions in this formulation, namely,
2p + 1 ≤ d ≤ n. Our problem can also be formu-
lated as the search for an adequate embedding E of
the p-dimensional submanifold M ⊂ Rn in Rd, with
E : M ⊂ Rn → Ω ⊂ Rd, X ⊂ M, Y ⊂ Ω, Ω a p-
dimensional submanifold, and 2p + 1 ≤ d ≤ n.

For some applications, assuming the existence of a
manifold M might be too restrictive. In this case the
strategy would be to construct a finite metric space from
X , and analyze its properties using topological construc-
tions, as Čech complexes, Vietoris-Rips complexes, etc
(see [3]). An important additional topic in this field are
density conditions on the finite dataset X (with respect
to M) in order to guarantee a meaningful usage of M
and its structure. For the case of manifolds, recent re-
sults ensuring the correct computation of the homology
of M using X have been presented in [9]. For more
general topological spaces, the framework of persistent
homology offers robust tools for computing homologi-
cal information of M using as input the finite samples
{xk}

m
k=1 [10].

2.1 Nonlinear Dimensionality Reduction

In order to handle point cloud data with a more com-
plex geometry, a rich variety of algorithms have been
proposed in the last few years. We describe here, as
a representative example, the Isomap algorithm. The
Isomap algorithm computes geodesic distances by consi-
dering the shortest path between groups of neighboring
points. This procedure first identifies neighbor points us-
ing a k-nearest neighbors or ǫ radius criteria. Once the
neighboring points are identified, the geodesic distance
between two given points is computed by finding mini-
mum connecting paths. As soon as the geodesic distances
for the given dataset are obtained, the MDS algorithm
can be applied: by solving an optimization problem, we
construct a configuration of points Y in a lower dimen-
sional space that matches the distances in the original
dataset X . The main points are summarized in the fol-
lowing list of steps.

1 Neighborhood graph construction: Define a
graph where each vertex is a datapoint, and each
edge connects two points if they fulfill an ǫ-radius
or k-nearest neighbors criterium.

2 Geodesic distance construction: Compute the
geodesic distance between each pair of point using
the graph by finding the shortest paths between
the points.

3 d-dimensional embedding: Use the geodesic
distance in a MDS algorithm for computing a
d-dimensional embedding.

By using the geodesic distances we can construct a
configuration of points representing a more accurate rep-
resentation of the point cloud data.

2.2 Signal Processing and DR Interactions

As already explained in the outset of the introduction, it
is desirable to work with analysis techniques that com-
bine signal processing transforms with dimensionality
reduction methods. In this case, the basic objects are
the manifold M, the data samples X = {xi}

m
i=1 taken

from M, and a diffeomorphism A : Ω → M, where Ω
is the low-dimensional copy of M to be reconstructed
via dimensionality reduction. Here, the only algorith-
mic input is the dataset X , but with the assumption
that we can reconstruct topological information of M
with X (see for instance [9]). The other basic object in
our scheme is a signal processing map T : M → MT ,
which may be based on Fourier analysis, wavelet trans-
forms, or convolution filters, together with the resulting
set MT := {T (p), p ∈ M} of transformed data. The
following diagram shows the basic situation.
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Ω ⊂ Rd X ⊂ M ⊂ Rn

Ω′ ⊂ Rd T (X) ⊂ MT ⊂ Rn

A

T

R

The main objective is to find an approximation of
Ω, denoted Ω′ = R(MT ), by using a suitable dimen-
sionality reduction map R. Some properties of Ω and
Ω′ may differ depending on the dimensionality reduction
technique, but the target is to construct Ω′, so that geo-
metrical and topological properties of Ω are recovered.
In Section 6.1, we use a particular modulation map A
and we study the geometrical effects being incurred by
several dimensionality reduction maps R : M → Ω′.

3 Radial Basis Function Interpolation

An important ingredient in our framework are radial
basis functions (RBF) and their interpolation methods
for high-dimensional data. As previously described in
our framework (Section 1.1), our usage of dimension-
ality reduction requires to map data between high and
low dimensional spaces. Some dimensionality reduction
methods have intrinsic interpolation strategies, but in
general, the reconstruction of high-dimensional data
from the low-dimensional representation is a non trivial
problem. In order to consider a flexible framework that
embraces different reduction methods, we consider the
multi-purpose features of RBFs as already suggested, for
instance, in [2].

The inputs of the RBF interpolation methods are the
datasets X = {xi}

m
i=1 ⊂ Rn and Y = {yi}

m
i=1 ⊂ Rd.

The RBF interpolant requires a family of centers {cj}
N
j=1

(simply chosen randomly from the datasets in our exper-
iments), and can be written as:

yk = w0 +

N
∑

j=1

wjφ(‖xk − cj‖), k = 1, . . . , m,

or in matrix form, this can be described as:

Y = WΦT ,

with the m × (N + 1) matrix Φ = (1m, Φ1, . . . , ΦN ),
(Φj)k = φ(‖xk − cj‖), the d × (N + 1) coefficient
matrix W = (w0, . . . , wN ), and the d × m matrix
Y = (y1, . . . , ym). A solution can be constructed
with the pseudo-inverse Φ†: WT = Φ†Y T . In our
computational experiment we use the Gaussian RBF
φ(r) = exp(−r2/α), for some fixed α > 0.

4 The Clifford Algebra Toolbox

Another ingredient in our framework is a mechanism for
manipulating the geometry of a point cloud data. For
this purpose a basic building block is given by the con-
ceptual interplay between Clifford algebras, exterior al-
gebras, and geometric algebra. These tools can be par-
ticularly important in the design of signal separation and
classification algorithms. In fact they provide efficient al-
gebraic methods for manipulating geometrical data, and
they lead to flexible nonlinear functions in high dimen-
sional spaces. Here, we focus on the construction of a
fundamental nonlinear map, the Möbius transformation
in Rn.

A Clifford algebra is a generalization of the com-
plex numbers defining a product in the vector space
V = Rn with similar properties as the complex multi-
plication. More precisely, let qn be the standard Eu-
clidean inner product in Rn. Then, the Clifford algebra
Cln = Cl(Rn, qn) is an associative algebra generated
by the elements of Rn subject (only) to the relation
v2 = −qn(v, v)1, v ∈ Rn. More general bilinear forms qn

are of relevance in many fields (e.g. differential geometry
or noncommutative geometry [5]), but here we restrict
ourselves to the case of the standard inner product.
An explicit construction is given by considering Cln to
be the associative algebra over the reals generated by
elements e1, . . . , en subject to the relations e2

i = −1,
eiej = −ejei, i 6= j (anti-commutativity). Every element
a ∈ Cln, can be represented as

a =
∑

J

aJeJ , eJ := ej1 . . . ejk
,

where each aJ is real, and the sum ranges over all multi-
indices J = {ji}

k
i=1 ⊆ {1, . . . , n} with 0 < j1 < · · · <

jk ≤ n. Sometimes we will abuse the notation e∅ = e0 =
1 for the unit of the algebra Cln, but it is important
not to confuse the unit of Cln, e0 = 1, with the unit
of the field R. With this construction it is clear that
dim(Cln) = 2n. We follow the (non standard) selection
of Vahlen and Ahlfors [1], by identifying the vectors of
Rn with the elements spanned by e0, . . . , en−1. There are
three important involutions in Cln similar to the complex
conjugation. The main involution defined as a → a′

which replaces each eJ by −eJ , the reversion a → a∗,
which reverses the order of each multi-index in eJ , and
their combination, the Clifford conjugation, a → ā :=
a′∗ = a∗′. An important subgroup of the Clifford algebra
is Γn, the Clifford group, which is the set of invertible
elements in Cln that can be represented as products of
non-zero vectors in Rn.

With our particular identification of vectors Rn in
Cln, the Clifford product xy between two vectors x, y ∈
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Rn, x =
∑n−1

i=0 xiei, y =
∑n−1

i=0 yiei, can be written as

xy =
(

x0y0 −
n−1
∑

i=1

xiyi

)

e0 +
n−1
∑

i=1

(x0yi + xiy0)ei

+
n−1
∑

i=1 i<j

(xiyj − xjyi)eij .

Remark 4.1. (Geometric Algebra) An algebraic struc-
ture closely related to the Clifford algebra is the exte-
rior algebra (or Grassmann algebra), Λ(V ), generated by
the elements e1, . . . , en with the wedge product (or ex-
terior product) defined by the relations ei ∧ ei = 0 and
ei ∧ ej = −ej ∧ ei, i 6= j. Basic building blocks are the
exterior products of k-vectors {vi}

k
i=1, also referred as

k-blades v1 ∧ · · · ∧ vk, and linear combinations of blades,
called multi-vectors. A useful property of the exterior
product is the efficient algebraic representation of ba-
sic geometrical entities. More precisely, if we have a
k-dimensional homogeneous subspace W spanned by k
vectors {wi}

k
i=1, the k-blade w = w1 ∧ · · · ∧ wk can be

used to represent W as

x ∈ W ⇐⇒ x ∧ w = 0.

For instance, if x is an element of the line spanned
by v ∈ V , we have x = λv iff x ∧ v = 0. If x lies
in a plane spanned by v and u, then x = λv + γu iff
x ∧ v ∧ u = 0. But this framework is not only restricted
to homogeneous subspaces: further generalizations can
be considered with the same algebraic efficiency for more
elaborate geometrical objects [4]. Particularly important
tools in this field are efficient algorithms (the join and
meet operations) for constructing the intersection and
union of subspaces.

4.1 Möbius Transforms in Rn

Möbius transformations, and the general concept of con-
formal maps, have appeared in a wide range of theoret-
ical and practical applications, ranging from airfoil de-
sign in aerodynamics to modern problems in brain sur-
face conformal mapping. In this paper, we are interested
in their flexible geometrical properties for designing in-
vertible nonlinear maps with computationally efficient
algebraic characteristics. Recall that a Möbius transfor-
mation is a function f : Ĉ → Ĉ, with Ĉ = C ∪ {∞}, of
the form

f(z) :=
az + b

cz + d
,

where
(

a b
c d

)

∈ Mat(2, C), with ad − bc 6= 0. During
the last century, Möbius transforms where generalized
by Vahlen, Maass, and Ahlfors to arbitrary vector spaces
using Clifford algebras and Clifford groups [1]:

Definition 4.1. For the vector space V = Rn, a Möbius
transform f : R̂n → R̂n, with R̂n := Rn ∪{∞}, is defined
as f(v) = (av + b)/(cv + d), where the Clifford matrix
Hf :=

(

a b
c d

)

∈ Mat(2,Cln) is required to satisfy the fol-
lowing three conditions.

1) a, b, c, d ∈ Γn ∪ {0},

2) ab∗, cd∗ ∈ Rn,

3) ∆(f) := ad∗ − bc∗ ∈ R∗.

Remark 4.2. (The Vahlen-Maass Theorem) The Vahlen-
Maass Theorem states that the set of Clifford matrices,
denoted by SL2(Γn), forms a group under the matrix
multiplication. Moreover, the product HfHg corresponds
to composition of Möbius transforms f ◦ g. The Vahlen-
Maass Theorem also relates the concept of Möbius maps
as composition of similarities and inversions over the
unit sphere) with the Clifford matrices. The expression
∆(f) is sometimes denominated pseudo determinant.

4.2 An Explicit Construction

In this section, we provide a simple and explicit construc-
tion of a Möbius transform in Rn, satisfying the three
conditions in Definition 4.1. This yields an algorithm
for designing Möbius transformations matching our spe-
cific needs, as for instance, the construction of hyperbolic
transformations from two given fixed points.

Remark 4.3. (Constructing Möbius transforms in Ĉ)

For designing a Möbius transform in Ĉ such that f(x) =
u, f(y) = v, f(z) = w we can use the following standard
construction which consist of first mapping the points
x, y, z to 0, 1 and ∞ using f1(x) = 0, f1(y) = 1, and
f1(z) = ∞, with

f1(z) :=
(z − x)(y − z)

(z − z)(y − x)
, Hf1 :=

(

y − z x(z − y)
y − x z(x − y)

)

.

If we consider also a second map f2 with f2(u) =
0, f2(v) = 1, f2(w) = ∞, we can now construct f := f−1

2 ◦f1
with f(x) = u, f(y) = v, f(z) = w, using Hf := H−1

f2
Hf1 .

The general idea of this construction can be extended
to Rn, but some constraints need to be considered. The
following is a particular strategy that can be used in our
framework.

Lemma 4.1. Given a vector x ∈ Rn, n > 1, we can
construct a Möbius transform f such that f(x) = 0, f(y) =
1 and f(z) = ∞, for y, z ∈ R

n provided that the following
three conditions are fulfilled:

1) zi = kxi, i = 1, . . . , n − 1, for k ∈ R∗,

2) y = αx + βz, for α, β ∈ R, α + β = 1,
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3) 3(x0 − z0)
2 =

∑n−1
i=1 (xi − zi)

2.

Proof: Using the ideas of Remark 4.3, we analyze
the three conditions in Definition 4.1. Recall that with
our particular identification of Rn in Cln we have x =
∑n−1

i=0 xiei, y =
∑n−1

i=0 yiei, and z =
∑n−1

i=0 ziei. For an
arbitrary triple x, y, z, the coefficients

a = y − z, b= x(z − y),

c = y − x, d= z(x − y),

fulfill the first requirement in Definition 4.1. As for the
second condition in Definition 4.1, we have

ab∗ = (y − z)(z − y)∗x∗= −(y − z)2x,

cd∗ = (y − x)(x − y)∗z∗= −(y − x)2z,

and the pseudo determinant is given by

∆(f) = ad∗ − bc∗ = (y − z)(x − y)(z − x).

Now, (y − z)2x ∈ Rn and (y − x)2z ∈ Rn, if

(y − z)2 ∧ x = 0,

(y − x)2 ∧ z = 0,

where x is the non-real part of x i.e. x =
∑n−1

i=1 xiei.
These two conditions can be fulfilled if we require (as
described in Remark 4.1) the vector y − z to be an ele-
ment of the line spanned by x, and the vector y − x to
be an element spanned by z. Therefore we have z = kx,
k ∈ R. If we select a vector y = αx + βz, α + β = 1, we
have

ad∗ − bc∗ = (y − z)(x − y)(z − x) = αβ(z − x)3.

Now, for a vector v =
∑n−1

i=0 viei ∈ Rn we have

v3 =
(

v2
0 −

∑n−1
i=1 v2

i

)

e0 +

n−1
∑

i=1

(

3v2
0 −

∑n−1
i=1 v2

i

)

viei.

Therefore v3 ∈ R if and only if 3v2
0 =

∑n−1
i=1 v2

i , which
implies that (z − x)3 ∈ R if and only if 3(x0 − z0)

2 =
∑n−1

i=1 (xi − zi)
2. We finally notice that by combining

these conditions we also need z = kx, for k ∈ R∗.
Note that the we can relax our above conditions on

y − z (resp. y − x). But the statement on Lemma 4.1
is sufficient for our next objective. In particular, we can
now construct a variety of useful linear or nonlinear maps
in R

n as hyperbolic Möbius transforms based on the next
proposition.

Proposition 4.1. For a pair u, v ∈ R
n, n > 1, and

two vectors wi = αiu + βiv, i = 1, 2, with αi + βi = 1,
αi, βi ∈ R, there exists a Möbius transform f : R̂n → R̂n

satisfying f(u) = u, f(v) = v, and f(w1) = w2.

Proof: This follows as a straightforward conse-
quence of Lemma 4.1 and the Vahlen-Maass Theorem
which relates the group structure of SL2(Γn) with the
composition of Möbius transforms in Rn (see Remark
4.2). More precisely, following the lines of Remark 4.3,
we first consider the translation t, with t((u + v)/2) = 0,
followed by a rotation r, such that the third con-
dition of Lemma 4.1 is fullfilled. Now we can use
Lemma 4.1 for constructing two Möbius maps f1, f2
with f1(r(t(u))) = 0, f1(r(t(w1))) = 1, f1(r(t(v))) = ∞,
and f2(r(t(u))) = 0, f2(r(t(w2))) = 1, f2(r(t(v))) = ∞.
Using now the Vahlen-Maass Theorem the composition
f := t−1r−1f−1

2 f1rt is a Möbius transform and its Clifford
matrix is given by Hf = H−1

t H−1
r H−1

f2
Hf1HrHt.
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Fig. 1. Hyperbolic Möbius transform with two fixed
points (one attractive and one repulsive).

By Proposition 4.1, we can now construct hyperbolic
Möbius transforms by calibrating its vector field (see Fig.
1) with the vectors w1 and w2. These kind of maps have
useful properties for shrinking or separating clusters. In
general, with Lemma 4.1 we can also design other maps,
as rotations in Rn, with alternative constructions to more
classical strategies as the well known Procrustes problem.

5 Persistent Homology and Clusters

Cluster analysis is a fundamental component in the ana-
lysis of point cloud data (PCD). Recent developments
in applied topology have provided robust computational
and conceptual mechanisms for topological analysis of
PCD [3]. For instance, the persistent homology algo-
rithm provides qualitative information as the numbers
of components, holes or voids of a PCD. This informa-
tion is codified in the concept of Betti numbers, an alge-
braic topological construct characterizing a topological
space by the number of unconnected components, two
and three dimensional holes, (voids, circular holes), etc.
Another important task we require is a hierarchical clus-
ter analysis (dendrogram) of a PCD, together with a de-
tection of its center components. Recent developments
from applied topology have made first progress with add-
ressing these issues, both from a conceptual and compu-
tational point of view. [3]. A basic concept relating a
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given point cloud data X = {xi}
m
i=1 with its topologi-

cal structure is the notion of a ǫ-covering, denoted Xǫ,
and defined as the union of balls Bǫ(x) of radius ǫ > 0
centered around each x ∈ X ,

Xǫ =
⋃

x∈X Bǫ(x).

The output of the persistent homology algorithm is a
barcode of intervals representing a summary of the topo-
logical information, in the form of Betti numbers, for
each Xǫ, where ǫ ∈ [0, ǫmax]. As a straightforward appli-
cation, we present in Fig. 2 the persistent barcodes for
the PCD generated with the spectrogram of a corrupted
speech signal. The correct interpretation and usage of
persistent homology for analyzing frequency representa-
tion of signals is still work in progress, but the robust
conceptual machinery of this framework is a strong mo-
tivation for a better understanding of its properties.

Fig. 2. Betti barcodes of a PCD spectrogram of the
corrupted speech signal in the experiment of Fig. 5b.

6 Computational Experiments

In this section we present numerical examples concern-
ing the dimensionality reduction problem using synthetic
signals, based on modulation maps, and the separation
and classification of speech signals.

6.1 Frequency Modulated Manifolds

We first show a basic phenomena occurring when us-
ing dimensionality reduction methods in time domain
signals and their frequency representations. We present
the concept of frequency modulation manifold, based on
the standard notion of modulation techniques, but here
placed in a more geometrical setting. Modulation tech-
niques are well-known engineering procedures used to
transmit data by varying the frequency content of a car-
rier signal. We analyze, from a dimensionality reduction
viewpoint, a frequency modulation map A : Ω ⊂ Rd →
M ⊂ Rn, where M contains the carrier signals modu-
lated by Ω. We define Aα(ti) =

∑d

k=1 sin((α0
k + γαk)ti),

α = (α1, α2, α3) ∈ Ω, {ti}
n
i=1 ⊂ [0, 1]. The bandwidth

parameter γ controls each frequency band centered at
α0

k. The dataset to analyze (the modulated manifold) is

M = {Aα}α∈Ω, and for a Torus example Ω = T2, d = 3,
we notice the difficulty of recovering Ω with PCA, both
in time and frequency domains (Figs. 3b, 4a). Isomap
improves the reconstruction but still with a significant
distortion (Fig. 4b). These examples were generated
with α0

1 = 1000Hz, α0
2 = 1200Hz, α0

3 = 1400Hz, and a
bandwidth of 180Hz.

(a) (b)

Fig. 3. (a) The torus Ω = T2 ⊂ R3; (b) The PCA 3D
projection of M = {Aα}α∈Ω.

(a) (b)

Fig. 4. (a) The PCA 3D projection of the frequency
content of M. (b) The Isomap 3D projection of the
frequency content of M.

6.2 Separation of Speech Signals

In this second set of examples, we now separate speech
signals distorted with transient phenomena represented
by regular clicks. Recall that we use a non-blind strategy,
and a preliminary learning phase is required for storing
low-dimensional clusters for the speech and click com-
ponents. In the learning phase, we reduce the dimen-
sionality of the spectrogram data (from R

128 to R
8), and

we design a hyperbolic Möbius transform in R8, together
with a rotational map that moves and shrinks the click
cluster close to an element of the standard basis. In this
case filtering procedures and projection maps can be ap-
plied. The main transformations involved are invertible,
and we can then reconstruct signal data with RBF inter-
polation (Figs. 5,6). Despite the acoustical artifacts still
present in the current prototype, these preliminary re-
sults indicate a significant potential of our method, espe-
cially since no particular parameter calibration has been
implemented.
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(a) (b)

Fig. 5. (a) The spectrogram of the speech signal cor-
rupted by regular clicks (b) The point cloud data of the
speech and click signal in the learning phase.

(a) (b)

Fig. 6. (a) Extracting the speech signal (b) Extracting
the clicks signal

6.3 Classification of Speech Components

Another application of our framework are classifications
or identifications of consonants in a speech signal. The
analysis procedures are similar to the previous exam-
ple, but here no reconstruction step is required. With
PCA, an identification of the consonant cluster can be
achieved, but Isomap slightly improves the separation of
vocal and consonant clusters, which can then be further
improved with a Möbius map, designed with an attrac-
tive fixed point located in the center of the consonant
cluster (Figs. 7, 8).

(a) (b)

Fig. 7. (a) Spectrogram of speech signal (b) PCA pro-
jection with consonants (red) vs vocals (blue).
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Fig. 8. (a) Isomap projection and consonants (red) vs
vocal (blue) components (b) Isomap-Möbius projection.
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