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Abstract

Recent advances in nonlinear dimensionality reduction and manifold learning
have provided novel methods in the analysis of high-dimensional signals. In this
problem, a very large data set U ⊂ Rn of scattered points is given, where the data
points are assumed to lie on a compact submanifold M of Rn, i.e. U ⊂ M ⊂ Rn.
Moreover, the dimension of M is assumed to be much smaller than the dimension
of the ambient space Rn, i.e. dim(M) � n. Now, the primary goal in the data
analysis through dimensionality reduction is to construct a low-dimensional repre-
sentation of U . The dimensional reduction map is required to preserve intrinsic
geometrical and topological properties of the manifoldM in order to obtain a suffi-
ciently accurate (low-dimensional) approximation of U . In this project, we analyze
the effects of combining convolutions filters (using in particular suitable wavelet
transformations) with dimensionality reduction maps in order to improve the con-
struction of low-dimensional representations. This task involves the understanding
of the geometrical distortion caused by the convolution transform in the manifold
M. The properties of the resulting nonlinear dimensionality reduction method
are illustrated by numerical examples concerning low-dimensional parametrization
of scale modulated signals and solutions to the wave equation at varying initial
conditions.
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