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Abstract

Recent advances in the analysis of high-dimensional signal data have triggered an increasing
interest in geometry-based methods for nonlinear dimensionality reduction (NDR). In many appli-
cations, high-dimensional datasets typically contain redundant information, and NDR methods are
important for an efficient analysis of their properties. During the last few years, concepts from dif-
ferential geometry were used to create a whole new range of NDR methods. In the construction of
such geometry-based strategies, a natural question is to understand their interaction with classical
and modern signal processing tools (convolution transforms, Fourier analysis, wavelet functions). In
particular, an important task is the analysis of the incurred geometrical deformation when applying
signal transforms to the elements of a dataset. In this project, we propose the concept of frequency
modulation maps and modulation manifolds for the construction of particular datasets relevant in
signal processing and NDR. Moreover, we design a numerical algorithm for analyzing geometrical
properties of the modulation manifolds, with a particular focus on their scalar curvature. Finally,
in two numerical examples, we apply the resulting geometry-based analysis algorithm to two model
problems where we present geometrical and topological effects of relevance in manifold learning.
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