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Abstract. This is a survey of the results in [1, 2, 3, 4, 5, 6] on convexity
numbers of closed sets in Rn, homogeneity numbers of continuous colorings on

Polish spaces and families of functions covering Rn.

1. Convexity numbers of closed sets in R2

A natural way to measure the degree of non-convexity of a subset S of a real
vector space is the convexity number γ(S), the least size of a family C of convex
sets such that

⋃
C = S. We will almost exclusively consider closed subsets of Rn.

Moreover, we concentrate on sets whose convexity numbers are uncountable. Such
sets will be called uncountably convex. Sets with a countable convexity number are
countably convex.

A simple reason for a set S ⊆ Rn to be uncountably convex is the existence of
an uncountable m-clique C ⊆ S for some m ∈ ω. C ⊆ S is an m-clique if for all
F ∈ [C]m the convex hull of F is not a subset of S. It can be shown that every closed
set S ⊆ Rn that has an uncountable m-clique for some m in fact has a (nonempty)
perfect m-clique. In particular, we have γ(S) = 2ℵ0 for such a set. Let us point
out that Caratheodory’s theorem implies that a subset of Rn has an uncountable
m-clique for some m ∈ ω iff it has an uncountable (n + 1)-clique. Therefore, if we
are speaking about subsets of Rn, clique will always mean (n + 1)-clique.

It is natural to ask whether the existence of a perfect clique is the only reason
for a closed set S ⊆ Rn to have γ(S) = 2ℵ0 . Indeed, closed subsets of R are either
countably convex or have a perfect clique.

But this already fails in dimension 2. Kubís constructed a closed subset of R2

that does not have an uncountable clique but is still uncountably convex [6, Section
2, Theorem 1]. In particular, under CH the convexity number of the Kubís set is
2ℵ0 . From the construction it is clear that the convexity number of the Kubís set
can be characterized as follows.

For {x, y} ∈ [ωω]2 let

∆(x, y) = min{n ∈ ω : x(n) 6= y(n)}.

For {x, y} ∈ 2ω let

cmin(x, y) = ∆(x, y) mod 2.

A set H ⊆ [2ω]2 is cmin-homogeneous iff cmin is constant on [H]2. Now the con-
vexity number of the Kubís set is precisely hm, the least size of a family of cmin-
homogeneous subsets of 2ω that covers 2ω.

As it turns out, the construction of the Kubís set is in some sense the only way
to construct an uncountably convex, closed subset of R2 that does not have an
uncountable clique.
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For a Polish space X the set [X]2 of all two-element subsets of X carries a natural
topology, the one generated by the basic open sets of the form

{{x, y} : x ∈ U ∧ y ∈ V }

for disjoint open subsets U and V of X. A continuous function c : [X]2 → 2 is a
continuous pair coloring on X. A set H ⊆ X is c-homogeneous if c is constant on
[H]2. The homogeneity number hm(c) is the least size of a family of homogeneous
subsets of X that covers X. Note that hm = hm(cmin).

Kubís proved that for every closed set S ⊆ R2 that does not have an uncountable
clique there are sets Un, n ∈ ω, such that S =

⋃
n∈ω Un, the Un are Polish spaces

and for all n ∈ ω there is a continuous pair coloring cn on Un such that a subset
H of Un is cn-homogeneous iff the convex hull of H is a subset of S [6, Section 4,
Theorem 15].

This implies that convexity numbers of closed subsets of R2 without uncountable
cliques can be calculated by calculating homogeneity numbers of continuous pair-
colorings on Polish spaces.

2. Continuous pair colorings on Polish spaces

It was pointed out by Kojman that for every continuous pair-coloring c on a
Polish space X with hm(c) > ℵ0 we have hm(c) ≥ hm. More precisely, if c is a
continuous pair coloring on a Polish space X such that hm(c) > ℵ0, then there is
a topological embedding e : 2ω → X such that for all {x, y} ∈ [2ω]2, cmin(x, y) =
c(e(x), e(y)). In particular, for every c-homogeneous set H ⊆ X, e−1[H] is cmin-
homogeneous. Thus, a family of c-homogeneous subsets of X that covers X gives
rise to a covering family of the same size of cmin-homogeneous subsets of 2ω.

This implies that hm, the convexity number of the Kubís set, is minimal among
the convexity numbers of closed, uncountably convex subsets of R2. But what is
hm? It is easily checked that hm is at least as big as the covering numbers of the
ideals of measure zero sets and of meager sets on the real line. Another important
information was my observation that hm+ ≥ 2ℵ0 [6, Section 3, Lemma 8]. The
argument for this can be used to show that hm is 2ℵ0 in every model of set theory
that was obtained by forcing with a large side-by-side product over a model of GCH
[6, Section 6, Lemma 43].

On the other hand, Schipperus and I were able to show hm = ℵ1 in the Sacks
model ([6, Section 5, Theorem 38] is a slightly more general statement, due to
myself). Later I generalized our argument to show that in the Sacks model, for
every continuous pair coloring c on a Polish space X, hm(c) < 2ℵ0 [6, Section 5,
Theorem 40].

This implies the following dichotomy for closed sets S ⊆ R2: either S has a
perfect clique or there is a forcing extension of the universe in which γ(S) < 2ℵ0

[6, Section 5, Theorem 41]. The presentation of the non-geometrical part of [6] is
mostly due to myself.

We have already observed that hm is minimal among all uncountable homogene-
ity numbers of continuous pair colorings on Polish spaces. As it turns out, there is
also a continuous pair coloring cmax on 2ω whose homogeneity number is maximal
among all homogeneity number of continuous pair-colorings on Polish spaces [4,
Corollary 2.2]. The definition of cmax and the proof of the maximality of hm(cmax)
are due to myself, modulo the inequality hm ≥ d.

The proof of the consistency of hm(cmin) < hm(cmax) [4, Corollary 4.13] was
developed jointly with Goldstern and Kojman, except for a theorem about finite
graphs due to Alon [4, Lemma 4.4]. The presentation of the forcing part of [4] is
due to myself, the combinatorial part was written jointly by Kojman and myself.
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3. Covering squares by graphs of functions

The first proof of the inequality hm ≥ d was developed jointly with Goldstern
and used [4, Lemma 2.10], which is due to Kojman. The proof used a connection
between homogeneous sets and graphs of functions from ωω to itself. The cardinal
hm is the least size of a family F of functions from ωω to ωω such that for all
(x, y) ∈ (ωω)2 there is a function f ∈ F such that f(x) = y and the first n
coordinates of the input of f determine the first n coordinates of the output or
such that f(y) = x and the first n coordinates of the input of f determine the first
n + 1 coordinates of the output. In terms of the usual metric on ωω the functions
are Lipschitz of constant 1, respectively Lipschitz of constant 1

2 .
This characterization can be used to show that hm is not smaller than the co-

finality of the ideal of measure zero sets on the real line, the greatest cardinal in
Cichoń’s diagram [3, Theorem 4.1].

A characterization of hm that looks a bit more attractive was obtained by varying
the Lipschitz constants. Let us say that a function f : X → X covers a point
(x, y) ∈ X2 if f(x) = y or f(y) = x. I was able to prove that hm is precisely the
least size of a family of Lipschitz functions of arbitrary constant that covers all of
(ωω)2, respectively (2ω)2 [4, Theorem 3.6].

After the inequality hm ≥ d was established, I was able to show that the least
size of a family F of continuous functions from 2ω to 2ω that covers all of (2ω)2 is at
least d [4, Theorem 3.9], which easily implies hm ≥ d. The proof of this theorem on
continuous functions presented in [4] is a streamlined version of my original proof
and was found jointly with Kojman.

I used this result to show that least sizes of families of continuous functions that
cover (ωω)2, (2ω)2 and R2 are all the same [4, Theorem 3.11]. I also showed that
these cardinal invariants can be strictly smaller than hm [4, Theorem 5.1]. However,
a minor gap in the proof of this theorem in the first submitted version of the paper
was pointed out by the anonymous referee. The gap has been fixed in the current
version of [4].

4. Finite open pair covers

As mentioned before, the least sizes of families of Lipschitz functions that cover
(2ω)2 and (ωω)2 are the same, namely hm. I showed that the corresponding cardinal
invariant for R2 is at least hm [4, Remark 3.8]. However, it might be bigger than
hm in some models of set theory.

This cardinal invariant motivated a slight generalization of continuous pair col-
orings. Let X be a Polish space. C = (U1, . . . , Un) is a finite open pair cover on
X iff the Ui are open and [X]2 = U1 ∪ · · · ∪ Un. H ⊆ X is C-homogeneous if for
some i, [H]2 ⊆ Ui. We define the homogeneity number hm(C) in the same way as
for continuous pair colorings.

It is not difficult to show that there is a finite open pair cover C on R2 such that
the C-homogeneous sets are graphs of Lipschitz functions or reflections of graphs
of Lipschitz functions on the diagonal. In other words, the least size of a family of
Lipschitz functions that covers R2 is not bigger than the homogeneity number of a
certain open pair cover on a Polish space [3, Example 2.4].

Surprisingly, uncountable homogeneity numbers of finite open pair covers can
be smaller than hm (consistently) [3, Example 2.2], but they are not bigger than
hm(cmax) [3, Theorem 3.4]. This implies that the least size of a family of Lipschitz
functions that covers R2 is not bigger than hm(cmax).
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5. Covering Xn by graphs of functions

All of the more interesting consistency results mentioned so far use models of
2ℵ0 = ℵ2. One of the most interesting question in this field is the question whether
hm(cmax) < 2ℵ0 or even hm < 2ℵ0 is consistent with 2ℵ0 > ℵ2. This seems to be
wide open.

However, if we are more modest, we can get positive results in this direction.
Abraham and I showed that the least size of a family of continuous functions that
covers R2 can be smaller than 2ℵ0 , even if the continuum is big. I later generalized
this result to higher dimensions:

A point (x0, . . . , xn) ∈ Xn+1 is covered by a function f : Xn → X iff there
is a permutation σ of n + 1 such that f(xσ(1), . . . , xσ(n)) = xσ(0). By an ancient
theorem of Kuratowski, for every infinite cardinal κ the number of n-ary functions
on κ needed to cover the (n + 1)-th power of the n-th successor of κ, i.e., the set
(κ+n)n+1, is exactly κ.

Now for every infinite cardinal κ with κ+n ≥ 2ℵ0 there is a c.c.c.-forcing extension
of the universe in which 2ℵ0 = κ+n and Rn+1 is covered by κ continuous n-ary
functions [1, Theorem 4.1]. The other results in [1] are due to myself.

6. Convexity numbers in higher dimensions

So far we have only discussed convexity numbers of closed subsets of R and R2.
In higher dimensions it is easier to construct uncountably convex closed sets.

In [5] for every n > 2 an uncountably convex, closed subset Sn of Rn has been
constructed whose convexity number can be small (i.e., = ℵ1) while the continuum
is arbitrarily large. For m ≥ n > 2 we have γ(Sm) ≤ γ(Sn).

For every finite set F ⊆ N \ 3 the convexity numbers of the sets Sn, n ∈ F , can
be made pairwise different in a forcing extension of the universe.

Since a closed subset of Rm can be embedded into Rn for every n ≥ m, this
shows that in dimension n > 2 we can simultaneously have n − 1 different un-
countable convexity numbers of closed subsets of R2. The geometric construction
is essentially due to Kojman, the forcing construction, the related combinatorics,
and the presentation are due to myself.

Two things are missing here: It would be nice to have a reasonable description
of uncountably convex subsets of Rn for n > 2. Recall that such a description is
available in dimension 2. Moreover, it would be nice if in dimension n we could
realize at least n different uncountable convexity numbers of closed sets. The
problem here is that the forcing that takes care about the convexity numbers in
dimensions > 2 makes hm, the convexity number of the Kubís set in R2, equal to
2ℵ0 .

While we do know that in dimension 1 we only have one uncountable convexity
number of a closed set and in dimension 2 we have at most two such numbers,
nothing is known about upper bounds for the number of uncountable convexity
numbers in higher dimensions. The best result concerning such questions is that
for all n ≥ 2 there is an uncountably convex closed set S ⊆ Rn+1 whose convexity
number is consistently strictly smaller than any convexity number of an uncount-
ably convex, closed subset of Rn [2, Corollary 2.5]. In this sense, there are more
possibilities for uncountable convexity numbers in Rn+1 than in Rn.

Another natural question is whether in dimension n > 2 the existence of a perfect
clique is the only (absolute) reason for a closed set S ⊆ Rn to have γ(S) = 2ℵ0 .
In other words, do we have a forcing dichotomy (as in dimension 2) saying that
S either has a perfect clique or its convexity number can be forced to be smaller
than 2ℵ0? The answer is no. There is a closed set S ⊆ R3 without uncountable
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cliques whose convexity number is 2ℵ0 in every forcing extension of the universe [2,
Corollary 3.5].
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