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Abstract. Let K be the class orderedf all inverse limits G = lim
←−n∈N

Gn

where each Gn is a finite ordered graph. G ∈ K is universal if every
B ∈ K embeds continuously into G.

Theorem (1). For every finite ordered graph A there exists a least nat-
ural number k(A) ≥ 1 such that for every universal G ∈ K, for every

finite Baire measurable partition of the set
(
G
A

)
of all copies of A in G,

there is a closed copy G′ ⊆ G of G such that
(
G′

A

)
meets at most k(A)

parts. In the arrow notation:

G→Baire (G)A<∞|k(A).

Theorem (2). The probability that k(A) = 1, for a finite ordered
graph A, chosen randomly with uniform probability from all graphs on
{0, 1, . . . , n − 1}, tends to 1 as n grows to infinity, where k(A) is the
number given by Theorem (1).

As a corollary:

Theorem (3). The class K with Baire partitions satisfies with high
probability the A-partition property for a finite ordered graph A, where
the A-partition property is

(∀B∈K)(∃C∈K) C →Baire (B)A.

1. introduction

We consider open partitions of n-tuples from inverse limits of finite or-
dered graphs, and particularly from universal inverse limit graphs G, into
which all inverse limit graphs embed as closed subgraphs. Such universal
graphs can be defined with no mention of inverse systems as follows:

Definition 1.1. A universal inverse limit of finite ordered graphs is a triple
G = 〈V,E,<〉 where:

• V is a compact subset of R \Q, E ⊆ [V ]2 and < is the restriction of
the standard order on R to V .
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• (Modular profiniteness) For any two distinct vertices u, v ∈ V there
is a partition of V to finitely many closed intervals such that
(a) u, v belong to different intervals from the partition;
(b) every interval I in the partition is a module in G, that is, for

all v ∈ V \ I and for all x, y ∈ I, vEx ⇐⇒ vEy.
• (Universality) every nonempty open interval of V contains induced

copies of all finite ordered graphs.

The universality condition implies that V has no isolated points and also
that every inverse limit graph G, or, equivalently, a graph that satisfies the
first two conditions, embeds into G via a continuous order preserving map.

The standard question in infinite Ramsey Theory is whether for suitable
partitions of n-tuples from a structure, there is a copy of the structure in
itself on which the partition satisfies stricter conditions. The vertex set of
every copy of a universal profinite ordered graph in itself is a topologically
perfect subset of R, so let us begin by recalling Blass’ partition theorem for
topologically perfect subsets of R. Confirming a conjecture of Galvin, who
also proved his conjecture for n ≤ 3, Blass proved [2] that for every positive
natural number n and a topologically perfect subset P ⊆ R, for every finite
Baire- or Lebesgue-measurable partition of [P ]n, the set of all n-tuples from
P , there is a topologically perfect P ′ ⊆ P such that [P ′]n meets at most
(n− 1)! parts.

Blass actually identified an open partition of n-tuples from the Cantor
space 2N (which embeds into every perfect set) to (n − 1)! parts which is
(a) persistent : every topologically perfect P ⊆ 2N has n-tuples in each of
the (n − 1)! parts; and (b) basic for Baire and Lebesgue measurable finite
partitions: for every finite Baire or Lebesgue measurable partition of [2N]k

there is a closed copy P ⊆ 2N of 2N on which the part of any n-tuple in
the Blass open partition determines its part in the given partition. The
Blass types are conveniently described in terms of the standard binary tree
representation of 2N (see [20], where also a proof of Blass’ theorem using
Milliken’s theorem is given).

Back to universal inverse limits, the mapping from an n-tuple to the
isomorphism type of the ordered graph it induces is continuous, and in each
copy of a universal inverse limit G in itself all isomorphism types of finite
ordered graphs occur. Thus one may as well look separately at partitions of
copies of a each ordered graph A. every copy G′?

For each finite ordered graph A we identify a finite open partition of the
set

(
G
A

)
of all copies of A in G to k(A) parts, called types, which is persis-

tent under taking copies of G in itself and basic for finite Baire-measurable
partitions. (In a context like this, the numbers of types is called a Ram-
sey degree. See Section 10 of [12] for the introduction and a discussion of
Ramsey degrees in a general setting.)

The number of types that occur in
(
G
A

)
for a given ordered graph A de-

pends strongly on the edge relation of A. For A with trivial graph structure,
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e.g. a complete graph or a graph with no edges of size n, the number k(A)
exceeds the number (n−1)! of Blass’ types. However — perhaps surprisingly
— for a generic A, k(A) = 1: the probability that k(A) = 1 for a graph A
chosen with uniform probability on {0, 1, . . . , n − 1} tends to 1 as n grows
to infinity. A random graph structure can almost certainly have only one
type (see below).

Thus, the class of all inverse limits of finite ordered graphs satisfies the
A-partition property with Baire-measurable partitions for a finite ordered
graph A for ”most” A, where the A partition property means, following [15]:
for every inverse limit of finite ordered graphs B there exists and inverse limit
of finite ordered graph C such that for every Baire measurable partition of(
C
A

)
to finitely many parts there is a closed copy of B in C such that

(
B
A

)
meets exactly one of the parts. In the arrow notation:

C → (B)A.

Proving the theorem only in the generic case is easier and can be done
without appealing to the Halpern-Läuchli partition theorem for trees. We
do not separate the proof of the generic case from the proof of the general
case below, but we do indicate after Lemma 3.3 below how to finish the
proof for the generic case without Halpern-Läuchli.

Let us remark that, as k(A) = 1 for the complete graphs of size 2, universal
ordered inverse limit graphs G satisfy the following relation, which Rado’s
countable homegeneous and universal graph does not:

G→ (G)2.

Finally, a similar theorem about partitions of infinite closed subgraphs of
universal inverse limits holds, but unlike the theorem presented here, we do
not have for it at the moment a proof which does not use Forcing. It will
be presented elsewhere.

2. Preliminaries and Notation

2.1. Modular profinite graphs of countable weight. Let X be a topo-
logical space. A graph G with the vertex set X is clopen if the edge-relation
of G is a clopen subset of X2 \ {(x, x) : x ∈ X}.
G is [ordered] modular profinite if it is the inverse limit of a system of

[ordered] finite graphs whose bonding maps are [order-] modular. The name
modular profinite is chosen in analogy to profinite groups, which are inverse
limits of systems of finite groups. A thorough treatment of inverse limits of
graphs can be found in [4]. Here we call a map f from the vertex set V (G)
of a graph G to the vertex set V (H) of a graph H [order-] modular if for
all v, w ∈ V (G), either f(v) = f(w) or {v, w} ∈ E(G) iff {f(v), f(w)} ∈
E(H) [and v ≤ w iff f(v) ≤ f(w)]. Clearly, for each [order-] modular map
f : V (G) → V (H) and each vertex v ∈ V (H), the inverse image f−1(v)
is a [order-] module of G, i.e., a set M of vertices of G such that for all
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u ∈ V (G) \ M either u is adjacent to all vertices in M or to no vertex
in M [and f−1(v) is an interval]. If f : G → H is [order-] modular, then
{f−1(v) : v ∈ V (H)} is a [order-] modular partition of G, i.e., a partition
of the vertex set of G into [order-] modules, and the induced subgraph of
H on the range of f is the [ordered] modular quotient of G by this modular
partition.

In [4] modular profinite graphs have been studied in detail and it was
shown that a graph G on a topological space X is modular profinite if and
only ifX is compact and zero-dimensional, G is a clopen graph onX, and the
modular partitions of G into finitely many clopen sets separate the vertices
of G.

For the purpose of this article it is unnecessary to go into more details of
the definition of modular profinite graphs. It is enough to use the following
description of modular profinite graphs of countable weight, using the Baire
space of all infinite sequences of integers, ωω:

For distinct points x, y ∈ ωω let ∆(x, y) denote the minimal n ∈ ω with
x(n) 6= y(n). The Baire space is a complete and separable metric space
under the metric that assigns to two different sequences η, ν the distance
1/(∆(η, ν) + 1). Let S ⊆ ωω be a closed set with respect to the metric
topology just defined on ωω. A coloring c : [S]2 → 2 is of depth 1 if for
all {x, y} ∈ [S]2 the color c(x, y) only depends on x � (∆(x, y) + 1) and
y � (∆(x, y) + 1). The coloring c corresponds to the graph Gc = (S, c−1(1)).
If the coloring c : [S]2 → 2 is of depth 1 and S is compact, then the graph Gc
is modular profinite. Moreover, every modular profinite graph of countable
weight is isomorphic to a graph of the form Gc [4, Theorem 3.9].

Talking about modular profinite graphs of the form Gc becomes easier if
we can use the language of trees in the sense of set theory. Recall that a tree
is a partially ordered set (T,≤) where for each t ∈ T the set {s ∈ T : s ≤ t}
is wellordered by ≤. A subtree S of a tree (T,≤) is a subset of S such that
for all s ∈ S and t ∈ T , if t ≤ s, then t ∈ S. All the trees that we consider
in this article are subtrees of ω<ω, the tree of finite sequences of natural
numbers ordered by inclusion. Note that for s, t ∈ ω<ω, we have s ⊆ t iff s
is an initial segment of t. If T is a tree and s, t ∈ T , then s is an immediate
successor of t iff s is a minimal element of T above t. The set of immediate
successors of t in T is denoted by succT (t). An element t of T is a splitting
node of T if t has at least two immediate successors. T is perfect if every
t ∈ T extends to a splitting node of T .

A modular ordered profinite graph G of countable weight is described by
the following data: the set V of vertices, which is a compact subset of the
lexicographically ordered Baire space ωω, and for each

t ∈ T = T (V ) = {x � n : x ∈ V ∧ n ∈ ω}

a graph Gt on the set succT (t) such that distinct successors s0, s1 ∈ succT (t)
form an edge in Gt iff all x, y ∈ V with s0 ⊆ x and s1 ⊆ y form an edge in G.
Since the coloring c : [V ]2 → 2 corresponding to G is of depth 1, for t, s0, s1
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as above, either all x, y ∈ V with s0 ⊆ x and s1 ⊆ y form an edge in G or
no such pair forms an edge. Thus, for every t ∈ T , the set {x ∈ V : t ⊆ x}
is an order-module in G.

In [5] it was proved that there is a universal modular profinite graph
of countable weight, but using the language of continuous colorings. Such
universal graphs are not unique up to isomorphism, but are unique with
respect to bi-embeddability. A detailed description of such a graph is as
follows:

Let R be the Rado graph, i.e., the unique countable universal and homo-
geneous graph. We assume that the set of vertices of R is just the set ω of
natural numbers. For each n ∈ ω let Rn denote the induced subgraph of R
on the set {0, . . . , n}. Now consider the subtree Tmax of ω<ω that consists
of all t ∈ ω<ω such that for all for all i ∈ |t|, t(i) ≤ i, where |t| denotes the
length of the sequence t. For each t in Tmax we choose Gt such that the map

succTmax(t)→ {0, . . . , |t|}; s 7→ s(|t|)

is an isomorphism between Gt and R|t|. This induces a graph structure on
the space [Tmax] of branches of Tmax. We call this graph Gmax.

Let us introduce some more notation for trees. For a subtree T of ω<ω

and t ∈ T let

Tt = {s ∈ T : t ⊆ s ∨ s ⊆ t}.
For a subset Z of T let

TZ = {s ∈ T : s is comparable with some t ∈ Z}.

For n ∈ ω let LevT (n) = {t ∈ T : |t| = n}. Observe that for all t ∈ ω<ω the
natural number |t| coincides with the domain of t. Also, |t| is the height of t
in any subtree T of ω<ω with t ∈ T . Finally, given s, t ∈ ω<ω ∪ ωω, let s ∧ t
denote the longest common initial segment of the two sequences s and t.

We shall be using the following fundamental induced Ramsey theorem:

Theorem 2.1 (Nešetřil, Rödl [15], also see [1]). For every finite number r
and finite ordered graphs B and L there is a finite ordered graph D such
that for every coloring of the induced copies of L in D by r colors there is
an induced copy of B in D in which all copies of L are colored by a single
color. In symbols:

D � (B)Lr .

Note that the Nešetřil-Rödl theorem implies that for any finite number
N and all finite ordered graphs B and L there is a finite ordered graph D
such that for any family C of at most N colorings of the induced copies of
L in D by two colors, there is a copy B′ of B in D such that each of the
colorings in C is constant on the induced copies of L in B′. This is because
we can code the N colorings in C by a single coloring c with 2N colors and
then apply the Nešetřil-Rödl theorem with r = 2N many colors, which, of
course, follows from the version with 2 colors.
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Lemma 2.2. If H is any finite ordered graph and t ∈ Tmax then there is
an extension s of t in Tmax such that H embeds (via an order preserving
embedding) into Gs, where we consider Gs as an ordered graph with respect
to the lexicographic order on the vertices of Gs.

Proof. We consider the random graph with the usual ordering on ω. Since
the graphs Gt are isomorphic to the initial segments Rn of R, it is enough
to show that each finite ordered graph H embeds into the ordered random
graph R.

Let v1, . . . , vk be the increasing enumeration of the vertices of H. We
define an order preserving embedding e : H → R as follows: Choose
e(v1) ∈ V (R) arbitrarily. Now assume that we have chosen e(v1), . . . , e(vi)
for some i ∈ {1, . . . , k − 1} such that e � {v1, . . . , vi} is an order preserving
embedding of the induced subgraph on {v1, . . . , vi} into R. By the exten-
sion property of the random graph, there is a vertex w of R such that
(e � {v1, . . . , vi}) ∪ {(vi+1, w)} is an embedding of the induced subgraph on
the set {v1, . . . , vi, vi+1} into R as unordered graphs. But it is easy to see
that in fact, there are infinitely many such vertices w. Hence we can find
one that is larger than all the vertices e(v1), . . . , e(vi) and call it e(vi+1).
This finishes the recursive construction of e. �

We are interested in induced subgraphs of Gmax that contain copies of
Gmax itself. One way of getting such subgraphs is by constructing sufficiently
large subtrees of Tmax. Given a subtree T of Tmax, for each t ∈ T let GTt
denote the induced subgraph of Gt on the set of immediate successors of t
in T . Also, let G(T ) denote the induced subgraph of Gmax on the set [T ] of
infinite branches of T .

We call a tree T ⊆ Tmax a Gmax-tree if for every finite ordered graph H
and all t ∈ T there is s ∈ T such that t ⊆ s and H embeds into GTs .

The main techniques of building a Gmax-subtree S of a Gmax-tree T is
fusion: A sequence (Tk)k∈ω is a fusion sequence with witness (mk)k∈ω if the
following hold:

(1) (mk)k∈ω is a strictly increasing sequence of natural numbers.
(2) For all k, ` ∈ ω, if k < `, then T` is a Gmax-subtree of Tk such that

LevTk(mk) = LevT`(mk).
(3) For every finite ordered graph H, every k ∈ ω, and every t ∈

LevTk(mk) there is ` > k such that t has an extension s in T` such
that |s| < m` and H embeds into GT`s .

It is easily checked that if (Tk)k∈ω is a fusion sequence witnessed by
(mk)k<ω, then the fusion

⋂
k∈ω Tk =

⋃
k∈ω(Tk ∩ ω≤mk) is a Gmax-tree. In

practice, whenever we construct a fusion sequence (Tk)k∈ω witnessed by
(mk)k∈ω, we will use some book-keeping that tells us that when we have
already chosen Tk and mk, we now have to find a splitting node s above a
certain t ∈ LevTk(mk) such that a certain finite ordered graph H embeds
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into G
Tk+1
s . With the right book-keeping, which we will not specify precisely,

this guarantees that (Tk)k∈ω is a fusion sequence witnessed by (mk)k∈ω.
For technical reasons we will sometimes assume that the Gmax-trees under

consideration are skew, where a subtree T of ω<ω is skew if for all n T has
at most one splitting node at level n.

In some specific situations less book-keeping is required to constuct Gmax

subtrees of a given Gmax-tree T . If S is a subtree of a subtree T of ω<ω

we say that S is a strong subtree of T if every splitting node s of S satisfies
succS(s) = succT (s). A Gmax-tree T is normal if for all t, s ∈ T with t ⊆ s
the following holds: if the finite ordered graph Rn embeds into GTt , then
either GTs has only a single vertex or Rn+1 embeds into GTs .

If T is a normal Gmax-tree, t ∈ T , and H is any finite ordered graph, then,
in order to find an extension s of t in T such that GTs contains a copy of H
all we have to do is to find any extension s of t that has enough restrictions
that are splitting nodes. This will simplify the construction in the proof of
Lemma .

Using fusion, we see that every Gmax-tree has a Gmax-subtree that is both
skew and normal.

Lemma 2.3. If T is a normal Gmax-tree and S ⊆ T is a perfect strong
subtree of T , then S is a Gmax-tree.

Proof. Let s ∈ S and let H be a finite ordered graph. Let n ∈ ω be such
that H embeds into Rn. Since S is perfect, s has an extension t in S that is
a splitting node and also has n restrictions that are splitting nodes. Since
T is normal and t has at least n restrictions that are splitting nodes in T ,
Rn embeds into GTt . Since S is a strong subtree of T and t is a splitting
node of S, succT (t) = succS(t). It follows that Rn and hence H embeds into
GSt . �

Definition 2.4. For n ≥ 1 we define a topology on [Gmax]n as follows: A
set O ⊆ [Gmax]n is open if for all H ∈ O there are open neighborhoods
U1, . . . , Un of the vertices of H such that all H ′ ∈ [Gmax]n that have exactly
one vertex in each Ui are also in O. This topology is separable and induced
by a complete metric. A coloring of n-tuples from Gmax is continuous if it
is continuous with respect to this topology.

2.2. Types. Let T be a Gmax-tree and let H and H ′ be finite induced
subgraphs of G(T ). We say that H and H ′ are strongly isomorphic if there
is an isomorphism ϕ : H → H ′ of ordered graphs such that for all 2-element
sets {x, y} and {x′, y′} of vertices of H we have

∆(x, y) ≤ ∆(x′, y′)⇔ ∆(ϕ(x), ϕ(y)) ≤ ∆(ϕ(x′), ϕ(y′)).

The type of a finite induced subgraph H of G(T ) is its strong isomorphism
type. The map from n-tuples from Gmax to their type τ is continuous. Let
us call a type τ skew if for all x 6= y and x′ 6= y′, if ∆(x, y) = ∆(x′, y′)
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then x∧ y = x′ ∧ y′, that is, there is at most one meet at each height in the
subtree generated by the n-tuple.

Among all types of n-tuples let us single out the equidistant type, the type
in which ∆(x, y) = k for some fixed k for all x 6= y in the n-tuple, and thus
also x ∧ y is fixed for all x 6= y.

Claim 2.5. If the type τ of an n-tuple x0 < x1 · · · < xn−1 from Gmax

is not the equidistant type then the ordered subgraph of Gmax spanned by
{x0, . . . , xn−1} has a non-trivial order-module.

Proof. Let t0 be a node of maximal height which is a tree-meet of two distinct
points from the n-tuple. Let I = {xi : t0 ⊆ xi, i < n}. By the choice of t0 it
follows that |I| ≥ 2, that I is an interval in 〈x0, x1 . . . , xn−1〉 and xi∧xj = t0
for all xi 6= xj in I. Since τ is not the equidistant type, |I| < n. Let xi /∈ I
be arbitrary and fix some xj ∈ I. As ∆(xi, xj) 6= |t0|, the maximality of
|t0| shows that ∆(xi, xj) < |t0| and consequently there is some s0 ⊆ t0 with
|s0| < |t0| such that xi ∧ xj = s0 for all xj ∈ I. Thus, for all xj , xk ∈ I it
holds that xj < xi ⇐⇒ xk < xi and xjExi ⇐⇒ xkExi, affirming that I
is an order-module. �

Given a type τ of a finite induced subgraph of G(T ), we denote by
(
G(T )
τ

)
the set of all induced subgraphs of G(T ) of type τ .

Corollary 2.6. The probability for a graph on {0, 1, . . . n− 1}, chosen ran-
domly with uniform probability, to have a copy in a Gmax with respect to any
ordering with a type which is not the equidistant type, tends to 0 as n grows
to infinity.

Proof. It is enough to show that the probability of having a non-trivial
module tends to zero as n grows, since a graph with no non-trivial module
has no non-trivial order-module with respect to any ordering.

Suppose that I ⊆ {0, 1, . . . n− 1} is a nontrivial module of a graph on
{0, 1, . . . n− 1}. Then there are distinct i, j ∈ I and ` < n outside I.
Suppose there is x < n, distinct from i, j and `, such that i and x form an
edge iff j and x do not and moreover, ` and i form an edge iff ` and x do not.
Then, since i, j ∈ I and I is a module, we have x ∈ I as well. By the same
argument for x, i and ` instead of i, j and x, ` ∈ I. But this contradicts the
choice of `.

It is a standard calculation that the probability that for every triple
{i, j, `} ⊆ {0, 1, . . . , n− 1} there exists x as above tends to 1 as n tends
to infinity. �

2.3. The Halpern-Läuchli theorem. For the last step of the proof of the
main theorem we shall be needing the classic partition theorem on level-
products of trees by Halpern and Läuchli.



PARTITIONING SUBGRAPHS OF PROFINITE ORDERED GRAPHS 9

Definition 2.7. Let T be a subtree of ω<ω. For every D ⊆ T and n ∈ ω let
LevD(n) = D ∩ ωn. For subtrees T1, . . . , T` of ω<ω let⊗̀

i=1

Ti =
⋃
n∈ω

∏̀
i=1

LevTi(n).

For D1 ⊆ T1, . . . , D` ⊆ T` let⊗̀
i=1

Di =
∏̀
i=1

Di ∩
⊗̀
i=1

Ti.

For n,m ∈ ω with n ≤ m, a sequence (D1, . . . , D`) with D1 ⊆ T1, . . . , D` ⊆
T` is (n,m)-dense in

⊗`
i=1 Ti if for all (t1, . . . , t`) ∈

∏`
i=1 LevTi(n) there is

(d1, . . . , d`) ∈
∏`
i=1 LevDi(m) with t1 ⊆ d1, . . . , t` ⊆ d`.

Theorem 2.8 (Halpern-Läuchli). Let `, k > 0 be natural numbers and
let T1, . . . , T` be finitely splitting subtrees of ω<ω. For every coloring c :⊗`

i=1 Ti → k there are t1 ∈ T1, . . . , t` ∈ T` and D1 ⊆ (T1)t1 , . . . , D` ⊆ (T`)t`
such that c is constant on

⊗`
i=1Di and for every n ∈ ω there is m ≥ n such

that (D1, . . . , D`) is (n,m)-dense in
⊗`

i=1(Ti)ti.

This version of the Halpern-Läuchli Theorem follows easily from Theorem
1 in Halpern and Läuchli’s original paper [10] and is essentially the version
of the theorem that is quoted by Blass in [2]. See Section 3.1 in [20] for
various other formulations of the theorem.

3. The main theorem

Theorem 3.1. For every type τ of a finite induced subgraph of Gmax, every

Gmax-tree T and every continuous coloring c :
(
G(T )
τ

)
→ 2 there is a Gmax-

subtree S of T such that c is constant on
(
G(S)
τ

)
.

We prove this theorem in a series of lemmas. First we fix a type τ of a
finite induced subgraph of Gmax and a continuous coloring c :

(
Gmax

τ

)
→ 2.

We may assume that the type τ is skew. Otherwise, given a Gmax-tree

T , we choose a skew Gmax-subtree S of T and then
(
G(S)
τ

)
is empty. In

particular, c is constant on
(
G(S)
τ

)
. This proves Theorem 3.1 in the case that

τ is not skew.
Now fix a Gmax-tree T . If H is a finite induced subgraph of G(T ), let

∆(H) denote the maximal ∆(x, y) of two distinct vertices of H. For n ∈ ω
let H � n = {x � n : x is a vertex of H}

Lemma 3.2. There is a Gmax-subtree S of T such that for the induced
subgraphs H of G(S) of type τ the color c(H) depends only on H � (∆(H) +
1).

Proof. First consider a single finite induced subgraph H of G(T ) of type τ .
By our definition of ∆(H), the map x 7→ x � (∆(H) + 1) is a bijection from
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the set V (H) of vertices of H onto H � (∆(H) + 1). Let t1, . . . , t` denote
the elements of H � (∆(H) + 1). For all x = (x1, . . . , x`) ∈ [Tt1 ]× · · · × [Tt` ]
the induced subgraph of G(T ) on the set {x1, . . . , x`} is isomorphic to H.
By the continuity of c, for all such x there are open neighborhoods Ux1 3
x1, . . . , U

x
` 3 x` such that for all (y1, . . . , y`) ∈ Ux1 ×· · ·×Ux` for the induced

subgraph H ′ of G(T ) on the vertices y1, . . . , y` we have c(H) = c(H ′).
We may assume that the Uxi are basic open sets, i.e., sets of the form [Tr]

for some r ∈ T . Since the space [Tt1 ]×· · ·× [Tt` ] is compact, there is a finite
set F ⊆ [Tt1 ]× · · · × [Tt` ] such that

[Tt1 ]× · · · × [Tt` ] =
⋃
x∈F

∏̀
i=1

Uxi .

Hence there is some m ∈ ω, namely the maximal length of the r’s with
[Tr] = Uxi for some x ∈ F and i ∈ {1, . . . , `}, such that for all induced
subgraphs H ′ of G(T ) with H ′ � (∆(H) + 1) = H � (∆(H) + 1) the color
c(H ′) only depends on H ′ � m.

Since for each m ∈ ω there are only finitely many sets of the form H � m
where H is a subgraph of G(T ), there is a function f : ω → ω such that for
every finite induced subgraph H of G(T ) with ∆(H)+1 = n, the color c(H)
only depends on H � f(n). Now let S be a Gmax-subtree of T such that
whenever s ∈ S is a splitting node of S of length n, then S has no splitting
node t whose length is in the interval (n, f(n)]. Now for subgraphs H of
G(S) of type τ the color c(H) only depends on H � (∆(H) + 1). �

Lemma 3.3. Assume that for all finite induced subgraphs H of G(T ) of
type τ the color c(H) only depends on H � (∆(H) + 1). Then there is a
Gmax-subtree S of T such that for the induced subgraphs H of G(S) of type
τ the color c(H) only depends on H � ∆(H).

Proof. Let H be an induced subgraph of G(T ) of type τ . We call the unique
node t0 ∈ LevT (∆(H)) that has at least two incomparable extensions in
H � (∆(H) + 1) the highest splitting node of H. Let L be the induced
subgraph of GTt0 whose vertices are the extensions of t0 in H � (∆(H) + 1).

Let t1, . . . , t` be the elements of H � (∆(H) + 1) that are not extensions

of t0. Let t = (t1, . . . , t`). The `-tuple t determines a coloring ctt0 of the

induced copies of L in GTt0 by two colors:

Given an induced copy L′ of L in GTt0 let s1, . . . , sk be the vertices of L′.
Choose

(z1, . . . , zk, y1, . . . , y`) ∈ [Ts1 ]× · · · × [Tsk ]× [Tt1 ]× · · · × [Tt` ].

Now {z1, . . . , zk, y1, . . . , y`} is the set of vertices of a copy H ′ of H in G(T ) of

type τ . Let ctt0(L′) = c(H ′). Since c(H ′) depends only on H ′ � (∆(H) + 1),
c(H ′) does not depend on the choices of the zi and yj .

We construct the required subtree S of T . We do that by choosing a
fusion sequence (Tk)k∈ω along with a strictly increasing sequence (mk)k∈ω
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of natural numbers witnessing that the Tk form a fusion sequence. First let
T0 = T and m0 = 0. Suppose Tk and mk have been chosen already. Some
book-keeping device tells us that for a certain node t ∈ LevTk(mk) and a
certain finite ordered graph B there has to be an extension t0 ∈ Tk+1 of

length < mk+1 such that B embeds into G
Tk+1

t0
.

We will choose Tk+1 andmk+1 such that t is the only element of LevTk(mk)
that has an extension of length < mk+1 in Tk+1 that is a splitting node. Also,
t will only have a single extension of length < mk+1 in Tk+1 that is a splitting
node. In particular, we know in advance the size of LevTk+1

(|t0|+ 1). This

gives us a finite upper bound on the number of colorings of the form ctt0 of

the induced copies of L in GTkt0 . Let N denote this upper bound.
By the Nešetřil-Rödl theorem (Theorem 2.1 above) and the remark im-

mediately following it, there is a finite ordered graph D such that for every
collection of at most N colorings by two colors of the induced copies of L in
D, there is an induced copy B′ of B in D such that all induced copies of L
in B′ have the same colors with respect to all of the N colorings.

Since Tk is a Gmax-tree, there is an extension t0 of t in Tk such that D

embeds into GTkt0 . Let mk+1 = |t0|+ 1. Choose a set Z ⊆ LevTk(mk+1) such
that each element of LevTk(mk) other than t has exactly one extension in Z
and such that t has no extension in Z. Now for all t = (t1, . . . , t`) ∈ Z` such
that there is an induced subgraph H of G(Tk) with

H � |t0| = {t0, t1 � |t0|, . . . , t` � |t0|}

we consider the coloring ctt0 . By the choice of D, GTkt0 contains an induced

copy B′ of B such that all the relevant colorings ctt0 are constant on the set
of induced copies of L in B′.

Let Y be the set of vertices of B′ and let Tk+1 = (Tk)Y ∪Z . This finishes
the recursive construction of the trees Tk and of the natural numbers mk.
Let S be the fusion

⋂
k∈ω Tk of the sequence (Tk)k∈ω. Then S is a Gmax-tree

by our book-keeping.
Let H be an induced subgraph of G(S) of type τ . Let t0 be the highest

splitting node of H. Choose k ∈ ω such that mk ≤ |t0| < mk+1. Let
t1, . . . , t` denote the elements of H � (|t0|+ 1) and let t = (t1, . . . , t`). Since
S is skew by construction, the set {t1, . . . , t`} is uniquely determined by

H � |t0|. But since Tk+1 was chosen so that all induced copies of L in G
Tk+1

t0

have the same color with respect to ctt0 , c(H) actually does not depend on

the copy of L inside G
Tk+1

t0
that lives on the vertices succTk+1

(t0). Any other

copy of L in G
Tk+1

t0
would yield the same color. Now G

Tk+1

t0
= GSt0 . It follows

that c(H) only depends on H � |t0| = H � ∆(H). �

Remark: With Lemma 3.3 the proof of Theorem 3.1 can be completed for
the generic case of graphs with no nontrivial modules: for such a graph H,
H � ∆(H) is a single point. For all nodes t for which there is some graph
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of type τ with {t} = H � ∆(H) let the color of t be defined as the color
of some such H. This definition does not depend on the choice of H, by
Lemma 3.3, and assigns a color to all sufficiently high nodes t. Now either
there is a node t such that all t′ extending t are of the first color, or there is
a dense set of nodes t′ of the other color. Now it is straightforward to find
a fusion sequence in which all splitting nodes are of the same color, thus
proving the theorem in this case.

For the general case more work is needed, in which the Halpern-Läuchli
Thoerem plays a crucial role. The general proof covers also the special case
which was sketched in the remark above.

Definition 3.4. For a finite induced subgraph H of G(T ) of type τ let ∆′(H)
denote the minimal n ∈ ω such that |H � n| = |H � ∆(H)|.

Lemma 3.5. Let T be a normal, skew Gmax-tree. Assume that for all
finite induced subgraphs H of G(T ) of type τ the color c(H) only depends
on H � ∆(H). Let H0 be an induced subgraph of G(T ) of type τ . Let
n = ∆′(H0). Call an induced copy H of H0 in G(T ) of type τ compatible
with H0 if H � n = H0 � n. Then there is a Gmax-subtree S of T such that
LevS(n) = LevT (n) and c is constant on the set of subgraphs of G(S) that
are compatible with H0.

Proof. Let t1, . . . , t` be an enumeration of H0 � n without repetition such
that the highest splitting node of T (H0) is an extension of t1. Note that for
every graph H of type τ that is compatible with H0, the highest splitting
node of H is an extension of t1. We may assume that for every splitting node
t of Tt1 there is a graph H of type τ , compatible with H0, whose highest
splitting node is t. This can be achieved by thinning out the tree T above
level n in order to make sure that the graphs Gt are sufficiently large for all
splitting nodes t of T that extend t1.

We define an auxiliary coloring

c̄ :
⊗̀
i=1

Tti → 2

as follows:
Given (s1, . . . , s`) ∈

⊗`
i=1 Tti , for every i ∈ {1, . . . , `} let xi be the minimal

vertex of G(Tti) such that si ⊂ xi. Let m ≥ n be minimal such that x1 � m
is a splitting node of T . Let s′ = x1 � m and choose a graph H that is
compatible with H0 such that s′ is the highest splitting node of H. The
graph H exists by our assumptions on T . We can choose H in such a way
that x2, . . . , x` are vertices of H. Now let c̄(s1, . . . , s`) = c(H).

By our assumptions on T , the color c(H) only depends on H � m. This
means that c̄(s1, . . . , s`) depends on our choice of m and the sequences x1 �
m,x2 � m, . . . , x` � m and on the fact that x1 � m is the highest splitting
node of H, but it does not depend on the choice of H above the m-th level.
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By the Halpern-Läuchli theorem, there are r1 ∈ Tt1 , . . . , r` ∈ Tt` and sets

D1 ⊆ (Tt1)r1 , . . . , D` ⊆ (Tt`)r` such that c̄ is constant on
⊗`

i=1Di and for all

m ≥ n there is k ≥ m such that (D1, . . . , D`) is (m, k)-dense in
⊗`

i=1(Tti)ri .
We may assume ti ⊆ ri and hence (Tti)ri = Tri for all i ∈ {1, . . . , `}.

We now construct a fusion sequence (Tj)j∈ω and a strictly increasing
sequence (mj)j∈ω of natural numbers as follows:

Let

T0 =
⋃̀
i=1

Tri ∪ {t ∈ T : t is not comparable with any ti, i ∈ {1, . . . , `}}

and m0 = n. Suppose we have chosen Tj and mj for some j ∈ ω. Choose
m > mj such that all t ∈ LevTj (mj) have an extension s of length < m that
is a splitting node in Tj . Let k ≥ m be such that (D1, . . . , D`) is (m, k)-dense

in
⊗`

i=1 Tri .
Now choose a set Z ⊆ LevTj (k) such that the following hold:

(1) For all t ∈ LevTj (m), if t and t1 are incomparable, then t has exactly
one extension in Z.

(2) For all t ∈ LevTj (mj), if t1 ⊆ t, then t has exactly one extension in
Z.

(3) For each i ∈ {1, . . . , `}, Tti ∩ Z ⊆ Di.

Finally, we choose mj+1 > k such that each element of Z ∩ (Tj)t1 has
an extension of length < mj+1 that is a splitting node of Tj . We choose
Z ′ ⊆ LevTj (mj+1) such that the following hold:

(0′) Every r ∈ Z ′ is an extension of some t ∈ Z.
(1′) Let t ∈ Z ∩ (Tj)t1 and let s be the minimal splitting node of Tj

that extends t. Then every immediate successor of s has exactly one
extension in Z ′, namely the lexicographically minimal extension in
LevTj (mj+1).

(2′) For every r ∈ Z ′ ∩ (Tj)t1 there are a splitting node s of Tj and t ∈ Z
such that t ⊆ s ⊆ r.

(3′) For all t ∈ Z that are incomparable with t1, Z
′ ∩ (Tj)t consists of

the lexicographically minimal extensions of elements of Z ∩ (Tj)t in
Lev(Tj)t(mj+1).

Now let

Tj+1 = {t ∈ Tj : t is comparable with an element of Z ′}.
This finishes the construction of the sequences (Tj)j∈ω and (mj)j∈ω.

Now let S =
⋂
j∈ω Tj . The tree S is generated by the set

⋃
j∈ω Tj �

mj . For every splitting node s of S we made sure that all the immediate
successors of s in T are also in S. Hence S is a strong subtree of T . Since
S is perfect, it follows from Lemma 2.3 that S is a Gmax-tree.

We now show that c is constant on the set of all induced subgraphs H of
G(S) that are compatible with H0. Let H be an induced subgraph of G(S)
that is compatible with H0. Let s be the highest splitting node of H and
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choose j ∈ ω such that mj < |s| < mj+1. Note that s is an extension of
t1. By conditions (2) and (1′), no restriction of s to some number in the
interval [mj , |s|) is a splitting node of S.

In the construction of mj+1 and Tj+1 we chose integers m and k such that
mj < m ≤ k < mj+1. By (2), (Tj+1)t1 has no splitting node whose length is
in the interval [mj , k) and thus k ≤ |s|. By (0′) and (3′), for each vertex x
of H with t1 6⊆ x, x � |s| is the lexicographically minimal extension of x � k
in T . But LevTj+1(k) ∩

⋃`
i=1 Tti ⊆

⋃`
i=1Di. It follows that c(H) is equal to

the constant color that c̄ assumes on the set
⊗`

i=1Di. �

Lemma 3.6. Assume that for all finite induced subgraphs H of G(T ) of type
τ the color c(H) only depends on H � ∆(H). Then there is a Gmax-subgraph
S of T such that for all finite induced subgraphs H of type τ , c(H) only
depends on H � ∆′(H).

Proof. We may assume that T is normal and skew and that for every induced
subgraph H of G(T ) of type τ and every splitting node t ∈ T , H embeds
into GTt . Also, if for every subgraph H of G(T ) of type τ the tree of initial
segments of vertices of H only has a single splitting node, Lemma 3.5 gives
us a Gmax-subtree S of T such that c is constant on G(S). Hence we can
assume that the tree of initial segments of a graph H of type τ has at least
two different splitting nodes.

Again we construct a fusion sequence (Tk)k∈ω and a sequence (mk)k∈ω
witnessing this. In our construction we make sure that for all k ∈ ω, Tk+1

has exactly one splitting node whose length is in the interval [mk,mk+1) and
the length of this splitting node is exactly mk+1 − 1.

Let t be the minimal splitting node of T . Let T0 = T and m0 = |t| + 1.
Suppose Tk and mk have been chosen. By Lemma 3.5, for every finite
induced subgraph H0 of G(T ) of type τ such that ∆′(H0) = mk there is
a Gmax-subtree T ′k of Tk such all copies H of H0 of type τ in G(Tk) that
are compatible with H0 have the same color c(H). Iterating this argument
finitely many times, we find a Gmax-subtree T ′′k of Tk such that for all
induced subgraphs H of G(T ) of type τ with ∆′(H) = mk the color c(H)
only depends on H � mk.

Now some book-keeping device tells us that a certain t ∈ LevTk(mk)
should have an extension t0 of length < mk+1 such that a certain finite

ordered graph F embeds into G
Tk+1

t0
. We choose an extension t0 of t such

that F embeds into G
T ′′k
t0

and let mk+1 = |t0| + 1. Let Z ⊆ LevTk(mk+1)
be such that succTk(t0) ⊆ Z and each s ∈ LevTk(mk) \ {t} has exactly one
extension in Z. Now let Tk+1 = (Tk)Z . This finishes the definition of the
fusion sequence (Tk)k∈ω and the sequence (mk)k∈ω.

Finally let S =
⋂
k∈ω Tk. By our book-keeping, S is a Gmax-tree. When-

ever H is an induced subgraph of G(S) of type τ there is a unique k ∈ ω
such that ∆′(H) = mk. Since S is a Gmax-subtree of Tk+1, by the choice of
Tk+1, the color c(H) only depends on H � ∆′(H). �
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Proof of Theorem 3.1. Let ` denote the number of vertices of graphs of type
τ . We prove the theorem by induction on `. If ` = 1, then we just ob-
serve that every continuous coloring c of the subgraphs of G(T ) of type τ is
constant on an open set U ⊆ [T ].

Now assume that ` > 1 and for all types τ ′ of subgraphs of G(T ) with less
than ` vertices the theorem holds. By Lemma 3.6 there is a Gmax-subtree
T ′ of T such that on T ′ the color c(H) of a graph of type τ only depends
on H � ∆′(H). Given such a graph H, let t1, . . . , tk denote the distinct
elements of H � ∆′(H) and choose (x1, . . . , xk) ∈ [T ′t1 ] × · · · × [T ′tk ]. Now
the type τ ′ of the induced subgraph of G(T ) on the vertices x1, . . . , xk only
depends on τ .

We define a coloring c′ on the set of all subgraph H ′ of G(T ′) of type τ ′.
Given such a subgraph, let H be a graph of type τ such that H � ∆′(H) =
H ′ � (∆(H ′) + 1). Such a graph H exists since T ′ is a Gmax-tree. Now let
c′(H ′) = c(H). By our assumption on T ′, c(H) only depends on H � ∆′(H)
and hence c′(H ′) is independent of the choice of H. Clearly, graphs of type
τ ′ have less than ` vertices and hence, by our inductive hypothesis, there is
a Gmax-subtree S of T ′ such that c′ is constant on subgraphs of S of type τ ′.
But now c is constant on subgraphs of S of type τ . This finishes the proof
of the theorem. �

3.1. The Baire measurable case.

Definition 3.7. Let τ be the type of a finite induced subgraph of Gmax and

let T be a Gmax-tree. A coloring c :
(
G(T )
τ

)
→ 2 is Baire measurable if the

sets c−1(0) and c−1(1) have the Baire property in the Polish space
(
G(T )
τ

)
.

Our main Theorem 3.1 can be extended to Baire measurable colorings
using standard methods from descriptive set theory.

We need the following lemma.

Lemma 3.8. Let τ be the type of a nonempty finite induced subgraph of

Gmax and let c :
(
G(T )
τ

)
→ 2 be a Baire measurable measurable coloring.

Then there is a Gmax-subtree S of T such that c is continuous on
(
G(S)
τ

)
.

Proof. We choose open sets U, V ⊆
(
G(T )
τ

)
such that the symmetric differ-

ences c−1(0)4U and c−1(1)4V are meager. Let (Nn)n∈ω be a sequence of

closed nowhere dense subsets of
(
G(T )
τ

)
such that

(c−1(0)4U) ∪ (c−1(1)4V ) ⊆
⋃
n∈ω

Nn.

Our goal is to construct a Gmax-subtree S of T such that
(
G(S)
τ

)
is disjoint

from
⋃
n∈ωNn. In this case, the preimages of 0 and 1 of the restriction of c

to the set
(
G(S)
τ

)
are the open subsets U ∩

(
G(S)
τ

)
and V ∩

(
G(S)
τ

)
of
(
G(S)
τ

)
.

It follows that c is continuous on
(
G(S)
τ

)
.
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It remains to find the Gmax-subtree S that avoids the set
⋃
n∈ωNn. We

construct a fusion sequence (Tk)k∈ω of Gmax-subtrees of T and a strictly
increasing sequence (mk)k∈ω of natural numbers and then put S =

⋂
k∈ω Tk.

Suppose Tk and mk have already been chosen. We assume that for all
t ∈ LevTk(mk) and all s ∈ T with t ⊆ s we have s ∈ Tk. Some book-
keeping will tell us that we have to find a splitting node s above a certain

t ∈ LevTk(mk) such that a certain finite ordered graph H embeds into G
Tk+1
s .

Since Tk is a Gmax-tree, there is m > mk such that t has an extension s ∈ Tk
of length < m such that H embeds into GTks .

Now suppose H is a subgraph of G(Tk) of type τ such that ∆(H) < m.
Let ` be the number of vertices of H. The set H � m determines an open

subset O of
(
G(T )
τ

)
. The set

⋃
n≤kNn is closed and nowhere dense in

(
G(T )
τ

)
.

Hence there is a nonempty open subset of O that is disjoint from
⋃
n≤kNn.

It follows that the ` elements of H � m have extensions s1, . . . , s` ∈ Tk
such that the open subset of

(
G(T )
τ

)
determined by s1, . . . , s` is disjoint from⋃

n≤kNn. We may assume that s1, . . . , s` are all of the same length m′ > m.

Let Z ⊆ LevTk(m′) be a set that contains exactly one extension of every
element of LevTk(m) and in particular the elements s1, . . . , s`. Now consider
the Gmax-tree T ′ consisting of all elements of Tk that are comparable to one
of the elements of Z. Whenever H ′ is a subgraph of G(T ′) of type τ with
H ′ � m = H � m, then H ′ � m′ = {s1, . . . , s`}. In particular, H ′ is not an
element of

⋃
n≤kNn.

We can iterate this argument and obtain mk+1 > m′ and a set X ⊆
LevTk(mk+1) with the following property: If H ′ is a subgraph of G(Tk)
with ∆(H ′) < m such that H ′ � mk+1 ⊆ X, then H ′ is not an element of⋃
n≤kNn.
Let

Tk+1 = {t ∈ Tk : ∃s ∈ X(s ⊆ t ∨ t ⊆ s)}.

Now for every subgraph H ′ of G(Tk+1) of type τ with ∆(H ′) < m we
have H ′ 6∈

⋃
n≤kNn. This finishes the recursive definition of the sequences

(Tk)k∈ω und (mk)k∈ω.
Finally let S =

⋂
k∈ω Tk. We use the book-keeping in the construction of

the Tk to make sure that S is a Gmax-tree. Let n ∈ ω and suppose H is a
subgraph of G(S) of type τ . Then there is k ∈ ω such that ∆(H) < mk.
We can choose k ≥ n. Note that LevS(mk) = LevTk(mk). By the choice of
Tk+1 and since S ⊆ Tk+1, H 6∈

⋃
i≤kNi. In particular, H 6∈ Nn. This shows

that
(
G(S)
τ

)
is disjoint from

⋃
n≤ωNn. It follows that c is continuous on the

set
(
G(S)
τ

)
. �

The generalization of Theorem 3.1 to Baire measurable colorings now
follows easily from Lemma 3.8.
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Theorem 3.9. For every type τ of a finite induced subgraph of Gmax, every

Gmax-tree T and every Baire measurable coloring c :
(
G(T )
τ

)
→ 2 there is a

Gmax-subtree S of T such that c is constant on
(
G(S)
τ

)
.

Proof. By Lemma 3.8, there is a Gmax-subtree T ′ of T such that c is contin-

uous on
(
G(T ′)
τ

)
. Now by Theorem 3.1 there is a Gmax-subtree S of T ′ such

that c is constant on
(
G(S)
τ

)
. �

Let A be a finite ordered graph. Let k(A) denote the number of different
(skew) types of A.

Theorem 3.10. For every finite graph A and a universal inverse limit graph
G, for every finite Baire measurable partition of

(
G
A

)
, there is a closed ordered

copy G′ of G in G such that the type of each B ∈
(
G
A

)
determines its cell in

the partition.

This theorem follows by iterating Theorem 3.9.
By Corollary 2.6, the probability that a finite ordered graph A can have

only one skew type in any universal limit graph G tends to 1 with the size
of A, thus we get:

Theorem 3.11. With high probability, a finite ordered graph A satisfies for
every universal inverse limit graph G,

G→Baire (G)A.

3.2. Concluding remarks. Sauer [18] obtained the Ramsey theorem for
partitioning subgraphs of Rado’s homogeneous and universal countable graph.
It is interesting to note that both Sauer’s theorems and Blass’ theorem can
be derived from Milliken’s theorem on strong subtrees (see [20]). Theo-
rem 3.1 above, though, does not follow readily from Milliken’s theorem, as
the Tmax subtrees that are gotten in various stages, most importantly when
applying the Nešetril-Rödl theorem, fail to be strong subtrees.
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