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Abstract. Let X be a connected separable linear order, a connected separable

metric space or a connected, locally connected complete metric space. We

show that every continuous function f : X → R with the property that every

x ∈ X is a local maximum or minimum of f is in fact constant. We provide

an example of a compact connected linear order X and a continuous function

f : X → R that is not constant and yet every point of X is a local minimum

or maximum of f .

The following question was recently asked by M. R. Wojcik [1]:

Question 1. Let f : [0, 1] → R be a continuous function such that every point in
[0, 1] is a local maximum or minimum of f . Is it true that f has to be constant?

The answer is clearly yes if f is assumed to be differentiable, but the question
is about continuous functions. Still, the answer to Question 1 is yes, and this was
shown by a number of people independently. However, we are not aware of any
published proof of this fact. In this note we give two elementary proofs showing
that a continuous function from [0, 1] to R for which every point in [0, 1] is a local
minimum or maximum indeed has to be constant. The first proof only uses the
most basic topological properties of R. We actually get the following theorem:

Theorem 2. Let X be a connected separable metric space. Then every continuous
function f : X → R for which every x ∈ X is a local minimum or maximum is
constant.

The second proof uses the linear order on the reals.

Theorem 3. Let X be a connected separable linearly ordered space. Then every
continuous function f : X → R for which every x ∈ X is a local minimum or
maximum is constant.

Note, however, that Theorem 3 is weaker than it looks at first sight. Every
connected separable linear order is actually isomorphic to some interval of the real
line. But see Remark 4.
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Proof of Theorem 2. Let f : X → R be continuous and such that f has a local
extremum at every x ∈ X. Since X is a separable metric space, the topology on X
has a countable base {Bn : n ∈ N}. For each n ∈ N let

Dmin
n = {x ∈ Bn : ∀y ∈ Bn(f(x) ≤ f(y))}

and
Dmax

n = {x ∈ Bn : ∀y ∈ Bn(f(x) ≥ f(y))}.

Clearly, f is constant on each Dmin
n and each Dmax

n .
If x ∈ X, then by our assumptions on f , x is a local minimum or maximum of

f . Assume it is a local mininum. Then there is some n ∈ N such that x ∈ Bn

and for all t ∈ Bn, f(t) ≥ f(x). In particular, x ∈ Dmin
n . Similarly, if x is a local

maximum, then for some n ∈ N, x ∈ Dmax
n . In summary, we have

X =
⋃
n∈N

(Dmin
n ∪Dmax

n ).

It follows that f [X] is countable. Since X is connected, so is f [X]. But the only
nonempty countable and connected subsets of the real line are the singletons. It
follows that f is constant. �

Proof of Theorem 3. Let < denote the order on X. Suppose that f is not constant.
For simplicity assume that there are x, y ∈ X such that x < y and f(x) < f(y).
SinceX is connected, [x, y] is connected. Since f is continuous, f [[x, y]] is connected.
It follows that [f(x), f(y)] ⊆ f [[x, y]].

Since X is separable, every family of pairwise disjoint open intervals in X is
countable. It follows that there is some z ∈ (f(x), f(y)) such that f−1(z) does not
contain a nonempty open interval. Since X is connected, every bounded subset of
X has a supremum in X. Let

a = sup{b ∈ (x, y) : ∀c ∈ (x, b)(f(c) ≤ z)}.

By the continuity of f , f(a) = z. By the definition of a and by the connectedness
of X, for every b > a there is c ∈ (a, b) such that f(c) > z. Since a is a local
extremum of f , it follows that a is a local minimum.

This implies that there is b < a such that for all c ∈ (b, a), f(c) ≥ z. But by
the definition of a, for all c ∈ (b, a), f(c) = z. Hence f−1(z) contains a non-empty
open interval after all, contradicting the choice of z. �

Remark 4. A closer analysis of the proofs of Theorem 2 and Theorem 3 shows
that in both cases the separability assumption can be weakened.

a) Let X be a connected topological space that has a base of its topology of size
< |R|. If f : X → R is continuous and such that every x ∈ X is a local extremum
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of f , then f is constant. This holds in particular if X is a connected metric space
such that every family of pairwise disjoint open sets is of size <|R|.

b) Let X be a connected linear order such that every family of pairwise disjoint
open intervals is of size < |R|. If f : X → R is continuous and such that every
x ∈ X is a local extremum of f , then f is constant.

A questions that arises naturally is this:

Question 5. Let X be a connected topological space such that every family of
pairwise disjoint open sets is of size <|R|. If f : X → R is continuous and such that
every x ∈ X is a local extremum of f , does f have to be constant?

Remark 4 tells us where we should look if we want to find a connected space
X and a continuous function f : X → R that is not constant but such that every
x ∈ X is a local minimum or maximum.

Example 6. Let I denote the closed unit interval. Consider the set X = I × I
ordered lexicographically, i.e., for a, b, c, d ∈ I let (a, b) < (c, d) if a < c or (a = c

and b < d). The linear order X can be considered as obtained from I by replacing
every point of I by a copy of I.

It is easily checked that X is a connected linear order. It is even compact.
The projection f : X → R; (a, b) 7→ a is continuous and obviously not constant.
However, every x ∈ X is a local extremum of f .

It it worth pointing out that X is not metrizable, which follows from the fact
that X is compact but not separable. This brings up the following question:

Question 7. Is there an example of a connected metric space X with a continuous
function f : X → R that is not constant but such that every point in X is a local
minimum or maximum of f?

We can provide a partial answer to this question:

Theorem 8. Suppose X is a connected, locally connected complete metric space.
If f : X → R is a continuous function and every x ∈ X is a local extremum of f ,
then f is constant.

The proof of this theorem is based on the following lemma:

Lemma 9. Let X be a metric space that is Baire, i.e., in which no nonempty open
set is the union of countably many nowhere dense sets. If f : X → R is continuous
and such that every x ∈ X is a local extremum of f , then V =

⋃
y∈R int(f−1(y)) is

dense in X.



4 EHRHARD BEHRENDS, STEFAN GESCHKE, AND TOMASZ NATKANIEC

Proof. Since X is metric, by Bing’s Metrization Theorem it has a σ-discrete base
B. Let B =

⋃
n∈N Bn with each Bn discrete. For each x ∈ X fix Bx ∈ B such that

f(x) ≤ f(x′) for all x′ ∈ Bx if x is a local minimum of f or f(x) ≥ f(x′) for all
x′ ∈ Bx if x is a local maximum. For every n ∈ N let Xmin

n denote the set of all
x ∈ X that are local minima of f with Bx ∈ Bn. Similarly, let Xmax

n denote the set
of all x ∈ X that are local maxima with Bx ∈ Bn.

Now let G ⊆ X be nonempty and open. Since X is Baire, there is n ∈ N such
that Xmin

n or Xmax
n is dense in some nonempty open set G0 ⊆ G. Assume that

Xmin
n is dense in G0 and fix x ∈ Xmin

n ∩G0. Then H = G0 ∩ Bx is nonempty and
open, and Xmin

n ∩H is dense in H. Since Bn is discrete, for every x′ ∈ Bx∩Xmin
n we

have Bx = Bx′ and thus f(x) = f(x′). It follows that f is constant on H ∩Xmin
n .

Since f is continuous, f is constant on all of H. Therefore H ⊆ V and hence
G ∩ V 6= ∅. �

Proof of Theorem 8. Suppose f is not constant. For every y ∈ R let Vy = int(f−1(y)).
Let V =

⋃
y∈R Vy and F = X \ V . Note that F =

⋃
y∈R bd(f−1(y)). Since X is

connected and f is not constant, for every y ∈ f [X] we have bd(f−1(y)) 6= ∅. In
particular, F 6= ∅.

Since F is closed in X, F is a complete metric space. By Lemma 9, the space
F has a nonempty open subset on which f is constant. In other words, there is an
open subset U of X such that U ∩ F 6= ∅ and f is constant on U ∩ F . Since X is
locally connected, we may assume that U is connected.

Since U 6⊆ V , f is not constant on U . Let y ∈ f [U ] be different from the unique
value of f on U ∩ F . Now bd(Vy) ⊆ F . Since y 6∈ f [U ∩ F ], bd(Vy) ∩ U = ∅. But
this implies that Vy ∩U = int(Vy)∩U is a proper clopen subset of U , contradicting
the assumption that U is connected. �
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