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Abstract. For S ⊆ Rn a set C ⊆ S is an m-clique if the convex hull of no
m-element subset of C is contained in S. We show that there is essentially

just one way to construct a closed set S ⊆ R2 without an uncountable 3-clique

that is not the union of countably many convex sets. In particular, all such
sets have the same convexity number; that is, they require the same number of

convex subsets to cover them. The main result follows from an analysis of the

convex structure of closed sets in R2 without uncountable 3-cliques in terms
of clopen, P4-free graphs on Polish spaces.

1. Introduction

A coarse measure of the nonconvexity of a set S ⊆ Rn is its convexity number
γ(S), the least size of a family F of convex sets with

⋃
F = S. S is countably

convex if its convexity number is countable. Otherwise S is uncountably convex. In
this paper we continue the study of the convexity numbers of closed, uncountably
convex subsets of R2 that was started in [7] and continued in [6].

Caratheodory’s theorem states that the convex hull of a set T ⊆ Rn is the union
of the convex hulls of the (n+ 1)-element subsets of T . A subset T of a set S ⊆ Rn
is defected (in S) if the convex hull of T is not a subset of S. By Caratheodory’s
theorem, T ⊆ S is defected iff some (n+ 1)-element subset of T is. It follows that
the convex structure of a set S ⊆ Rn can be analyzed by looking at the defectedness
hypergraph

(S, {T ⊆ S : |T | = n+ 1 and T is defected})
of S. The convexity number of S is exactly the chromatic number of the defected-
ness hypergraph of S.

In [6] it was shown that a closed uncountably convex subset S of R2 either has a
(nonempty) perfect subset C such that the convex hull of any three distinct points
of C is not contained in S, i.e., a perfect 3-clique, or the convexity number of S
is equal to the homogeneity number of a continuous coloring of the two-element
subsets of a Polish space with two colors. Here the homogeneity number hm(c) of
a coloring c : [X]2 → 2 is the least size of a family of c-homogeneous subsets of X
that covers X. The homogeneity number of a coloring c : [X]2 → 2 is the same as
the cochromatic number of the graph (X, c−1(1)).

In other words, the problem of studying the 3-uniform, open defectedness hy-
pergraph of S and its chromatic number can be reduced to studying certain clopen
graphs on Polish spaces and their cochromatic numbers. Here an n-uniform hyper-
graph on a Polish space X is open (closed, clopen) if its n-ary edge relation is open
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(closed, clopen) as a subset of

{(x1, . . . , xn) ∈ Xn : x1, . . . , xn are pairwise distinct}.

Continuous colorings of the two-element subsets of Polish spaces have been in-
vestigated in [5]. It turned out that there are continuous colorings

cmin, cmax : [2ω]2 → 2

such that hm(cmin) is minimal among all the uncountable homogeneity numbers
of continuous colorings on Polish spaces, while hm(cmax) is maximal. We write
hm for hm(cmin). Consistently, hm < hm(cmax). Moreover, somewhat surprizingly,
hm+ ≥ 2ℵ0 . This last inequality was proved already in [6] and shows that there are
at most two different uncountable homogeneity numbers of continuous colorings on
Polish spaces, namely 2ℵ0 and its predecessor, provided the predecessor exists at
all. It follows that there are at most two different uncountable convexity numbers
of closed subsets of R2.

We say that a closed set S ⊆ R2 realizes the homogeneity number hm(c) of a
continuous coloring c : [X]2 → 2 on a Polish space X if in every forcing extension
of the set-theoretic universe we have γ(S) = hm(c). Note that a closed set S ⊆ R2

that has a perfect 3-clique satisfies γ(S) = 2ℵ0 in every forcing extension. An
example of Kubís in [6] shows that hm = hm(cmin) is realized by a closed subset of
R2. It was an open question whether any homogeneity number other than hm can
be realized by a closed subset of R2.

We show that this is not the case. The only homogeneity number that can be
realized as the convexity number of a closed subset of R2 is hm(cmin). Our proof of
this fact shows that Kubís’s example of an uncountably convex closed subset of R2

without a perfect 3-clique is in some sense the only possible example. The key point
of our proof is the fact that the graphs arising in the context of two-dimensional
convexity as sketched above do not have induced subgraphs that are paths with
four vertices, i.e., these graphs are P4-free.

Using basic properties of finite P4-free graphs and the technology developed in
[5], we show that every clopen P4-free graph on a Polish space can be decomposed
into a small number of induced subgraphs that embed into (2ω, c−1min(1)). This
implies that these graphs have cochromatic numbers ≤ hm.

2. The decomposition theorem for closed planar sets

In this section, let S denote an uncountably convex, closed subset of R2 without
a perfect 3-clique. We review the results on the structure of S from [6].
C ⊆ S is a semi-clique if for all x ∈ C and all open neighborhoods U of x the set

S ∩ U is defected in S. Let B(S) denote the convexity radical of S, i.e., the set of
x ∈ S such that for every open neighborhood U of x, S ∩U is uncountably convex.
Clearly, B(S) is a closed semi-clique of S.

Two subsets of R2 are affinely isomorphic if there is an affine isomorphism, i.e.,
a composition of a linear automorphism of R2 and a translation, that maps one set
to the other.

Lemma 2.1. [6, Lemma 17] Let B be a Gδ semi-clique in S. Then there is an open
set U ⊆ R2 such that B ∩ U is nonempty and affinely isomorphic to the graph of a
Lipschitz function.

Lemma 2.2. [6, Lemma 18] Let B ⊆ B(S) be a Gδ set without isolated points
which is affinely isomorphic to the graph of a Lipschitz function f . Then f is
differentiable on a dense subset of its domain.
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Now, for some nonempty set A ⊆ R let f : A → R be a Lipschitz function such
that f is a Gδ semi-clique in S that has no isolated points. In this case A is a
Gδ subset of R without isolated points. Since the topology of a Gδ subset of R is
compatible with a separable complete metric, for every open set U that intersects
A, A ∩ U is uncountable.

Let D denote the set of differentiability points of f , which is, by the previous
lemma, a dense subset of A. For x, y ∈ D with x < y we say that {x, y} is in

configuration ∼ if either f ′(x), f ′(y) < f(x)−f(y)
x−y or f ′(x), f ′(y) > f(x)−f(y)

x−y .

Lemma 2.3. [6, Lemma 20] There is a nonempty open set U ⊆ A that contains
no pairs in configuration ∼.

We say that f does not contain pairs in configuration ∼ if A does not contain
pairs in configuration ∼. Assume that f does not contain pairs in configuration ∼.
Let J be the set of x ∈ A such that for some ε > 0 one of the intervals (x, x + ε)
and (x− ε, x) is disjoint from A. J is a countable set. As pointed out before, every
open set that intersects A has an uncountable intersection with A. This together
with the countability of J implies that for any two distinct points of A \ J there is
a third point between the two. In particular, A \ J has no isolated points. Since A
is Gδ and J is countable, A \ J is Gδ. Hence from now on we may assume that A
is dense as a linear order, i.e., any two distinct points of A have a third point from
A in between.

We say that {x, y} ∈ [A]2 with x < y is in configuration u (respectively t) if
for all z ∈ (x, y), (z, f(z)) is either on or strictly above (below) the line segment
joining (x, f(x)) and (y, f(y)).

Lemma 2.4. [6, Lemma 21] Suppose f contains no pair in configuration ∼. Then
the following hold:

(1) Every pair in A is either in configuration u or in configuration t.
(2) If x, y ∈ D and x < y, then {x, y} is in configuration t iff

f ′(x) ≤ f(y)− f(x)

y − x
≤ f ′(y).

(3) The coloring c : [A]2 → {u,t} that assigns to each pair its configuration is
continuous.

Note that (1) in particular says that the two configurations u and t are exclusive.
This comes from the fact that S has no uncountable 3-clique and is explained in
[6] before Lemma 16.

We call {x, y, z} ∈ [A]2 decided iff it is homogeneous with respect to the coloring
c defined in (3) of Lemma 2.4 and undecided otherwise.

Lemma 2.5. [6, Lemma 22] Suppose that f has no pair in configuration ∼. Then
the following hold:

(1) Each nonempty open subset of A has pairs in configuration u and pairs in
configuration t.

(2) For every undecided set {x, y, z} ∈ [A]3, the set

{(x, f(x)), (y, f(y)), (z, f(z))}
is defected in S.

(3) There is a nonempty open set U ⊆ R such that whenever an unordered
triple {x, y, z} ∈ A ∩ U is decided, then

{(x, f(x)), (y, f(y)), (z, f(z))}
undefected in S.
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Now unfix the variables A and f . We slightly diverge from the definitions in
[6]. We call a set K ⊆ S special if K is a Gδ semi-clique and there is an affine
isomorphism h : R2 → R2 such that

(1) h[K] is the graph of a Lipschitz function f : A→ R,
(2) A ⊆ R is a Gδ set without isolated points and dense as a linear order,
(3) A contains no pairs in configuration ∼,
(4) A set {x, y, z} ∈ [A]3 is undecided iff the set

{(x, f(x)), (y, f(y)), (z, f(z))}
is defected in S.

Our definition of special sets is more restrictive than the one used in [6]. However,
the special sets constructed in the proof of the Decomposition Theorem for R2 [6,
Theorem 15] are actually special in our narrower sense.

Theorem 2.6 (Decomposition Theorem for R2). Let S be a closed uncountably
convex subset of R2 without a perfect 3-clique. Then there are a countably convex
set A and a countable union B of special sets such that S = A ∪B.

Now let S be as in Theorem 2.6, let K ⊆ S be special, and let f and A witness
this as in the definition of a special set. Then A is Gδ and hence a Polish space.
Let

cK : [A]2 → {u,t}
be the coloring that assigns to each pair its (unique) configuration. By Lemma 2.4
(3), cK is continuous.

By Caratheodory’s theorem, a set T ⊆ S is defected iff T has a defected subset
of size at most 3. It follows that the least size of a family of convex subsets of S
that covers K is precisely hm(cK). This in particular shows that even though f , A,
and cK depend on the choice of the affine isomorphism h, hm(cK) does not.

Theorem 2.6 shows that γ(S) is the supremum of a countable set of homogeneity
numbers of continuous colorings on Polish spaces. However, as mentioned in the
introduction, there are at most two possible homogeneity numbers of continuous
colorings on Polish spaces, namely the continuum 2ℵ0 and its predecessor, provided
that exists. Since γ(S) is uncountable, γ(S) is actually the maximum of a set of at
most two homogeneity numbers. Hence γ(S) is of the form hm(cK) for some special
set K.

3. Restrictions on convexity colorings

We show that there are some severe restrictions on which continuous colorings
can be isomorphic to colorings of the form cK , where K is a special subset of S and
S is a closed, uncountably convex subset of R2 without a perfect 3-clique.

The crucial observations are the following transitivity properties of colorings by
configuration.

Lemma 3.1. Let A ⊆ R and let f : A→ R be any function with the property that
every unordered pair {a, b} ∈ [A]2 is either in configuration u or in configuration
t. Let c : [A]2 → {u,t} be the coloring by configuration.

a) Let x1, x2, x3 ∈ A be such that x1 < x2 < x3. If c(x1, x2) = c(x2, x3) = u,
then c(x1, x3) = u. If c(x1, x2) = c(x2, x3) = t, then c(x1, x3) = t.

b) Let x1, x2, x3, x4 ∈ A be such that x1 < x2 < x3 < x4. If c(x1, x3) =
c(x2, x4) = u, then c(x1, x4) = u. If c(x1, x3) = c(x2, x4) = t, then c(x1, x4) = t.

Proof. a) Suppose c(x1, x2) = c(x2, x3) = u. Then (x2, f(x2)) is not below the
line segment from (x1, f(x1)) to (x3, f(x3)). For no y ∈ (x1, x2), (y, f(y)) is below
the line segment from (x1, f(x1)) to (x2, f(x2)). For no y ∈ (x2, x3), (y, f(y))
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is below the line segment from (x2, f(x2)) to (x3, f(x3)). It follows that for no
y ∈ (x1, x3), (y, f(y)) is below the line segment from (x1, f(x1)) to (x3, f(x3)).
Hence c(x1, x3) = u. The symmetric argument shows

c(x1, x2) = c(x2, x3) = t ⇒ c(x1, x3) = t.
b) Suppose c(x1, x3) = c(x2, x4) = u. Then

f(x1)− f(x3)

x1 − x3
>
f(x2)− f(x3)

x2 − x3
and

f(x2)− f(x3)

x2 − x3
>
f(x2)− f(x4)

x2 − x4
.

It follows that
f(x2)− f(x4)

x2 − x4
<
f(x1)− f(x3)

x1 − x3
.

On the other hand, if c(x1, x4) = t, then

f(x1)− f(x3)

x1 − x3
<
f(x1)− f(x4)

x1 − x4
<
f(x2)− f(x4)

x2 − x4
.

A contradiction. Hence c(x1, x4) = u. �

Given a function f : A→ R for some set A ⊆ R such that every unordered pair
{a, b} ∈ [A]2 is either in cofiguration u or in configuration t, let Gf denote the
graph with the set A of vertices and {a, b} ∈ [A]2 an edge iff {a, b} is in configuration
u.

Recall that P4 is the path with four vertices (and length three). A graph is
P4-free if it has no induced subgraph isomorphic to P4, i.e., if it has no induced
4-path. A coloring c of the two-element subsets of a set X with two colors is P4-free
if for one color i the graph (X, c−1(i)) is P4-free. Since P4 is isomorphic to its
complement, it does not matter which color i we actually use in this definition.

Theorem 3.2. Let f be a function from a set A ⊆ R to R. If every {a, b} ∈ [A]2

is either in configuration u or in configuration t, then the graph Gf and hence the
coloring by configuration on A are P4-free.

For the proof of this theorem, we will use the following lemma several times.

Lemma 3.3. Let a, b ∈ A be such that a < b and such that in Gf there is a path
from a to b that does not use vertices below a or above b. Then the vertices a and
b are connected by an edge in Gf .

Proof. For every edge e of Gf let `(e) ∈ A be the left endpoint of e and r(e) ∈ A
the right endpoint with respect to the order on A.

Claim 3.4. Let a, b ∈ A be such that a < b and there is a path in Gf from a
to b that has no vertices outside [a, b]. Then there is a finite sequence (e1, . . . , ek)
of edges of Gf such that `(e1) = a, r(ek) = b, and either k = 1 or for each
i ∈ {1, . . . , k − 1} we have

a ≤ `(ei) ≤ `(ei+1) ≤ r(ei) ≤ r(ei+1) ≤ b.

We prove the claim simultaneously for all a and b by induction on the length of
a path from a to b that does not leave the interval [a, b].

If there is a path of length 1 from a to b, then a and b are connected by an edge
and the claim holds with k = 1 and e1 = {a, b}. Now suppose for some n ≥ 1
we have shown the claim for all a and b that are connected by a path of length
≤ n that stays inside [a, b]. Let a, b ∈ A be such that a < b and there is a path
a, x1, . . . , xn, b of length n+ 1 such that x1, . . . , xn ∈ [a, b].
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We may assume that a and b are not among the x1, . . . , xn since otherwise there
would be a shorter path from a to b that stays inside [a, b] and to which the inductive
hypothesis applies. Let j ∈ {1, . . . , n} be such that xj = max{x1, . . . , xn}. Now
xj ∈ (a, b) and a, x1, . . . , xj is a path of length ≤ n from a to xj that does not
use the vertex b and therefore, by the maximality of xj , does not use any vertex
outside the interval [a, xj ]. Hence, by the inductive hypothesis, there is a sequence
(e1, . . . , ek) of edges of Gf such that `(e1) = a, r(ek) = xj , and either k = 1 or for
each i ∈ {1, . . . , k − 1} we have

a ≤ `(ei) ≤ `(ei+1) ≤ r(ei) ≤ r(ei+1) ≤ xj .
Let ek+1 = {xn, b}. By the maximality of xj , xn ≤ xj . Hence (e1, . . . , ek+1) is a
sequence of edges that shows that the claim holds for a and b. This finishes the
inductive proof of the claim for all a and b.

Given a and b as in the claim, let k be minimal with the property that there
is a sequence (e1, . . . , ek) as in the conclusion of the claim. If k = 1, a and b are
connected by an edge and we are done. If k > 1, then by a) and b) of Lemma 3.1,
{`(e1), r(e2)} is an edge in Gf . Replacing e1 and e2 in (e1, . . . , ek) by the single
edge {`(e1), r(e2)} we see that k was not minimal, a contradiction. �

Proof of Theorem 3.2. Observe that due to the symmetry between u and t Lemma
3.3 also holds for non-edges of Gf : if there is a path from a to b in the complement
of Gf that uses only vertices in [a, b], then {a, b} is not an edge of Gf .

Now suppose that v1, . . . , v4 ∈ A are the vertices of an induced 4-path of Gf .
We may assume that v1 < · · · < v4. By Lemma 3.3, {v1, v4} is an edge in Gf . We
distinguish two cases:
Case 1. v1 is an endpoint of the 4-path.

In this case there is a path from v2 to v4 that uses only vertices inside [v2, v4]. By
Lemma 3.3, {v2, v4} is an edge of Gf . It follows that v3 is the other endpoint of the
4-path and that {v2, v3} is an edge of Gf . In this situation, {v1, v3} and {v3, v4}
are non-edges of Gf . Hence by Lemma 3.3 for non-edges, {v1, v4} is a non-edge, a
contradiction.
Case 2. v2 is an endpoint of the 4-path and neither v1 nor v4 are endpoints.

Obviously, in this case v3 is the other endpoint of the 4-path. If {v2, v4} is an edge
of Gf , then also {v1, v3} is an edge. It follows that {v1, v2}, {v2, v3} and {v3, v4}
are non-edges. By Lemma 3.3 for non-edges, {v1, v4} is a non-edge, a contradiction.
Hence {v2, v4} is not an edge of the 4-path. But then {v1, v2} has to be an edge. It
follows that also {v3, v4} is an edge. This implies that {v1, v3}, {v2, v3} and {v2, v4}
are non-edges. Again by the Lemma 3.3 for non-edges, {v1, v4} is a non-edge, also
a contradiction.

There is only one case that has not been discussed yet, namely when v3 and v4
are endpoints of the path. But this is symmetric to a situation discussed in Case
1. It follows that v1, . . . , v4 is not an induced 4-path. �

Recall that a finite graph is perfect if for every induced subgraph the chromatic
number is equal to the maximal size of a complete subgraph. We call an infinite
graph perfect if every finite induced subgraph is perfect. We call a coloring c of the
two-element subsets of a set X with two colors perfect if for one color i the graph
(X, c−1(i)) is perfect. Since the complement of a perfect graph is also perfect by
Lovász’ Perfect Graph Theorem [8], in this definition the actual choice of the color
i does not matter.

The Strong Perfect Graph Theorem of Chudnovsky, Robertson, Seymour and
Thomas [3] easily implies that every P4-free graph is perfect. However, there is a
much more elementary proof of the perfectness of P4-free graphs by Seinsche [9].
Now Lemma 3.2 immediately gives:
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Corollary 3.5. If f : A → R is a function as in Lemma 3.2, then the graph Gf
and hence the coloring by configuration on [A]2 are perfect.

Now fix a closed, uncountably convex set S ⊆ R2 that does not have a perfect
clique. Let K ⊆ S be special and let f : A → R be the function witnessing this.
Let cK : [A]2 → {u,t} be the corresponding continuous coloring. From Lemma
2.4 a) and Lemma 3.2 we obtain:

Corollary 3.6. The graph GK and the coloring cK are P4-free and hence perfect.

4. Continuous P4-free colorings

In the previous section we showed that the continuous colorings that occur in
the context of closed uncountably convex planar sets without perfect 3-cliques are
P4-free. We use the methods developed in [5] in order to analyze P4-free continuous
colorings. Let us start with the definition of cmin.

Definition 4.1. For {x, y} ∈ [ω≤ω]2 with x 6⊆ y and y 6⊆ x let

∆(x, y) = min{n ∈ ω : x(n) 6= y(n)}.

Let cparity(x, y) = ∆(x, y) mod 2, cmin = cparity � [2ω]2, and Gmin = (2ω, c−1min(1)).

In [9], Seinsche characterized finite P4-free graphs as graphs having no induced
subgraphs G of size at least 2 with both G and the complement G connected1. This
implies that the class of finite P4-free graphs coincides with the smallest class of
graphs that contains the one-vertex graph K1 and is closed under disjoint unions
and complements. The graphs in this latter class are called cographs2 Every cograph
is represented by a cotree that records how the graph has been constructed from
K1 using complementation and disjoint union [2].

Alon [1] observed that finite induced subgraphs of Gmin are perfect. Using Sein-
sche’s characterization of P4-free graphs, we can actually show the following:

Lemma 4.2. A finite graph G is P4-free iff it is isomorphic to an induced subgraph
of Gmin.

Proof. Given an infinite graph G, let age(G) denote the age of G, i.e., the class of
all finite graphs isomorphic to an induced subgraph of G.
Gmin is isomorphic to an induced subgraph of its complement Gmin and vice

versa. Also, Gmin contains two disjoint copies of itself that are not connected by an
edge. This implies that age(Gmin) is closed under complements and disjoint unions.
Hence every cograph is in age(Gmin).

For the other direction of the equivalence, let F ⊆ 2ω be finite. Let

m = min{∆(x, y) : x, y ∈ F ∧ x 6= y}.

For i ∈ 2 let Fi = {x ∈ F : x(m) = i}. If m is even, then no edge of Gmin runs
between F0 and F1. If m is odd, then no vertex in F0 is connected to any vertex in
F1 by an edge in the complement of Gmin.

It follows that Gmin has no finite induced subgraph G of size at least 2 such that
both G and G are connected. Hence G is a P4-free. �

1We thank the anonymous referee for pointing out that Seinsche’s characterization fails in the

infinite. Consider the graph on the natural numbers where each even number is connected to all
smaller numbers and no odd number is connected to any smaller number. Both this graph and
its complement are connected, yet the graph is P4-free.

2We would like to thank François Dorais for pointing out the connection between P4-free graphs
and cographs and for referring to Seinsche’s article.
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Before we can say more about P4-free continuous colorings, we need to quote a
number of results related to continuous colorings.

The cardinal invariant d is the least cardinality of a family of compact sets that
covers ωω. The following lemma is folklore.

Lemma 4.3 (Lemma 3.5 in [4]). Every Polish space X can be covered by a family
of size at most d of sets that are either singletons or copies of 2ω.

Definition 4.4. If c : [X]2 → 2 and d : [Y ]2 → 2 are continuous colorings on Polish
spaces X and Y , we write c ≤ d if there is a topological embedding e : X → Y such
that for all {x1, x2} ∈ [X]2, c(x1, x2) = d(e(x1), e(x2)).

Clearly, c ≤ d implies hm(c) ≤ hm(d). We collect the fundamental results on
continuous colorings and homogeneity numbers.

Lemma 4.5. a) hm+ ≥ 2ℵ0 (Lemma 8 in [6])
b) d ≤ hm (Section 3 of [5])
c) If c : [X]2 → 2 is a continuous coloring on a Polish space X and hm(c) > ℵ0,

then cmin ≤ c. In particular, hm ≤ hm(c) (Theorem 10 in [6]).
d) cparity ≤ cmin. In particular, hm = hm(cparity) (Lemma 2.10 in [5]).

Definition 4.6. Let X ⊆ ωω be a closed set. A continuous coloring c : [X]2 → 2 is
an almost node-coloring if for all {x, y} ∈ [X]2 and all a, b ∈ X with ∆(x, a),∆(y, b) >
∆(x, y) we have c(a, b) = c(x, y).

Lemma 4.7 (Lemma 2.17 in [5]). Let c : [2ω]2 → 2 be a continuous coloring.
Then there is a topological embedding e : 2ω → ωω such that for every cparity-
homogeneous set H ⊆ e[2ω], the coloring ce which is induced on H by c via e is an
almost node-coloring.

Corollary 4.8. For every continuous coloring c : [X]2 → 2 on a Polish space X, X
is the union of hm-many sets Y ⊆ X such that c � [Y ]2 is isomorphic to an almost
node-coloring on a compact subset of ωω. In particular, if hm(c) is uncountable,
then hm(c) = hm(d) for some almost node-coloring d on a compact subset of ωω

such that d ≤ c.

Proof. This follows from Lemma 4.3, Lemma 4.5, and Lemma 4.7. �

Corollary 4.9. Let c : [X]2 → 2 be a continuous coloring on a Polish space X with
hm(c) > ℵ0. If c is P4-free, then there is a P4-free almost node-coloring d : [Y ]2 → 2
on a compact subset Y of ωω such that hm(c) ≤ hm(d).

Proof. If c is P4-free, then so are the colorings c � [Y ]2, Y ⊆ X. Now the Corollary
follows from Corollary 4.8. �

Lemma 4.10. Let d : [X]2 → 2 be a P4-free almost node-coloring on a compact set
X ⊆ ωω. Then d ≤ cmin.

Proof. Let T = T (X) = {s ∈ ω<ω : ∃x ∈ X(s ⊆ x)}. For each s ∈ T let succT (s)
denote the set of immediate successors of s in the tree T . Since X is compact,
succT (s) is finite for every s ∈ T . For x, y ∈ X with x 6= y let x ∧ y = x � ∆(x, y).

Since d is an almost node coloring, for each s ∈ T there is a coloring

ds : [succT (s)]2 → 2

such that for all x, y ∈ X with s = x ∧ y,

ds(x � ∆(x, y) + 1, y � ∆(x, y) + 1) = d(x, y).

By recursion on the length of s ∈ T , we define a map f : T → 2ω with the
following properties:
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(1) For all s, t ∈ T , if s ( t, then f(s) ( f(t)
(2) For all s, t ∈ T , if s and t are incomparable with respect to ⊆, then so are

f(s) and f(t).
(3) For all s ∈ T and all t0, t1 ∈ succT (s) with t0 6= t1,

ds(t0, t1) = ∆(f(t0), f(t1)) mod 2.

We start the definition of f by letting f(∅) = ∅. Now suppose that f(s) has been
defined for some s ∈ T . Since d is P4-free, ds is P4-free. By Lemma 4.2, ds ≤ cmin.
Let U ⊆ 2ω be the open set of all binary sequences that start with f(s). Since
cmin ≤ cmin � [U ]2, we have ds ≤ cmin � [U ]2. Fix an embedding es : succT (s)→ U
witnessing this. Choose m ∈ ω such that the finite sequences e(t) � m, t ∈ succT (s),
are pairwise distinct. For each t ∈ succT (s) let f(t) = e(t) � m. This finishes the
recursive definition of f .

Now e : X → 2ω defined by e(x) =
⋃
n∈ω f(x � n) witnesses d ≤ cmin. �

Corollary 4.11. Let c : [X]2 → 2 be a P4-free continuous coloring on a Polish
space X. Then hm(c) ≤ hm.

Proof. By Corollary 4.9, there is a P4-free almost node coloring d on a compact
subset of ωω such that hm(c) ≤ hm(d). By Lemma 4.10, d ≤ cmin and hence
hm(d) ≤ hm. �

Corollary 4.12. Let S ⊆ R2 be a closed, uncountably convex set without a perfect
3-clique. Then γ(S) = hm.

Proof. By Theorem 2.6 there are a countably convex set A and a sequence (Kn)n∈ω
of special sets such that S = A∪

⋃
n∈ωKn. For each n ∈ ω let cn be the continuous

coloring associated with the special set Kn. By Corollary 3.6, each cn is P4-free.
By Corollary 4.11, hm(cn) ≤ hm for all n ∈ ω. It follows that γ(S) ≤ hm.

Since S is uncountably convex, at least one of the colorings cn has an uncountable
homogeneity number. Since hm is the minimal uncountable homogeneity number
of all continuous colorings on a Polish space, we have hm ≤ γ(S). �
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