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Abstract. We investigate the Ramsey theory of continuous graph-structures
on complete, separable metric spaces and apply the results to the problem of

covering a plane by functions.

Let the homogeneity number hm(c) of a pair-coloring c : [X]2 → 2 be
the number of c-homogeneous subsets of X needed to cover X. We isolate

two continuous pair-colorings on the Cantor space 2ω , cmin and cmax, which

satisfy hm(cmin) ≤ hm(cmax) and prove:

Theorem. (1) For every Polish space X and every continuous pair-coloring
c : [X]2 → 2 with hm(c) > ℵ0,

hm(c) = hm(cmin) or hm(c) = hm(cmax).

(2) There is a model of set theory in which hm(cmin) = ℵ1 and hm(cmax) =
ℵ2.

The consistency of hm(cmin) = 2ℵ0 and of hm(cmax) < 2ℵ0 follows from

[20].
We prove that hm(cmin) is equal to the covering number of (2ω)2 by graphs

of Lipschitz functions and their reflections on the diagonal. An iteration of an

optimal forcing notion associated to cmin gives:

Theorem. There is a model of set theory in which
(1) R2 is coverable by ℵ1 graphs and reflections of graphs of continuous real

functions;

(2) R2 is not coverable by ℵ1 graphs and reflections of graphs of Lipschitz
real functions.

Diagram 1 in the introduction summarizes the ZFC results in Part I of

the paper. The independence results in Part II show that any two rows in

Diagram 1 can be separated if one excludes Cov(Lip(R)) from row (3).

1. Introduction

In this paper we study Ramsey properties of continuous graph structures on
Polish spaces. A continuous graph-structure on a Polish space X is a pair-coloring
c : [X]2 → {0, 1} which is continuous with respect to the natural topology on
unordered pairs from X. The Ramsey invariant which we use to classify such
colorings is the homogeneity number : the least number of homogeneous subsets (of
both colors) required to cover X.

Let us explain briefly how set-theoretic study of continuous pair-colorings leads
to the consideration of homogeneity numbers. It is not hard to check that for every
continuous pair-coloring on an uncountable Polish space there is a homogeneous
subset which is perfect, and hence of size continuum, and that the chromatic number
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of the coloring — that is, the number of homogeneous subsets of color 0 required
to cover the space — is either countable or continuum1.

This means that, from a set-theoretic point of view, these standard invariants are
degenerate. The homogeneity number of continuous pair-colorings is a natural gen-
eralization of the chromatic number which is not set-theoretically degenerate. The
classification of homogeneity numbers on Polish spaces leads both to an interesting
theory in ZFC and to interesting meta-mathematics.

A second reason for the consideration of homogeneity numbers comes from con-
vexity theory. For certain closed subsets of R2 the number of convex subsets re-
quired to cover them is equal to the homogeneity number hm(c) of some continuous
pair-coloring c on the Baire space [20]. Thus, homogeneity numbers measure the
complexity of convex decompositions of certain closed planar sets.

Homogeneity numbers of continuous pair-colorings relate to at least two more
subjects. The crucial inequality (Theorem 3.9 below), which reduces general con-
tinuous pair-colorings to compact ones, involves the notion of covering a plane by
functions. About half of the paper is devoted to that subject. The connection
between continuous pair-colorings and covering a plane by functions works in both
ways: after establishing the classifications of homogeneity numbers we have at hand
an optimal forcing for proving the consistency of “more Lipschitz functions are re-
quired to cover (2ω)2 than continuous ones”. This consistency result implies the
consistency of “more Lipschitz functions are required to cover R2 than continuous
ones”.

Finally, it is perhaps a bit surprising that the classification of continuous homo-
geneity numbers is related to perfect graphs (see the recent survey [11] and [12]).
The forcing construction that separates hm(cmin) from hm(cmax) (Section 4 below)
makes a crucial use of a Ramsey connection between perfect graphs and random
graphs [4].

Within set theory, continuous pair-colorings are naturally related to the broader
class of open colorings, that has been a focus of interest for set theorists for three
decades now, and motivated several important developments in the technique of
forcing [7, 8, 2]. Open coloring axioms, which are statements in the Ramsey theory
of open colorings, are among the more frequently used set-theoretic axioms in the
theory of the continuum (see [33, 32, 17, 27] and the references therein).

1.1. The results. Two simple pair-colorings cmin and cmax are defined on the Can-
tor space, and are shown to satisfy for every Polish space X and every continuous
c : [X]2 → 2 with uncountable hm(c):

hm(cmin) ≤ hm(c) ≤ hm(cmax) (1)
To state the remaining results concisely, we briefly introduce some notation. A

function f : X → X covers a point (x, y) ∈ X2 if f(x) = y or f(y) = x. For a metric
space (X, dist) let Cov(Lip(X)) denote the number of Lipschitz functions from X
to X required to cover X2 and Cov(Cont(X)) denote the analogous numbers for
continuous functions. The Baire space ωω and the Cantor space 2ω are considered
with the standard metric dist(x, y) = 1

2∆(x,y) , where ∆(x, y) = min{n : x(n) 6= y(n)}
for x 6= y.

The remaining ZFC equalities and inequalities are summarized in Diagram 1.

Homogeneity numbers are on the right column and covering-by-functions cardi-
nals are on the middle column. We draw attention to the fact that the rows (2)–(6)
have to share at most two consecutive cardinals since Cov(Cont(2ω)) cannot be

1This holds for every open coloring on an analytic set [18].
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(6)
(

Cov(Cont(2ω))
)+

(5) 2ℵ0

(4) hm(cmax)

(3) Cov(Lip(R)) ≥ Cov(Lip(ωω)) = Cov(Lip(2ω)) = hm(cmin)

(2) Cov(Cont(R)) = Cov(Cont(ωω)) = Cov(Cont(2ω))

(1) d

Diagram 1

more than one cardinal below 2ℵ0 ; thus, four different models of set theory are
required to separate them from each other.

The independence results in Part II of the paper show that after excluding
Cov(Lip(R)) from row (3) for each of the rows (1)–(5) it is consistent that the
value at the row is ℵ1 and at all rows above the value is ℵ2. The forcing for sepa-
rating (2) from (3) is a new example of an optimal forcing in the sense of Zapletal
[34] for increasing a cardinal invariant while leaving small everything that can be
left small.

The inequality Cov(Lip(2ω)) ≤ hm(cmin) and the consistency of hm(c) < 2ℵ0 for
every Polish space X and continuous c : [X]2 → 2 were proved in [20].

The last inequality cannot hold for all open colorings. In [2] an example of an
open pair-coloring on the square of any uncountable Polish space X is given such
that X2 cannot be covered by fewer than 2ℵ0 homogeneous sets. Let us present a
slightly simplified version of this coloring.

An unordered pair {(x0, y0), (x1, y1)} of elements of X2 is of color 0 if it is
a 1-1-function and of color 1 otherwise. The set of pairs of color 0 is open. If
H ⊆ X2 is homogeneous of color 1, then it is either (a part of) a row or (a part of)
a column in the square. The homogeneous sets of color 0 are graphs of (partial)
injective functions. It is easily checked that X2 cannot be covered by less than 2ℵ0

homogeneous sets.

1.1.1. Structure of the paper. The paper is divided to two parts. Absolute ZFC
results are in Part I and independence results are in Part II. Notation, preliminaries
and background material are included at the beginning of each section. The first
part employs elementary techniques and does not require any specialized knowledge.
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Although we are supposed to assume that every reader will read the whole paper,
we suspect that those who will read the second part are knowledgeable in forcing
notation. For those readers who read the first part and decide that they have to
learn forcing so that they can read the second part, we recommend the standard
[26, 6] as sources for notation and introduction to forcing.

We tried to keep notation as standard as possible.
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Part I: Results in ZFC

2. The structure of Continuous pair-colorings on Polish spaces

2.1. Basic definitions and preliminary facts.

2.1.1. Colorings, chromatic numbers, and homogeneity numbers. The symbol [A]2

denotes the set of all two-element subsets of a set A. Ramsey’s theorem states that
if A is infinite, then for every function c : [A]2 → 2 := {0, 1} there is an infinite
set B ⊆ A so that c is constant on [B]2. A function c : [A]2 → 2 is called a pair-
coloring, and a set B ⊆ A for which c � [B]2 is constant is called c-homogeneous or
c-monochromatic. In the future we write just c � B instead of c � [B]2. A set H is
c-homogeneous of color i for i ∈ 2, if the constant color on H is i.

A pair coloring c on A can be thought of as (the characteristic function of) the
edge relation of a graph G = (A, c). In this setting Ramsey’s theorem states that
every infinite graph contains either an infinite clique — a subgraph in which any
pair of vertices forms an edge — or an infinite independent set — a subset in which
no two vertices form an edge.

Recall that the chromatic number of a graph is the least number of independent
sets required to cover the set of vertices.

Definition 2.1. For a coloring c : [A]2 → 2 the homogeneity number of c, denoted
by hm(c), is the minimal number of c-homogeneous subsets required to cover A.

The difference between chromatic and homogeneity numbers is that in the defi-
nition of the latter covering is by homogeneous sets of both colors.

2.1.2. Continuous colorings on Polish spaces. Let X be a topological space and let
X2 := X ×X with the product topology. We identify [X]2 with the quotient space
(X2\{(x, x) : x ∈ X})/ ∼, where (x, y) ∼ (w, z) iff (x, y) = (w, z) or (x, y) = (z, w).

Theorem 2.2 (Eilenberg 1941). If X is a connected topological space with more
than one point, then [X]2 is connected.

Proof. Eilenberg’s Theorem 1 in [14] states that if X is connected and contains
more than one point, then either X2 \{(x, x) : x ∈ x} is connected or else X can be
linearly ordered by a relation < so that the topology of X refines the order topology
defined by < and so that the connected components of X2 \ {(x, x) : x ∈ X} are
{(x, y) : x < y} and {(x, y) : y < x}. In the former case [X]2 is connected as
a continuous image of a connected space and in the latter case [X]2 is connected
because it is homeomorphic to the connected component {(x, y) : x < y}. �

We thank Apollo Hogan for pointing out Theorem 2.2 and referring us to Eilen-
berg’s paper.

A coloring c : [X]2 → 2 is continuous if the preimages of 0 and of 1 are open.
Equivalently, c is continuous if for all {x, y} ∈ [X]2, there are disjoint open neigh-
borhoods U and V of x and y, respectively, such that c is constant on U ×V . Here
we identify c with the corresponding symmetric function from X2 \{(x, x) : x ∈ X}
to 2. By Theorem 2.2, there are no non-constant continuous colorings of [X]2 if X
is connected.

A topological space X is Polish if it is homeomorphic to a separable and complete
metric space. Every Polish space is a disjoint union of a countable open scattered
subset with a perfect subset (where either of the two components may be empty).
Since every nonempty perfect subset of a Polish space has the cardinality of the
continuum, every uncountable Polish space is equinumerous with the continuum.

Definition 2.3. (1) A pair-coloring c on X is reduced if c is continuous and
no nonempty open subset of X is c-homogeneous.
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(2) A coloring c : [X]2 → 2 is trivial if hm(c) ≤ ℵ0.

Fact 2.4. If X is a Polish space and c : [X]2 → 2, then X = X0 ∪ X1 such that
X0 is open, X1 is perfect, X0 ∩X1 = ∅, c � X0 is trivial and c � X1 is reduced.

Proof. Let X0 be the union of all open sets U ⊆ X for which c � U is trivial. X0 is
open and since X has a countable basis, c is trivial on X0. Let X1 = X \X0. �

Fact 2.5. A continuous pair-coloring on a Polish space X satisfies hm(c) > ℵ0 if
and only if there exists a nonempty perfect Y ⊆ X so that hm(c) = hm(c � Y ) and
c � Y is reduced.

Proof. Suppose hm(c) > ℵ0 and write X = X0 ∪X1 as stated in the previous Fact.
So c � X1 is reduced. Since hm(c � X0) ≤ ℵ0 it follows that hm(c) = hm(c � X1)
and clearly X1 6= ∅. On the other hand, suppose Y ⊆ X is perfect and nonempty,
that hm(c) = hm(c � Y ) and c � Y is reduced. Continuity of c gives that the closure
of every c-homogeneous set is again c-homogeneous; so if Y ⊆ X is perfect and
c � Y is reduced, every c-homogeneous subset of Y is nowhere dense and by the
Baire theorem hm(c) > ℵ0. �

2.1.3. Notation. Let ωω denote the set of all (infinite) sequences of natural numbers.
Let ω<ω denote the set of all finite sequences of natural numbers and let ω≤ω =
ω<ω ∪ ωω. Similarly, 2ω, 2<ω, 2≤ω are the analogous sets for sequences over {0, 1}.

Definition 2.6. For x, y ∈ ω≤ω let ∆(x, y) = min{n ∈ ω : x(n) 6= y(n)} if there is
some n ∈ ω such that x(n) 6= y(n). Otherwise ∆(x, y) is undefined.

If ∆(x, y) is defined for x, y ∈ ω≤ω, put

dist(x, y) :=
1

2∆(x,y)

If ∆(x, y) is not defined, put dist(x, y) := 0.

The function dist satisfies the triangle inequality. In fact, it satisfies a stronger
inequality: dist(x, z) ≤ max{dist(x, y), dist(y, z)} for all x, y, z. (This makes dist
an ultra-metric.)

The following Polish spaces play an important role in this section: the Cantor
space (2ω, dist) and the Baire space (ωω, dist). These spaces are indeed complete,
separable metric spaces. The Cantor space is homeomorphic to the usual Cantor
set and the Baire space is homeomorphic the space of irrational numbers.

2.1.4. The minimal coloring cmin.

Definition 2.7. If X and Y are topological spaces and c and d are continuous
pair-colorings on X and Y , respectively, then we write c ≤ d if there is a topological
embedding e : X → Y , such that for all {x0, x1} ∈ [X]2, c(x0, x1) = d(e(x0), e(x1)).

Clearly, if c ≤ d via an embedding e : X → Y , then e−1[A] is c-homogeneous for
every d-homogeneous A ⊆ Y . Hence, c ≤ d implies that hm(c) ≤ hm(d).

We introduce next a pair coloring cmin on the Cantor space which satisfies cmin ≤
c for all reduced c.

Definition 2.8. (1) Let parity(x, y) denote the parity of ∆(x, y) for x, y ∈
ω≤ω such that ∆(x, y) is defined.

(2) Let cparity := parity � ωω.
(3) Let cmin := parity � 2ω.

Clearly, cparity is a reduced pair-coloring on ωω and cmin is a reduced pair-coloring
on 2ω.

If H ⊆ 2ω is cmin-homogeneous of color 0, then all splittings in T (H), the tree of
all finite initial segments of members of H, occur on even levels. If T is a subtree
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of ω<ω, we identify every infinite branch of T with its union, a point in ωω. A set
H ⊆ 2ω is, then, maximal cmin-homogeneous of color 0 is if and only if H is the
set of all infinite branches of a tree T in which t ∈ T has two immediate successors
if |t| is even and one immediate successor if |t| is odd. Similarly, H is maximal
cmin-homogeneous of color 1 if and only if it is the set of all infinite branches of
a tree T such that t ∈ T has two immediate successors in T if |t| is odd and one
immediate successor in T if |t| is even.

Lemma 2.9. For every reduced pair-coloring c on a Polish space we have:

cmin ≤ c.

Consequently, hm(cmin) ≤ hm(c) for every reduced c.

Proof. Suppose c : [X]2 → 2 is reduced and X is Polish. Since no nonempty open
set is c-homogeneous in X, X has no isolated points.

By induction on n choose, for every t ∈ 2n, an open set Ut 6= ∅ of diameter < 1/n
such that

– t ⊆ s ⇒ cl(Us) ⊆ Ut,
– ∆(t1, t2) defined implies that cl(Ut1) ∩ cl(Ut2) = ∅ and

for all x1 ∈ cl(Ut1), x2 ∈ cl(Ut2): c(x1, x2) ≡ ∆(t1, t2) mod 2.

At the induction step, for a given t ∈ 2n find x1, x2 ∈ Ut which satisfy c(x1, x2) ≡ n
mod 2 (possible since Ut is not c-homogeneous) and inflate x1, x2 to a sufficiently
small open balls Ut_0, Ut_1.

The map e mapping each x ∈ 2ω to the unique element of
⋂

n Ux�n is an embed-
ding of 2ω into X which preserves cmin. �

In [20] hm(cmin) was denoted simply by hm. We will also sometimes write hm
for hm(cmin).

Before we proceed, let us remark that cparity is not more complicated than cmin:

Lemma 2.10. cparity ≤ cmin

Proof. We have to define an embedding e : ωω → 2ω witnessing cparity ≤ cmin.
For x ∈ ωω, let e(x) be the concatenation of the sequences bn, n ∈ ω, which are

defined as follows.
If n is even, then let bn be the sequence of length 2 · x(n) + 2 which starts with

2 · x(n) zeros and then ends with two ones. If n is odd, let bn be the sequence of
length 2 · x(n) + 2 starting with 2 · x(n) + 1 zeros and ending with a single one.

It is clear that e is continuous and it is easy to check that e is an embedding
witnessing cparity ≤ cmin. �

2.2. Classification of homogeneity numbers. We begin now the classification
of homogeneity numbers of continuous pair colorings on Polish spaces. The purpose
of this Section is to find two continuous pair-colorings on the Cantor spaces whose
homogeneity numbers capture all possible homogeneity numbers of continuous pair
colorings. The following sequence of reductions will be performed: First, it will
be shown that any homogneity number occurs on some compact space; then, that
every homogneity number occurs on the Cantor space; and finally that every number
occurs as a homogeneity number of a particularly simple coloring on the Cantor
space — an almost node coloring. At the end of the section, we shall be able
to isolate a pair-coloring cmax with a maximal homogeneity number in the class of
continuous pair-colorings on Polish spaces and show that every homogneity number
of an arbitrary reduced coloring on a Polish space is equal to hm(cmin) or is equal
to hm(cmax).
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2.2.1. Reduction to compact spaces. The following two fundamental inequalities
hold for cmin:

(hm(cmin))+ ≥ 2ℵ0 (2)

hm(cmin) ≥ d (3)

The first inequality was proved in [20] and the second one which, really, is the
starting point of the present paper, will be proved in Section 3. Although these
inequalities are central for this Section, their proofs belong to the setting of covering
a square by functions.

From the first inequality it follows that there is room for at most one more
homogeneity number above hm(cmin) — since either hm(cmin) or its immediate
successor cardinal is the continuum. In [20] it was proved consistent that for all
reduced pair-colorings c,

hm(c) = ℵ1 < 2ℵ0 = ℵ2. (4)

The second inequality relates hm(cmin) to the domination number d. This num-
ber is the least number of functions from ω to ω needed to eventually dominate
every such function. It is not difficult to see that d is the least size of a family
of compact sets that covers ωω. It is well-known that every Polish space is a con-
tinuous image of ωω. Therefore every Polish space can be covered by d compact
sets.

Lemma 2.11. For every Polish space X and a continuous pair-coloring c : [X]2 →
2 with uncountable hm(c) there is a compact subspace Y ⊆ X so that hm(c) =
hm(c � Y ).

Proof. Suppose, without loss of generality, that c is reduced on X. Cover X by
compact subspaces Yα, α ≤ d, and denote cα := c � Yα. For each α < d fix
a collection Uα of cα-homogeneous subsets of Yα which covers Yα and such that
|Uα| = hm(cα). Thus U =

⋃
α<d Uα is a collection of c-homogeneous sets which

covers X, so hm(c) ≤ |U|.
In the case that for all α < d it holds that hm(cα) ≤ hm(cmin) we have that

hm(c) ≤ |U| ≤ d · hm(cmin), so by (3), hm(c) ≤ hm(cmin). Since c is reduced,
hm(c) = hm(cmin) and Y ⊆ X can be chosen as a copy of the Cantor space by
Lemma 2.9

In the remaining case hm(c) > hm(cmin), therefore there necessarily exists α < d
for which hm(cα) > hm(cmin), and consequently, by (2), hm(cα) = hm(c). �

2.2.2. Reduction to colorings on 2ω. For a compact space X let Comp(X) be the
set of connected components of X. For x ∈ X let comp(x,X) denote the component
of x in X and comp(x) = comp(x, X) when X is clear from the context. Comp(X)
becomes a compact space when equipped with the quotient topology. If X is a
compact metric space, then so is Comp(X). Recall that compact metric spaces are
Polish.

The components of Comp(X) are singletons. Since Comp(X) is compact, it is
zero-dimensional. (See [15] for this. We assume compact spaces to be Hausdorff.)

Lemma 2.12. Let X be compact and c : [X]2 → 2 continuous. Define a coloring
c : [Comp(X)]2 → 2 by

c
(
comp(x), comp(y)

)
= c(x, y)

for all x, y ∈ X with comp(x) 6= comp(y). Then c is a well-defined continuous
pair-coloring on Comp(X).
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Proof. Suppose x0, x1, y0, y1 ∈ X are such that x1 ∈ comp(x0), y1 ∈ comp(y0), and
x0 and y0 are in different components. Then c(x0, y0) = c(x1, y0) since x0 and x1

are in the same component of X \ {y0} and c(·, y0) : X \ {y0} → 2 is continuous.
By the same argument, c(x1, y0) = c(x1, y1). Thus c(x0, y0) = c(x1, y1), showing
that c is well-defined.

For every x ∈ comp(x0), y ∈ comp(y0) fix, by continuity of c, disjoint open
Ux,y 3 x, Vx,y 3 y so that c is constant on Ux,y × Vx,y. Now {Ux,y × Vx,y : x ∈
comp(x0), y ∈ comp(y0)} is an open cover of comp(x0)×comp(y0). Since the latter
is compact, there is a finite subcover {Uxi,yi × Vxi,yi : i < n} of this cover, which
can be shrunk so that

⋃
i<n Uxi,yi ∩

⋃
i<n Vxi,yi = ∅. Thus we found two disjoint

open neighborhoods of comp(x), comp(y) respectively so that c is constant on their
product. This proves the continuity of c. �

Lemma 2.13. Let X be a compact metric space and suppose c : [X]2 → 2 is
continuous. Then there exists a continuous c : [2ω]2 → 2 such that hm(c) ≤ hm(c).

Proof. Let Y := Comp(X) and let f : X → Y be the mapping that maps every
x ∈ X to comp(x,X). Let c be as in Lemma 2.12. Observe that Y is of countable
weight.

Assume that Y is uncountable. Cantor-Bendixson analysis of Y gives us a de-
composition of Y into countably many points and a perfect set. Since for every
isolated point y ∈ Y the set f−1(y) is c-homogeneous in X by Theorem 2.2, we
may replace Y by a perfect subset of Y at the cost of removing countably many
c-homogeneous subset of X.

Y is now zero-dimensional, compact, without isolated points and of countable
weight. Therefore Y is the Cantor space.

Claim 2.14. hm(c) ≤ hm(c)

By the continuity of c, every maximal c-homogeneous set in Y is closed. Now
using Cantor-Bendixson analysis again, every uncountable maximal c-homogeneous
set can be decomposed into countably many singletons and a perfect set.

The preimages under f of singletons are c-homogeneous by Theorem 2.2. Also,

Claim 2.15. For any perfect c-homogeneous set H ⊆ Y , f−1[H] is c-homogeneous.

Proof. For the claim let H ⊆ Y be perfect and c-homogeneous of color i ∈ 2. If
x, y ∈ f−1[H] are in different components of X, then clearly c(x, y) = i. Now let
z be one of the components of X. Assume |z| > 1. By Theorem 2.2, c is constant
on z. Let j ∈ 2 be the constant value of c on z. We have to show i = j.

Let (zn)n∈ω be a sequence in H \ {z} that converges to z. Pick (xn)n∈ω in X
such that for all n ∈ ω, f(xn) = zn. By compactness, (xn)n∈ω has a convergent
subsequence. We may assume that (xn)n∈ω itself converges.

Let x be the limit of (xn)n∈ω. Clearly, x ∈ z. Let y ∈ z be different from x.
Then c(x, y) = j. By continuity, c(x, y) = limn→∞ c(xn, y) = i. Thus i = j, which
finishes the proof of the claim. �

Thus, the preimage under f of every c-homogeneous subset of Y is a countable
union of c-homogeneous subsets of X. This establishes hm(c) ≤ hm(c) and proves
Lemma 2.13. �

2.2.3. Reduction to simple colorings on 2ω. We are now fishing in a much smaller
tank: we can consider only colorings on the Cantor space. The next reduction will
show that we can consider only “coarse” pair-colorings on the Cantor space.

Notation 2.16. For a tree T and t ∈ T let succT (t) be the set of immediate
successors of t in T . Recall that if A is a subset of ωω, then T (A) denotes the set
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of finite initial segments of the element of A, a subtree of ω<ω. If T is a subtree
of ω<ω, then [T ] denotes the set of all elements of ωω which have all their finite
initial segments in T . [T ] is a closed subset of ωω. In this way closed subsets of ωω

correspond to subtrees of ω<ω without finite maximal branches.

A natural way to construct continuous pair-colorings on a subset A of ωω is the
following: To each t ∈ T (A) assign a coloring ct : [succT (A)(t)]2 → 2. Now for
all {x, y} ∈ [A]2 let t be the longest common initial segment of x and y and put
c(x, y) := ct(x � n + 1, y � n + 1) where n = dom(t). Clearly, c is continuous. We
call a coloring which is defined in this way an almost node-coloring.

A node-coloring on A is obtained by assigning a color to every node t ∈ T (A)
and then defining the color of {x, y} ∈ [A]2 to be the color of the longest common
initial segment of x and y. Equivalently, a node-coloring is an almost node-coloring
in which ct : [succT (A)(t)]2 → 2 is constant for all t ∈ T .

Both cmin and cparity are node-colorings.
Not every continuous pair-coloring on ωω is an almost node-coloring. However,

the following holds:

Lemma 2.17. Let c : [2ω]2 → 2 be continuous. Then there is a topological em-
bedding e : 2ω → ωω such that for every cparity-homogeneous set H ⊆ e[2ω], the
coloring ce � H which is induced on H by c via e is an almost node-coloring.

Proof. Let n ∈ ω and let s, t ∈ 2n+1 be such that ∆(s, t) = n. Let Os and Ot

denote the basic open subsets of 2ω determined by s and t, respectively.
Since Os × Ot is compact and c is continuous, there is m > n such that for all

(x, y) ∈ Os ×Ot, c(x, y) only depends on x � m and y � m.
It follows that there is a function f : ω → ω such that for all {x, y} ∈ [2ω]2,

c(x, y) only depends on x � f(∆(x, y)) and y � f(∆(x, y)). We can choose f strictly
increasing and such that f(0) ≥ 1. For n ∈ ω let g(n) := fn(0).

Identifying 2<ω and ω, we define the required embedding e : 2ω → ωω by letting
e(x) := (x � g(0), x � g(1), . . . ). Let E := e[2ω]. c induces a continuous pair-
coloring ce on E via e. By the choice of f , for {u, v} ∈ [E]2, ce(u, v) only depends
on u � (∆(u, v) + 2) and v � (∆(u, v) + 2). This is because if n = ∆(u, v) and
x, y ∈ 2ω are such that e(x) = u and e(y) = v, then ∆(x, y) < g(n) and thus
c(x, y) only depends on x � f(∆(x, y)) and y � f(∆(x, y)). But since f is strictly
increasing, f(∆(x, y)) < f(g(n)) = g(n + 1).

Now let H be a cparity-homogeneous subset of E. The cparity-homogeneity of H
implies that for all {u, v} ∈ [H]2, the restrictions of u and v to ∆(u, v) + 1 uniquely
determine the restrictions to ∆(u, v) + 2. Therefore, for all {u, v} ∈ [H]2, ce(u, v)
only depends on u � (∆(u, v) + 1) and v � (∆(u, v) + 1).

It follows that ce � H is an almost node-coloring. �

Corollary 2.18. For every continuous pair-coloring c : [2ω]2 → 2, there is an
almost node-coloring d on some compact subset of ωω such that hm(c) ≤ hm(d).

Proof. By the previous Lemma, 2ω can be presented as a union of ≤ hm(cmin) sets
on each of which c is reducible to an almost node-coloring. The rest of the proof is
as in the proof of Lemma 2.11. �

2.2.4. The coloring cmax. We shall now define a maximal almost node-coloring.
Recall that the random graph on ω is, up to isomorphism, the only homogeneous

and universal graph in the class of all graphs on ω. (See [16] for some information
on the random graph.) Universality means: every graph (ω, E) is embeddable as
an induced subgraph into the random graph (in particular, every finite graph is
embeddable as an induced subgraph into a finite initial segment of the random
graph).
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Definition 2.19. Let χrandom : [ω]2 → 2 be the (characteristic function of the) edge
relation of the random graph. For s, t ∈ ω≤ω write random(s, t) = i iff n := ∆(s, t)
exists and i = χrandom(s(n + 1), t(n + 1)). Let crandom : [ωω]2 → 2 be defined by
crandom(x, y) := random(x, y). Finally, let

cmax := crandom �
∏
n∈ω

(n + 1) (5)

Clearly, crandom and cmax are almost node-colorings. Since
∏

n∈ω(n+1) is home-
omorphic to 2ω, we regard cmax as a coloring on 2ω.

It is interesting to point out:

Fact 2.20. Whenever c is an almost node-coloring on a compact subspace of ωω,
then: crandom 6≤ c.

Proof. Let (xn)n∈ω be an infinite path in crandom, i.e.,

∀n < m : crandom(xn, xm) = 1 ⇔ m = n + 1.

Since every countable graph embeds into (ωω, crandom), such a sequence can be
easily found.

On the other hand, if Y ⊆ ωω is compact and c : [Y ]2 → 2 is an almost
node-coloring, there is no infinite path in (Y, c). Suppose to the contrary that
(yn)n<ω is a path in (Y, c). Observe that ∆(yn+1, yn+2) > ∆(yn, yn+1) implies that
c(yn, yn+2) = 1; and that ∆(yn+1, yn+2) < ∆(yn, yn+1) implies c(yn+1, yn+2) = 0.
Thus, ∆(yn, yn+1) is constant for all n — contrary to the compactness of Y .

The fact now follows. �

Lemma 2.21. a) If c is an almost node-coloring on a subset of ωω, then c ≤ crandom

via a level preserving embedding (isometry) of ωω into ωω.
b) If c is an almost node-coloring on a compact subset of ωω, then c ≤ cmax.

Proof. Let us prove b) first. Suppose c is an almost node-coloring on a compact
subset A of ωω. Then T (A) is a finitely branching subtree of ω<ω. For each t ∈ T (A)
fix a coloring ct : [succT (A)(t)]2 → 2 such that the ct witnesses the fact that c is an
almost node-coloring. For s, t ∈ T let c(s, t) := c(x, y) if s and t are incomparable
and x, y ∈ [T ] are such that s ⊆ x and t ⊆ y. If s and t are comparable, then c(s, t)
is undefined.

Let Tk = {t ∈ T (A) : |t| = k}. We construct a monotone (i.e., ⊆-preserving)
map e :

⋃
k∈ω Tk → T (

∏
n∈ω(n + 1)) which induces the required embedding of A

into
∏

n∈ω(n + 1).
Argue by induction on k. Suppose that e(s) ∈

∏
n≤n(k)(n + 1) is defined for all

s ∈ Tk, and for all s, t ∈ Tk we already have random(e(s), e(t)) = c(s, t).
Find n(k + 1) > n(k) such that for all s ∈ Tk there is t ∈

∏
n<n(k+1)(n + 1) with

e(s) ⊆ t and cs ≤ random � succT (
∏

n∈ω(n+1))(t). Now it is obvious how to define e

on Tk+1 with images in
∏

n≤n(k+1)(n + 1).
a) is proved similarly, using the fact that every countable graph occurs as an

induced subgraph of (succω<ω (s), random) for every s ∈ ω<ω. �

Corollary 2.22. For every Polish X and every continuous c : [X]2 → 2:

hm(c) ≤ hm(cmax).

Proof. Let c be an arbitrary reduced continuous pair-coloring on a Polish X. By
Lemma 2.11 there exists a compact Y ⊆ X so that hm(c) = hm(c � Y ). By Lemma
2.13 there is a coloring c on 2ω so that hm(c) ≤ hm(c) and by Corollary 2.18 there
is an almost node-coloring d on 2ω so that hm(c) ≤ hm(d). Finally, d ≤ cmax by
Lemma 2.21 above. �
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Finally,

Theorem 2.23. For every reduced continuous pair-coloring c:

hm(c) = hm(cmin) or hm(c) = hm(cmax)

Proof. By now we have that hm(cmin) ≤ hm(c) ≤ hm(max) for all reduced c. But
hm(cmax) ≤ (hm(cmin))+ by (2); so hm(c) > hm(cmin) implies hm(c) = hm(cmax).

�

Note however that it is conceivable that there is a simply defined reduced pair
coloring c on a Polish space such that neither hm(c) = hm(cmax) nor hm(c) =
hm(cmin) is provable in ZFC (see Problem 6.1).

We remark that in Theorem 2.23 above, cmin can be replaced by cparity and cmax

can be replaced by crandom, since

cparity ≤ cmin ≤ cmax ≤ crandom.

2.2.5. Why cmax is more complicated than cmin: Random versus perfect graphs. In
the second part of the paper we shall prove the consistency of hm(cmin) < hm(cmax).
The consistency proof relies on the different finite patterns that appear in each of
those two colorings.

Clearly, every finite graph occurs as an induced subgraph of (2ω, cmax).
A finite graph is called perfect if in each of its induced subgraphs the chromatic

number is equal to the clique number. A perfect graph with n vertices contains
either a clique or an independent set of size b

√
nc. This stands in strong contrast to

a randomly chosen graph: in a random graph on n vertices there is almost certainly
no clique and no independent set of size 2 log n (see [5]).

Fact 2.24 (N. Alon). Every finite (induced) subgraph H of (ωω, cparity) satisfies
that the chromatic number of H is equal to the maximal size of a clique in H.

Proof. Two proofs of this fact are in [4]. The proof we include here was suggested
to us by Stevo Todorčević. Define a partial order on ωω by η1 ≤ η2 iff η1 = η2 or
∆(η1, η2) is odd and η1 precedes η2 in the lexicographic ordering on ωω. A finite
induced subgraph of ωω is a clique iff its elements form a chain in the poset just
defined and is an independent set iff its elements form an anti-chain in the same
poset. Now recall that a finite partially ordered set with no chain of length k + 1
is a union of k antichains. �

Thus only perfect graphs occur as finite induced subgraphs of cmin.
In particular:

cmax 6≤ cmin. (6)

3. Covering a square by functions

The problem of covering a Euclidean space by smaller geometric objects is well
investigated. Klee [25] proved that no separable Banach space can be covered by
fewer than 2ℵ0 hyperplanes. Steprāns [31] proved the consistency of covering Rn+1

by fewer than continuum smooth manifolds of dimension n.
We recall that a point (x, y) ∈ X2 is covered by a function f : X → X if

f(x) = y or f(y) = x. By f−1 we mean the set {(y, x) : f(x) = y}, the inverse of
f . Thus (x, y) is covered by f iff (x, y) ∈ f ∪ f−1. For a metric space X denote by
Cov(Cont(X)) the minimal number of continuous functions from X to X needed to
cover X2 and by Cov(Lip(X)) denote the analogous number for Lipschitz functions.

Hart and van der Steeg showed the consistency of covering (2ω)2 by fewer than
continuum continuous functions [23], a result that actually follows from Steprāns’
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result mentioned above using some easy arguments from the present article. Ciesiel-
ski and Pawlikowski observed that Steprans’ result also implies that R2 is consis-
tently covered by fewer than continuum continuously differentiable functions [13].
This is optimal in the following sense:

It was pointed out by Márton Elekes that R2 is not the union of less than
continuum twice differentiable functions and inverses of differentiable functions.
This is because there exists a differentiable function f : R → R and an infinite
perfect set P ⊆ R such that the derivative of f is constantly 0 on P and no
function which is twice differentiable intersects f � P in infinitely many points [3].
Since the derivative of f is 0 on P , no inverse of a differentiable function intersects
f � P in more than finitely many points. It follows that already the graph of f is
not included in the union of less than continuum twice differentiable functions and
inverses of differentiable functions.

In [20] it was shown that (2ω)2 can consistently be covered by fewer than con-
tinuum Lipschitz functions, which also follows from the result by Ciesielski and
Pawlikowski on covering R2 by continuously differentiable functions. Hart asked
whether Cov(Lip(2ω)) can be different from Cov(Cont(2ω)). Recently, Abraham
and Geschke [1] proved that it is consistent to cover Rn+1 by κ n-ary continuous
functions with 2ℵ0 = κ+n.

Let us state the following folklore result that was brought to the authors’ atten-
tion by Ireneusz Rec law (and which should be well-known):

Theorem 3.1. Let κ be an infinite cardinal. Then the least number of functions
from κ+ to κ+ needed to cover κ+ × κ+ is κ.

Proof. For every α < κ+ fix a surjection fα : κ → (α + 1). Now define, for β < κ,
gβ(α) := fα(β). The functions {gβ : β < κ} cover κ+ × κ+.

To show that κ+ × κ+ is not covered by less than κ functions, let F be a family
of functions from κ+ to κ+ of size < κ. We shall find a pair (x, y) ∈ κ+ × κ+ that
is not covered by F .

Let X ⊆ κ+ be a set of size κ which is closed under all functions in F . Choose
y ∈ κ+ \X. Now for all f ∈ F and all x ∈ X, f(x) 6= y. Since |F| < |X|, there is
x ∈ X such that for all f ∈ F , x 6= f(y). Now (x, y) is not covered by any function
in F . �

This theorem implies that if the continuum is a successor cardinal, then fewer
than continuum functions suffice to cover the square of the continuum. In [1] a
generalization of Theorem 3.1 to higher dimension is proved.

In the rest of this section the connection between cmin-homogeneous sets and
covering (2ω)2 by Lipschitz functions will be explored, and used to prove the in-
equalities (2) and (3) which were used in the previous Section. Inequality (2) was
already proved in [20]. Inequality (3) follows from Theorem 3.9 below.

After proving the crucial Theorem 3.9 we investigate covering by continuous
functions.

3.1. hm and covering a square by Lipschitz functions.

Definition 3.2. For a, b > 0 let Lipa,b denote the σ-ideal on (2ω)2 generated by the
Lipschitz functions of constant a and the inverses of Lipschitz functions of constant
b. The covering number of this ideal, Cov(Lipa,b), is the least number of sets in
the ideal needed to cover (2ω)2.

Clearly, as the graph of every continuous function is a nowhere-dense subset of
(2ω)2, Cov(Lipa,b) > ℵ0 for every choice of positive a, b. By Theorem 3.1 we know
that (Cov(Lipa,b))+ ≥ 2ℵ0 .
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Lemma 3.3. hm = Cov(Lip1, 1
2
)

Proof. For x, y ∈ ωω let x ⊗ y := (x(0), y(0), x(1), y(1), . . . ). It is easily seen that
⊗ : (ωω)2 → ωω and ⊗ : (2ω)2 → 2ω are uniformly continuous homeomorphisms.

Suppose H0 ⊆ 2ω is a maximal cmin-homogeneous of color 0. Then T := T (H0)
is a tree with the property that t ∈ T has two immediate successors in T if and
only if |t| is even and has one immediate successor in T otherwise. Let x ∈ 2ω and
define y(n) inductively as follows:
Suppose y(i) is defined for all m < n, and we have

t = (x(0), y(0), x(1), y(1), . . . , x(n− 1), y(n− 1)) ∈ T.

Let y(n) ∈ {0, 1} be the unique i such that t_x(n)_i ∈ T . Let fH0(x) denote y,
which we have just defined from x and H0. We then have (x⊗ fH0(x)) ∈ H0.

Since the first n digits of y are determined by the first n digits of x, fH0 : 2ω → 2ω

is a Lipschitz function with constant 1 (with respect to dist).
Similarly, if H1 is maximal cmin-homogeneous of color 1, then for every x ∈ 2ω

there is a unique fH1(x) ∈ 2ω for which fH1(x)⊗ x ∈ H1. This time, the function
fH1 is of Lipschitz of constant 1

2 .
Conversely, from every 1-Lipschitz function f : 2ω → 2ω a maximal cmin-

homogeneous set Hf of color 0 is defined so that for all x, y = f(x) is the unique
such that x⊗y ∈ Hf and from every 1/2-Lipschitz function f : 2ω → 2ω a maximal
cmin-homogeneous set fH of color 1 is defined such that y = f(x) is the unique
such that y ⊗ x ∈ fH.

Suppose H0 is a family of maximal cmin-homogeneous subsets of 2ω of color 0 and
H1 is a family of maximal cmin-homogeneous subsets of color 1. For (x, y) ∈ (2ω)2,
if x⊗ y ∈ H for some H ∈ H0 then y = fH(x), and if x⊗ y ∈ H for H ∈ H1 then
x = fH(y). Thus

⋃
H0∪

⋃
H1 = 2ω implies that for all (x, y) ∈ (2ω)2 there is some

H ∈ H for which fH(x) = y or fH(y) = x.
Conversely, suppose that F0 is a family of 1-Lipschitz functions from 2ω to itself

and that F1 is a family of 1
2 -Lipschitz functions from 2ω to itself. Let z ∈ 2ω and

write z = x⊗ y. If there is f ∈ F0 such that f(x) = y then z ∈ Hf and if there is
f ∈ F1 such that f(y) = x then z ∈ fH. �

3.1.1. Varying the Lipschitz constants. Let Lip be the σ-ideal on (2ω)2 generated by⋃
a>0 Lipa,a, i.e., the σ-ideal generated by all Lipschitz functions and their inverses.

Theorem 3.4. hm = Cov(Lip)

Proof. Clearly, Cov(Lip) ≤ Cov(Lip1, 1
2
). Thus, it follows from Lemma 3.3 that

Cov(Lip) ≤ hm.
Now we prove the converse inequality hm ≤ Cov(Lip). We define a coloring

c : [2ω × 2ω]2 → P(2) as follows.
Let 0 ∈ c((x0, y0), (x1, y1)) iff there is a Lipschitz function of constant 1 contain-

ing both (x0, y0) and (x1, y1), i.e., if the slope determined by (x0, y0) and (x1, y1)
is ≤ 1 or equivalently, if x0 and x1 do not split after y0 and y1.

Let 1 ∈ c((x0, y0), (x1, y1)) iff there is a Lipschitz function of constant 1 contain-
ing both (y0, x0) and (y1, x1), i.e., if y0 and y1 do not split after x0 and x1.

It is clear that c is continuous and the color ∅ does not occur. We construct a
(nonempty) perfect set X ⊆ (2ω)2 with the following properties:

(i) c � X only takes the values {0} and {1}.
(ii) c � X is reduced.
(iii) For every Lipschitz function f : 2ω → 2ω, f ∩X and f−1∩X are the unions

of finitely many c-homogeneous sets.
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If we can construct X, we are done. This is because by (iii), every family F of
Lipschitz functions that covers (2ω)2 induces a family H of size at most |F| that
covers X and consists of c-homogeneous sets. By (i) and (ii), we have hm ≤ |H|
and thus hm ≤ |F|.

The required X will be chosen to be (the graph of) a homeomorphism between
two perfect subsets of 2ω. For its construction, partition ω into countably many
intervals Ii, i ∈ ω, such that the length of every Ii is at least i and the elements
of Ii are below the elements of Ij for i < j. For every i ∈ ω let ni denote the first
element of Ii.

Let T0 be a perfect subtree of 2<ω that fully splits at all the levels of height ni

for i ≡ 0, 3 mod 4 and does not split at any other level. Let T1 be a perfect subtree
of 2<ω that fully splits at every level of height ni for i ≡ 1, 2 mod 4 and does not
split anywhere else.

Let X be the (graph of the) natural (order preserving) homeomorphism between
[T0] and [T1]. Clearly X is closed and satisfies (i) and (ii). It remains to show (iii).

Let f : 2ω → 2ω be a Lipschitz function. Choose i ∈ ω so that the Lipschitz
constant of f is below 2i and i ≡ 0 mod 4. T0 is the union of finitely many perfect
subtrees T 1

0 , . . . , Tm
0 that have no splittings below level ni. Since i ≡ 0 mod 4,

the corresponding subtrees T 1
1 , . . . , Tm

1 of T1 do not split below level ni either. For
k ∈ {1, . . . ,m} let Xk := X ∩ ([T k

0 ] × 2ω). Now for every k ∈ {1, . . . ,m} and all
(x0, y0), (x1, y1) ∈ Xk the slope determined by the pair {(x0, y0), (x1, y1)} is either
≤ 2−i or ≥ 2i since the length of Ii is at least i and by the definition of X. Now
by the choice of i, for all k ∈ {1, . . . ,m}, f ∩Xk is c-homogeneous of color {0}.

Similarly, the intersection of every inverse of a Lipschitz function with X is
the union of finitely many c-homogeneous sets of color {1}. This shows (iii) and
therefore finishes the proof of the theorem. �

Lemma 3.5. Let a, b > 0. Then Cov(Lipa,b) = Cov(Lip2·a, b
2
).

Proof. For i ∈ 2 let Xi be the set of all sequences in 2ω starting with i. Let
hi : 2ω → Xi be the homeomorphism mapping x to (i, x(0), x(1), . . . ).

Let f : 2ω → 2ω be a Lipschitz function of constant a. For i ∈ 2 let f i : 2ω → 2ω

be a function which is equal to f ◦ h−1
i on Xi and constant on X1−i such that f i is

Lipschitz of constant 2 ·a. (For example, we can choose the constant value of f i on
X1−i to be f((1− i)) where (1− i) denotes the constant sequence with value 1− i.)

If f : 2ω → 2ω is a Lipschitz function of constant b, then for i ∈ 2 let fi := hi ◦f .
fi is a Lipschitz function of constant b

2 .
Now let F be a family of Lipschitz functions of constant a and G a family of

Lipschitz functions of constant b. If (2ω)2 =
⋃
{f ∪ g−1 : f ∈ F ∧ g ∈ G}, then

(2ω)2 =
⋃
{f i ∪ g−1

i : i ∈ 2 ∧ f ∈ F ∧ g ∈ G}.
It follows that Cov(Lip2·a, b

2
) ≤ Cov(Lipa,b). Now the lemma follows from the

fact that Cov(Lipa,b) is symmetric in a and b. �

Lemma 3.6. Let a, b > 0. If there is c ∈ Z such that 2c−1 ≤ a and 2−c ≤ b, then
Cov(Lipa,b) = hm. Otherwise Cov(Lipa,b) = 2ℵ0 .

Proof. Let a, b > 0 and assume that there is no c ∈ Z such that 2c−1 ≤ a and
2−c ≤ b. Let c ∈ Z be maximal with 2c−1 ≤ a. Then 2−c > b and therefore
b · 2c < 1. 2c−1 ≤ a is equivalent to a · 2−c ≥ 1

2 , and since c is maximal, we have
a·2−c < 1. By Lemma 3.5, Cov(Lipa,b) = Cov(Lip2−c·a,2c·b). But even the diagonal
in (2ω)2 cannot be covered by less than 2ℵ0 Lipschitz functions of constant < 1.

Now suppose there is c ∈ Z such that 2c−1 ≤ a and 2c ≤ b. By Lemma 3.5
we may assume a ≥ 1 and b ≥ 1

2 , hence Cov(Lipa,b) ≤ Cov(Lip1, 1
2
) = hm. The

inequality Cov(Lipa,b) ≥ hm follows from Theorem 3.4. �
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3.1.2. Covering (ωω)2 and R2 by Lipschitz functions. We generalize our notation
Lipa,b to metric spaces X. For a metric space X let Lipa,b(X) be the σ-ideal on
X × X generated by the Lipschitz functions of constant a and the reflections of
Lipschitz functions of constant b. Lip(X) denotes the σ-ideal generated by the
union of all the ideals Lipa,b(X).

Recall that hm(cparity) = hm. It is easily checked that the main arguments for
the correspondence between Lipschitz functions on 2ω and cmin-homogeneous sets
also go through for ωω and cparity. This shows

Corollary 3.7. For X = 2ω and X = ωω we have

Cov(Lip(X)) = Cov(Lip1, 1
2
(X)) = hm.

At the very moment we do not know the exact relation between the cardinal
invariants mentioned above and Cov(Lip(R)). However, we can say something:

Remark 3.8. hm ≤ Cov(Lip(R))

Proof. The argument is similar to the argument in the proof of Theorem 3.4.
It is not difficult to construct a topological embedding e : 2ω → R2 such that for

any two distinct points x, y ∈ 2ω the slope determined by e(x) and e(y) is positive
and ≥ ∆(x, y) if ∆(x, y) is even and ≤ 1

∆(x,y) if ∆(x, y) is odd.
If f : R → R is Lipschitz, then e−1[f ] is a finite union of cmin-homogeneous sets

of color 1 and e−1[f−1] is a finite union of cmin-homogeneous sets of color 0. A
covering family of Lipschitz real functions induces a covering family of no greater
size of cmin-homogeneous subsets of 2ω. This implies hm ≤ Cov(Lip(R)). �

3.2. Covering squares by continuous functions. After having established the
equality hm = Cov(Lip1, 1

2
) = Cov(Lip) and the fact that the Lipschitz constants

can be varied to some extent without changing Cov(Lipa,b), it is natural to ask
what happens if we replace the Lipschitz functions by continuous functions.

For a topological space X let Cont(X) denote the σ-ideal on X ×X generated
by the continuous functions from X to X and their inverses. Cont is Cont(2ω).
Obviously, Lipa,b ⊆ Cont for all a, b > 0. Theorem 3.1 implies that Cov(Cont)+ ≥
2ℵ0 . The same is of course true for hm. The question is whether Cov(Cont) can be
smaller than hm. This will be answered in Section 5.

Very often cardinal invariants of σ-ideals on Polish spaces do not depend on
the particular space the ideal is defined on. This is not true for Cov(Cont(X)).
While Cov(Cont(2ω)) is consistently smaller than 2ℵ0 , the fact that every continuous
function from a connected space to a zero-dimensional space is constant implies
easily that if X is the disjoint union of R and 2ω, then Cov(Cont(X)) = 2ℵ0 .

3.2.1. The crucial inequality. We show that Cov(Cont(X)) is the same for X = 2ω,
X = ωω, and X = R. The proof of this fact depends on the following perhaps
surprising Theorem.

Theorem 3.9. Cov(Cont(2ω)) ≥ d

Let e : ωω → 2ω be the natural embedding, i.e., the one induced by the mapping
that maps n ∈ ω to the sequence of zeros of length n followed by a single one.
Clearly, 2ω \ e[ωω] is countable. Now Theorem 3.9 immediately follows from the
next lemma, letting K := 2ω and X := e[ωω].

Lemma 3.10. Let K be an infinite compact space and let X ⊆ K be such that
|K \X| < |X|. If F is a family of continuous functions from K to K covering K2,
then X can be covered by |F| compact subsets of X.
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Proof. Note that |X| = |K|. We may assume |F| < |K|. By |K \X| < |X|, there
is x ∈ K \

⋃
f∈F f [K \X].

Let f ∈ F . By the choice of x, f−1(x) ⊆ X for every f ∈ F . By the continuity
of f , f−1(x) is closed in K and thus compact.

Since F covers K2, for all y ∈ X there is f ∈ F such that f(x) = y or f(y) = x.
In other words,

{f−1(x) : f ∈ F} ∪ {{f(x)} : f ∈ F ∧ f(x) ∈ X}
is a family of compact subsets of X sets that covers X. Clearly, this family is of
size ≤ |F|. �

Alternative proof of Theorem 3.9. Let F be an infinite family of continuous func-
tions from 2ω to 2ω. Let M be an elementary submodel of a sufficiently large initial
segment of the universe with Skolem functions such that F ⊆ M and |M | = |F|.

Suppose |F| < d. Then there is a function x ∈ 2ω \ M . Let M [x] denote the
Skolem hull of M ∪ {x}. Since |M [x]| = |F| < d, there is y : ω → ω such that y is
not eventually dominated by any function in ωω ∩M [x].

Clearly, the embedding e : ωω → 2ω is an element of M . No f ∈ F maps x
to e(y), since such an f would be an element of M [x] and therefore y = e−1(f(x))
would be an element of M [x].

We show that no f ∈ F maps e(y) to x.
Let f ∈ F . Since f is continuous, f−1(x) is a compact subset of 2ω. Since

2ω \ e[ωω] is countable, 2ω \ e[ωω] ⊆ M . Since x 6∈ M , f−1(x) is disjoint from
2ω \ e[ωω]. In other words, f−1(x) is a compact subset of e[ωω]. It follows that the
set (f ◦e)−1(x) is bounded, i.e., there is a function in ωω that eventually dominates
every element of (f ◦e)−1(x). By elementarity, (f ◦e)−1(x) is bounded by a function
in ωω ∩M [x].

Since y is not eventually dominated by a function in ωω ∩M [x], y 6∈ (f ◦e)−1(x).
That is, f(e(y)) 6= x.

This shows that no element of F covers the pair (x, e(y)) ∈ (2ω)2. �

The main reason for including the alternative proof of Theorem 3.9 is the curious
use of two new reals over M . This detail is somewhat hidden in our proof of Lemma
3.10, but still present there.

In many cases, the standard proof of an inequality of the form Cov(I) ≤ Cov(J),
for reasonably nice ideals I and J on the reals, shows that if one adds by forcing
over a ground model M a new real r that avoids all elements of I which are coded
(by a Borel code) in M , then the generic extension M [r] contains also a new real
which avoids all elements of J which are coded in M .

This is not the case with the inequality d ≤ Cov(Cont(2ω)). It can be shown
that after adding a single Miller real m to M (which is unbounded over M , i.e.,
escapes every bounded subset of ωω which is coded in M), in the generic extension
M [m], 2ω is still covered by the cmin-homogeneous sets coded in M . In particular,
(2ω)2 is still covered by the continuous functions coded in M .

The alternative proof of Theorem 3.9 shows that this is not the case after adding
two Miller reals, or even after adding first any new real r and then a Miller real m
over M [r]. In other words, the “standard” forcing proof of this inequality involves
adding two reals, rather than one.

From Theorem 3.9 we get

Theorem 3.11. Cov(Cont(ωω)) = Cov(Cont(R)) = Cov(Cont(2ω))

The proof of this theorem uses the following easy observation.

Lemma 3.12. Let C be a closed subset of ωω and let f : C → ωω be continuous.
Then f can be continuously extended to all of ωω.
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Proof. It is easily checked that every closed subspace C of ωω is a retract of ωω (by
inductively dropping every element of ωω into C). That is, there is a continuous
map q : ωω → C such that q � C = idC . If f is as above, then f ◦ q is a continuous
extension of f to all of ωω. �

Proof of Theorem 3.11. We first show Cov(Cont(2ω)) ≤ Cov(Cont(ωω)). Let f :
ωω → ωω be continuous. Then f−1[2ω] is closed and thus A := f−1[2ω] ∩ 2ω is a
closed subset of 2ω. We can now extend f � A to a continuous function f : 2ω → 2ω

by the same argument as in the proof of Lemma 3.12.
This shows that a family F ⊆ Cont(ωω)) covering (ωω)2 gives rise to a covering

family of no greater size in Cont(2ω) and thus, Cov(Cont(2ω)) ≤ Cov(Cont(ωω)).
The same argument goes through for R instead of ωω, using the Tietze-Urysohn

theorem.
Now observe that ωω can be covered by d copies of 2ω since d is the covering

number of the ideal of bounded subsets of ωω. Let C be a collection of size d of
copies of 2ω covering ωω.

To each pair (C,D) ∈ C × C assign a family FC,D of size Cov(Cont(2ω)) of
continuous functions on ωω such that C × D ⊆

⋃
{f ∪ f−1 : f ∈ FC,D}. This is

possible by Lemma 3.12. Let F :=
⋃
{FC,D : C,D ∈ C}. Now (ωω)2 =

⋃
{f ∪ f−1 :

f ∈ F} and the size of F is max(Cov(Cont(2ω)), d) = Cov(Cont(2ω)). The last
equality is Theorem 3.9.

Again, same argument works for Cov(Cont(R)) as well since R is just ωω (the
irrationals) together with countably many additional points (the rationals) and
therefore also can be covered by d copies of 2ω. We again use the Tietze-Urysohn
theorem to extend continuous mappings defined on closed subspaces of R. �

Part II: Independence results
In the second part of the paper we show that any two rows in Diagram 1 can be

separated, where, as mentioned before, we have to exclude Cov(Lip(R)) from row
(3). We shall prove that every assignment of ℵ1-s and ℵ2-s to the diagram which
is consistent with the arrows is realized in a model of set theory.

We provide two new forcing notions. One for separating hm(cmin) from hm(cmax)
and the other for separating Cov(Cont(2ω)) from Cov(Lip(2ω)). We force over
models of CH with countable support iterations of Axiom A forcing notions (see
[9]) of size ℵ1 which add new reals. Thus, no cardinals are collapsed and in the
resulting models the continuum is ℵ2.

Theorem 3.1 implies that if the continuum is a limit cardinal, all three numbers
above are equal to the continuum. In fact, it is very easy to make Cov(Cont(2ω))
equal to the continuum.

Let M be a model of set theory and assume that F ∈ M is a family of continuous
functions on 2ω. If x, y ∈ 2ω are generic over M and independent in the sense that
x 6∈ M [y] and y 6∈ M [x], then no f ∈ F can cover (x, y). It follows that after forcing
with a large product of some sort in order to increase the continuum one ends up
with a model of set theory where Cov(Cont(2ω)) is the continuum. In particular,
after forcing with the measure algebra over 2ℵ2 over a model of CH, one obtains a
model (the Solovay model) in which d = ℵ1 (since the ground model elements of
ωω dominate the new elements) and Cov(Cont(2ω)) = ℵ2.

In [20] it was shown that in the Sacks model all homogeneity numbers of reduced
continuous pair-colorings on Polish spaces are equal to ℵ1 < 2ℵ0 . It follows that
hm(cmax), hm(cmin), and Cov(Cont(R)) are small in the Sacks model.

There is a natural forcing Pcmin for separating hm(cmin) from the numbers below
it: forcing with Borel subsets of 2ω which are positive with respect to the σ-ideal
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Jmin generated over 2ω by all cmin-homogeneous sets. We show that the countable
support iteration of this forcing of length ω2 produces a model of hm(cmin) = ℵ2

and Cov(Cont(2ω)) = ℵ1. In this model it holds that covering R2 by Lipschitz
functions is strictly more difficult than covering R2 by continuous functions.

By a new (and yet unpublished) theorem of Zapletal, the existence of large car-
dinals implies that Pcmin is optimal for enlarging hm(cmin) in the sense that it does
not enlarge numbers which are consistently smaller than hm(cmin). Assuming large
cardinals, Shelah and Zapletal proved recently that for every reasonably defined σ-
ideal I on the reals whose covering number is provably ≥ hm(cmin), the uniformity
of I (i.e., the smallest size of a set not in I) is at most ℵ3. (The uniformity of Jmin

is at most ℵ2.)
The analogous natural forcing for increasing hm(cmax) is, however, not only not

optimal, but actually increases the smaller hm(cmin). So another forcing has to be
used for separating hm(cmin) from hm(cmax).

We design a new tree-forcing notion Pcmax for increasing hm(cmax) while leaving
hm(cmin) small. The tree-combinatorics required for this forcing stems from a new
result of Noga Alon about a Ramsey connection between perfect graphs and random
graphs [4] (which Alon proved for this purpose). The countable support iteration
of length ω2 of Pcmax produces a model of set theory in which hm(cmin) = ℵ1 and
hm(cmax) = ℵ2.

4. Consistency of hm(cmin) < hm(cmax)

4.1. The cmax-forcing. We are looking for a notion of forcing which adds a real
that avoids all the cmax-homogeneous sets in the ground model but does not increase
hm when iterated.

Definition 4.1. For a pair-coloring c of a finite set with two colors let norm(c)
denote the greatest n ∈ ω for which χrandom � n ≤ c.

For a subtree p ⊆ T (
∏

n∈ω(n + 1)) and t ∈ p let ct,p := χrandom � {i ∈ ω : t_i ∈
succp(t)}. (See 2.16 for notation.)

Let

Pcmax :=
{

p ⊆ T
(∏
n∈ω

(n + 1)
)

: p is a tree and

∀t ∈ p∀n ∈ ω∃s ∈ p(s ⊇ t ∧ norm(cs,p) ≥ n)
}

The order on Pcmax is set-inclusion.

In the following we write just P for Pcmax . For a condition p ∈ P and t ∈ p, let
pt = {s ∈ p : s ⊆ t ∨ t ⊆ s}, and call pt the condition p below t. It is clear that
pt ∈ P for p ∈ P and t ∈ p. If G ⊆ P is a generic filter over a ground model M , the
generic real added by P is the unique element of

⋂
{[p] : p ∈ G}.

Claim 4.2. The generic real added by P avoids all cmax-homogeneous sets in the
ground model.

Proof. Suppose that A ⊆ 2ω is cmax-homogeneous, say with color 0, and A ∈ M .
Let p ∈ P be arbitrary. Choose s ∈ p with t, t′ ∈ succp(s) satisfying random(t, t′) =
1. Since at least one of [pt], [pt′ ] has empty intersection with A, assume without
loss of generality that [pt]∩A = ∅. Now pt ≤ p is a condition in P which forces that
the generic real is not in A. Thus, the set of conditions forcing that the generic real
is not in A is dense and belongs to M , hence the generic real is not in A. �

Lemma 4.3. Let G be P-generic over the ground model M . Then for each x ∈
(2ω)M [G] there is a tree T ∈ M such that [T ] is parity-homogeneous and x ∈ [T ].
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For the proof of this lemma we use the following result of Noga Alon [4] that
was proved especially for this purpose.

Lemma 4.4. Let n ∈ ω and c : [n]2 → 2. Then there is N ∈ ω and C : [N ]2 → 2
such that whenever e : N → 2ω is 1-1, then there is a cmin-homogeneous set H ⊆ 2ω

such that c ≤ C � e−1[H].

Proof of Lemma 4.3. Let ẋ be a name for a new element of 2ω and let p ∈ P. Since
ẋ is a name for a new real, we may assume, by passing to stronger condition if
necessary, that for each splitting node s ∈ p and all t, t′ ∈ succp(s) with t 6= t′, the
initial segments of ẋ decided by pt and pt′ are incompatible.

We may assume that for some ks ∈ ω, each pt, t ∈ succp(s), decides an initial
segment of ẋ of length ks and that the decisions of the pt’s on ẋ are pairwise
incompatible when restricted to ks. In other words, for each splitting node s of p
we have an embedding es : succp(s) → 2ks with pt  ẋ ⊇ es(t).

Now Lemma 4.4 implies that we can thin out p to a condition q such that for
each splitting node s of q, es[succq(s)] is a cmin-homogeneous subset of 2ks of some
color is ∈ 2.

Thinning out q further if necessary, we may assume that

(∗) whenever s and t are splitting nodes of q and s $ t, then norm(cs,q) <
norm(ct,q).

Now either q has a cofinal set of splitting nodes s with is = 0, or there is a node
s ∈ q such that for all splitting nodes t ∈ q with s ⊆ t, it = 1. In the first case, we
can thin out q to a condition r such that for all splitting nodes s of r, is = 0. The
property (∗) makes sure that r will be a condition. In the second case we can put
r := qs and get a condition such that for all splitting nodes s we have is = 1.

Finally let Tr := {s ∈ 2<ω : ∃r′ ≤ r(r′  s ⊆ ẋ)} be the tree of r-possibilities
for ẋ. Clearly r forces ẋ to be a branch of Tr. By the construction of r, [Tr] is
cmin-homogeneous. �

4.2. Iteration. In this section we show that after forcing with a countable sup-
port iteration of the cmax-forcing, all the new reals (∈ 2ω) are covered by cmin-
homogeneous sets in the ground model. This implies that after forcing with a
countable support iteration of P of length ω2 over a model of CH, we obtain a
model of set theory in which hm = ℵ1 but hm(cmax) = ℵ2. The latter statement
follows from Claim 4.2.

4.2.1. A preliminary lemma. Our strategy is the following: For an ordinal α let Pα

denote the countable support iteration of P of length α. Let ẋ be a Pω2-name for a
new element of 2ω. We may assume that there is α < ω2 such that ẋ is a Pα-name
for a real not added at any proper initial stage of the iteration Pα. Let q be a
condition in Pα. Recall the definition of Tq ⊆ 2<ω from the proof of Lemma 4.3:

Tq = {s ∈ 2<ω : ∃q′ ≤ q(q′  s ⊆ ẋ)}.

For each p ∈ Pα we will construct a condition q ≤ p such that [Tq] is cmin-
homogeneous. The next lemma tells us how to choose the color of [Tq] if ẋ is added
in a limit step. That is, we can decrease p such that it becomes an element of one
of the sets Ei, i ∈ 2, defined below. If p ∈ Ei, we can build q ≤ p such that [Tq] is
cmin-homogeneous of color i.

Let us fix some notation. If Q is any forcing notion and ẏ is a Q-name for a new
element of 2ω let y[p] be the maximal element of 2<ω such that p  y[p] ⊆ ẏ. y[p]
exists since ẏ is a name for a new real.
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For i ∈ 2 let

Ei := {p ∈ Pα : ∀β < α∀q ≤ p∃q′ ≤ q∃q0, q1 ∈ Pβ,α

(q′ � β  q0, q1 ≤ q′ � [β, α) ∧ parity(x[q0], x[q1]) = i)}.

Recall that parity(s, t) ∈ 2 implies that s and t are incompatible, i.e., s ⊥ t.

Lemma 4.5. E0 and E1 are open and E0 ∪ E1 is dense in Pα.

This lemma is true for all forcing iterations, not only of variations of Sacks
forcing. We do not even use the countable supports.

Proof of Lemma 4.5. Let us start with

Claim 4.6. Let β < α and let q ∈ Pα be such that for some i ∈ 2 there are q0 and
q1 such that

q � β  q0, q1 ≤ q � [β, α) ∧ parity(x[q0], x[q1]) = i.

Let γ < β. Then there are q′ ≤ q and q′0 and q′1 such that

q′ � γ  q′0, q
′
1 ≤ q′ � [γ, α) ∧ parity(x[q′0], x[q′1]) = i.

To see this, let q′ ≤ q be such that q′ � [β, α) = q � [β, α) and q′ � β decides
x[q0] and x[q1]. For j ∈ 2 let q′j := (q′ � [γ, β))_qj . Now q′, q′0, and q′1 work for the
claim.

For the proof of the lemma let p ∈ Pα. Suppose p 6∈ E0. We show that p has an
extension in E1. Since p 6∈ E0, there are γ < α and q ≤ p such that for all q′ ≤ q and
any two sequences q0 and q1 for names of conditions, if q′ � γ  q0, q1 ≤ q′ � [γ, α),
then q′ � γ 6 parity(x[q0], x[q1]) = 0. We are done if we can show

Claim 4.7. q ∈ E1.

Let r ≤ q and β < α. Note that by Claim 4.6, the sets Ei are not changed if in
the definition we replace “∀β < α” by “for cofinally many β < α”. Thus we may
assume β ≥ γ.

Since we assumed that ẋ is not added in a proper initial stage of the iteration
(before α), there are q0 and q1 such that

r � β  q0, q1 ≤ r � [β, α) ∧ x[q0] ⊥ x[q1].

Decreasing r � β if necessary, we may assume that r � β decides parity(x[q0], x[q1])
to be i ∈ 2.

By Claim 4.6, there are r′ ≤ r and r0 and r1 such that

r′ � γ  r0, r1 ≤ r′ � [γ, α) ∧ parity(x[r0], x[r1]) = i.

By the choice of q, i 6= 0. Thus i = 1. This shows q ∈ E1. �

4.2.2. Some forcing notation. For n ∈ ω and p ∈ P let pn be the set of all minimal
t ∈ p such that norm(ct,p) > n. For p, q ∈ P we write q ≤n p if q ≤ p and pn = qn.

A sequence (pn)n∈ω in P is a fusion sequence if there is a nondecreasing un-
bounded function f : ω → ω such that for all n ∈ ω, pn+1 ≤f(n) pn. If (pn)n∈ω is a
fusion sequence, then pω =

⋂
n∈ω pn is a condition in P, the fusion of the sequence.

In this definition, the function f is only added for technical convenience. If we only
talk about the identity function instead of arbitrary f , we arrive at an essentially
equivalent notion.

The idea behind fusion is that in P, even though it is not countably closed, lower
bounds exist for suitably chosen countable sequences. All we have to do while
inductively thinning out a condition, is to leave splitting nodes with more and
more complicated colorings on their successors untouched. This is exactly what
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we did, although less formally, in the proof of Lemma 4.3. The method can be
extended to countable support iterations.

Let α be an ordinal. For F ∈ [α]<ℵ0 , η : F → ω, and p, q ∈ Pα let q ≤F,η p
if q ≤ p and for all β ∈ F , q � β  q(β) ≤η(β) p(β). Roughly speaking, q ≤F,η p
means that on each coordinate from F , q is ≤n-below p where n is given by η.

A sequence (pn)n∈ω of conditions in Pα is a fusion sequence if there is an increas-
ing sequence (Fn)n∈ω of finite subsets of α and a sequence (ηn)n∈ω such that for
all n ∈ ω, ηn : Fn → ω, pn+1 ≤Fn,ηn

pn, for all γ ∈ Fn we have ηn(γ) ≤ ηn+1(γ),
and for all γ ∈ supt(pn) there is m ∈ ω such that γ ∈ Fm and ηm(γ) ≥ n.

This notion is precisely what is needed in countable support iterations to get
suitable fusions. It essentially means that once we have touched (i.e., decreased) a
coordinate of p0, we have to build a fusion sequence in that coordinate.

If (pn)n∈ω is a fusion sequence in Pα, its fusion pω is defined inductively. Let
Fω :=

⋃
Fn.

Suppose pω(γ) has been defined for all γ < β for some β < α. If β 6∈ Fω, let
pω(β) be a name for 1P. If β ∈ Fω, then pω � β forces (pn(β))n∈ω to be a fusion
sequence in P. Let pω(β) be a name for the fusion of the pn(β)’s.

4.2.3. Keeping hm small. Let ẋ and α be as before. The way to build a condition
q for which Tq is cmin-homogeneous is the following: q will be the fusion of a fusion
sequence (pn)n∈ω with witness (Fn, ηn)n∈ω. For each n, (pn, Fn, ηn) will determine
a finite initial segment Tn of Tq. We have to make sure that Tq is the union of the
Tn and that the Tn are good enough to guarantee the cmin-homogeneity of [Tq].
The latter will be ensured by the (Fn, ηn)-faithfulness of each pn, which is defined
below.

First we introduce some tools that help us to carry out the necessary fusion
arguments.

We call a condition p ∈ P normal if for every s ∈ p with n := |succp(s)| > 1, cs,p

is isomorphic to crandom � n and moreover, if t ∈ p is a minimal proper extension of
s with more than one successor in p, then |succp(t)| = |succp(s)|+ 1. Thus, s ∈ pn

iff |succp(s)| = n + 1.
Let I := T (

∏
i∈ω(i + 1)) =

⋃
{
∏

i<n(i + 1) : n ∈ ω} and In := {ρ ∈ I : dom(ρ) =
n}. If p ∈ P is a normal condition, then each ρ ∈ In determines an element sρ

of pn. Let p ∗ ρ := psρ = {t ∈ p : sρ ⊆ t ∨ t ⊆ sρ}.
A condition q ∈ Pα is normal if for all β < α, q � β forces that q(β) is normal.

Suppose q ∈ Pα is a normal condition. For F ∈ [α]<ℵ0 , η : F → ω, and σ ∈∏
γ∈F Iη(γ) let q ∗ σ be defined as follows:
For γ ∈ F let (q ∗σ)(γ) be a name for a condition in P such that Pγ

(q ∗σ)(γ) =
q(γ) ∗ σ(γ). For γ ∈ α \ F let (q ∗ σ)(γ) := q(γ).

Now (q ∗ σ)σ∈
∏

γ∈F Iη(γ)
is a finite maximal antichain below q. Consider the tree

T generated by {x[q∗σ] : σ ∈
∏

γ∈F Iη(γ)}. If q′ ≤F,η q, then Tq′ is an end-extension
of T .

It is clear that the normal conditions in P form a dense subset and the same is
true for Pα. Therefore, from now on all the conditions we consider are assumed to
be normal. We have to be careful at one point, however. Suppose p ∈ P is a normal
condition and we have constructed some q ≤n p. q is not necessarily normal. But
it is easy to see that there is some q′ ≤n q which is normal. We call the process
of passing from q to q′ normalization at n. Normalization at n will be applied
automatically without being mentioned whenever we construct some q ≤n p.

Definition 4.8. Let i ∈ 2 and ẋ be fixed. For F and η as before, a condition q ∈ Pα

is (F, η)-faithful if for all σ, τ ∈
∏

γ∈F Iη(γ) with σ 6= τ , parity(x[q ∗σ], x[q ∗τ ]) = i.
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Now we are ready to formulate the lemma that will allow us to handle the case
where ẋ is added at a limit step of the iteration.

Lemma 4.9. Let α be a limit ordinal and let ẋ be a Pα-name for an element of
2ω which is not added by an initial stage of the iteration. Let F , η, and i be as in
Definition 4.8 and suppose that q ∈ Pα is (F, η)-faithful.

a) Let β ∈ α \ F and let F ′ := F ∪ {β} and η′ := η ∪ {(β, 0)}. Then q is
(F ′, η′)-faithful.

b) Suppose q ∈ Ei. Let β ∈ F and let η′ :=
(
η � (F \ {β})

)
∪ {(β, η(β) + 1)}.

Then there is r ≤F,η q such that r is (F, η′)-faithful.

Proof. a) follows immediately from the definitions.
For b) let δ := max(F ) + 1 and n := η(β).

Claim 4.10. There is a condition q′ ≤F,η q such that for each σ ∈
∏

γ∈F Iη(γ)

there are sequences qσ,0, . . . , qσ,n of names for conditions such that for all k ≤ n,

q′ ∗ σ � δ  qσ,k ≤ q � [δ, α),

q′ ∗ σ � δ decides x[qσ,k], and for all l ≤ n with k 6= l,

q′ ∗ σ � δ  parity(x[qσ,k], x[qσ,l]) = i.

For the proof of the claim, let {σ1, . . . , σm} be an enumeration of
∏

γ∈F Iη(γ).
We build a ≤F,η-decreasing sequence (qj)j≤m such that q0 := q and q′ := qm works
for the claim. As we construct qj , we find suitable qσj ,k for all k < n.

Let j ∈ {1, . . . ,m} and assume that qj−1 has already been constructed. Since
q ∈ Ei and Ei is open, there are q∗j ≤ qj−1 ∗ σj and sequences qσj ,0 and q∗σj ,1 of
names of conditions such that

q∗j � δ  qσj ,0, q
′
σj ,1 ≤ q � [δ, α) ∧ parity(x[qσj ,0], x[q∗σj ,1]) = i.

Iterating this process by splitting q∗σj ,1 into qσj ,1 and q∗σj ,2 and so on and decreasing
q∗j , we finally obtain q∗j ≤ qj−1 ∗ σj and qσj ,k, k ≤ n, such that for all k ≤ n.

q∗j � δ  qσj ,k ≤ q � [δ, α)

and for all l ≤ n with l 6= k,

q∗j � δ  parity(x[qσj ,k], x[qσj ,l]) = i.

We may assume that q∗j � δ decides x[qσj ,k] for all k ≤ n. Let qj ≤F,η qj−1

be such that qj ∗ σj � δ = q∗j � δ and qj � [δ, α) = q � [δ, α). This finishes the
construction, and it is easy to check that it works.

Continuing the proof of lemma 4.9, let qσ,k and q′ be as in the claim. For ρ ∈ Iη(β)

let rρ_0, . . . , rρ_n be sequences of names for conditions such that for all k ≤ n and
all σ ∈

∏
γ∈F Iη(γ) with σ(β) = ρ,

q′ ∗ σ � δ  rρ_k = qσ,k.

Let r be a sequence of names for conditions such that r � δ = q′ � δ and for all
σ ∈

∏
γ∈F Iη′(γ),

q′ ∗ σ � δ  r � [δ, α) = rσ(β).

With this choice of r we have r ≤F,η q. It follows from the construction that r
is (F, η′)-faithful. �

A similar lemma is true if the new real is added in a successor step.
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Lemma 4.11. Let α be a successor ordinal, say α = δ + 1 and let ẋ be a Pα-name
for an element of 2ω which is not added by an initial stage of the iteration. Let F ,
η, and i be as in Definition 4.8 and suppose that q ∈ Pα is (F, η)-faithful.

a) Let β ∈ α \ F and let F ′ := F ∪ {β} and η′ := η ∪ {(β, 0)}. Then q is
(F ′, η′)-faithful.

b) Suppose

q � δ  “ [Tq(δ)] is cmin-homogeneous of color i”.

Let β ∈ F and let η′ := η � F \ {β} ∪ {(β, η(β) + 1)}. Then there is r ≤F,η q such
that r is (F, η′)-faithful.

Proof. As in Lemma 4.9, a) follows directly from the definitions.
For the proof of b) we have to consider two cases. First suppose β = δ. In this

case let q′ be a name for a condition in P such that for all σ ∈
∏

γ∈F Iη(γ) and all
k, l ≤ η(β) with k 6= l,

q ∗ σ � δ  q′ ≤η(δ) q(δ) ∧ x[q′ ∗ (σ(δ)_k)] ⊥ x[q′ ∗ (σ(δ)_l)].

Let r ≤F,η q be such that r � δ  r(δ) = q′ and for all σ ∈
∏

γ∈F Iη(γ) and all
k ≤ η(β), r ∗ σ � δ decides x[r(δ) ∗ (σ(δ)_k)].

Note that r is indeed (F, η′)-faithful since we assumed q � δ to force that Tq(δ) is
cmin-homogeneous of color i.

If β 6= δ, the argument will be similar to the one used for Lemma 4.9. Let
n := η(β).

For all k ≤ n and all σ ∈
∏

γ∈F Iη(γ) let qσ,k be a name for a condition such that

q ∗ σ � δ  qσ,k ≤ q(δ) ∗ σ(δ)

and for all l ≤ n with l 6= k

q ∗ σ � δ  x[qσ,k(δ)] ⊥ x[qσ,l(δ)].

Now fix q′ ≤F,η q such that for all σ ∈
∏

γ∈F Iη(γ) and all k ≤ n, q′ ∗ σ � δ

decides x[qσ,k]. Note that for all k, l ≤ n with k 6= l we have that

q′ ∗ σ � δ  parity(x[qσ,k], x[qσ,l]) = i

since [Tq(δ)] was forced to be cmin-homogeneous.
Choose r such that r � δ = q′ � δ and for all σ ∈

∏
γ∈F Iη′(γ)

r ∗ σ � δ  r(δ) ∗ σ(δ) = qσ,k

where k = σ(β)(n) (i.e., k is the last digit of σ(β)).
It follows from the definition of r that r ≤F,η q. It is easily checked that r is

(F, η′)-faithful. �

Combining the last two lemmas, we can show

Lemma 4.12. Let G be Pω2-generic over the ground model M . Then in M [G], 2ω

is covered by cmin-homogeneous sets coded in the ground model. In particular, in
M [G], 2ω is covered by ℵ1 cmin-homogeneous sets.

Proof. We work in M . Let ẋ be a name for an element of 2ω. We show that ẋ is
forced to be a branch through a parity-homogeneous tree in M . We may assume
that for some α < ω2, ẋ is an Pα-name for a real not added in a proper initial stage
of the iteration Pα. Clearly, cf(α) ≤ ℵ0. Let p ∈ Pα. If α is a limit ordinal, using
Lemma 4.5, we can decrease p such that for some i ∈ 2, p ∈ Ei. If α is a successor
ordinal, say α = δ +1, we can use Lemma 4.3 to decrease p such that for some i ∈ 2

p � δ  “[Tp(δ)] is cmin-homogeneous of color i”.

By induction, we define a sequence (pn, Fn, ηn)n∈ω such that
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(1) for all n ∈ ω, pn ∈ Pα, pn ≤ p, Fn ∈ [α]<ℵ0 , ηn : Fn → ω, and pn is
(Fn, ηn)-faithful,

(2) for all n ∈ ω, Fn ⊆ Fn+1, pn+1 ≤Fn,ηn
pn, and for all γ ∈ Fn we have

ηn(γ) ≤ ηn+1(γ), and
(3) for all n ∈ ω and all γ ∈ supt(pn) there is m ∈ ω such that γ ∈ Fm and

ηm(γ) ≥ n.

This construction can be done using parts a) and b) of Lemma 4.9 and Lemma
4.11 respectively, depending on whether α is a limit ordinal or not, to extend Fn or
to make ηn bigger, together with some bookkeeping to ensure 3. Now (pn)n∈ω is a
fusion sequence. Let q be the fusion of this sequence. For each n ∈ ω let Tn be the
tree generated by {x[pn∗σ] : σ ∈

∏
γ∈Fn

Iη(γ)}. It is easily seen that Tq =
⋃

n∈ω Tn.
It now follows from the faithfulness of the pn that [Tq] is cmin-homogeneous of

color i. Clearly, q forces ẋ to be a branch through Tq. It follows that the set of
conditions in Pα forcing ẋ to be an element of a cmin-homogeneous set coded in M
is dense in Pα. Since Pα is completely embedded in Pω2 , this finishes the proof of
the lemma. �

Corollary 4.13. It is consistent with ZFC that 2ℵ0 = ℵ2 and 2ω is covered by
ℵ1 cmin-homogeneous sets, but it is not covered by less than 2ℵ0 cmax-homogeneous
sets.

4.3. Why forcing with Pcmax? One may ask whether there is an essentially sim-
pler way of increasing hm(cmax) while keeping hm small other than iterating our
basic forcing notion P. Zapletal [34] showed that in certain cases there is an op-
timal way of increasing a covering number of a σ-ideal. He observed that there is
an optimal way of increasing hm in the sense that all cardinal invariants which are
not bigger than hm in ZFC are kept small (assuming the existence of some large
cardinals). The natural forcing to do this is the following:

Definition 4.14. The cmin-forcing Pcmin is the partial order consisting of all perfect
subtrees p of 2<ω with the property that for all s ∈ p there are splitting nodes t0 and
t1 of p which extend s such that the length of t0 is even and the length of t1 is odd.

It is easy to see that the Pcmin -generic real avoids all the cmin-homogeneous sets
in the ground model. Therefore iterating Pcmin increases hm.

The natural approach for increasing hm(cmax) would be forcing with an iteration
of the Borel subsets of 2ω modulo the σ-ideal generated by the cmax-homogeneous
subsets. However, this attempt must fail. Zapletal observed that this forcing no-
tion is not homogeneous, that is, the forcing notion does not stay the same when
restricted to some Borel set not covered by countably many cmax-homogeneous sets.
We show that in fact, this forcing notion increases hm.

Theorem 4.15. Let X be any Polish space with some nontrivial continuous pair-
coloring c : [X]2 → 2. Then the Boolean algebra of Borel subsets of X modulo the
σ-ideal generated by the c-homogeneous sets is forcing equivalent to Pcmin .

The theorem easily follows from the next lemma, which is a strengthening of
Lemma 2.9.

Lemma 4.16. Assume that A ⊆ X is analytic. If A is not covered by countably
many c-homogeneous sets, then cmin ≤ c � A, i.e., A has a perfect subset on which
c is isomorphic to cmin.



26 STEFAN GESCHKE, MARTIN GOLDSTERN, AND MENACHEM KOJMAN†

Proof. Since A is analytic, there is a continuous map f : ωω → A which is onto.
For s ∈ ω<ω let Os := {x ∈ ωω : s ⊆ x}. For B ⊆ ωω let

B′ := B \
⋃
{Os : s ∈ ω<ω ∧ f [B ∩Os] is not covered

by countably many c-homogeneous sets}.

Note that B′ is closed if B is.
Let B0 := ωω, Bα+1 := B′

α for α < ω1 and Bδ :=
⋂

α<δ Bα for limit ordinals
δ < ω1. Since there are only countably many Os, there is α < ω1 such that
Bα = Bα+1. Let B := Bα.

Since A is not covered by countably many c-homogeneous sets, B is not empty.
Clearly, for every open set O ⊆ ωω, O ∩ B is empty or f [O ∩ B] is not covered
by countably many c-homogeneous sets and therefore is not homogeneous. It now
follows from the continuity of f and c that for all s ∈ T (B) and all i ∈ 2 there are
s0, s1 ∈ T (B) extending s such that c is constant on f [Os0 ∩B]× f [Os1 ∩B] with
value i.

This is sufficient to construct inductively a perfect binary subtree T of T (B)
such that f � [T ] is 1-1 and f [[T ]] has the desired properties. �

5. Consistency of Cov(Cont(R)) < Cov(Lip(R))

This section is devoted to the proof of

Theorem 5.1. Cov(Cont) < hm is consistent.

In Definition 4.14 we have already introduced the forcing notion Pcmin as the
right tool to increase hm.

In this section we write P for Pcmin . As usual, for every ordinal α, Pα denotes
the countable support iteration of P of length α. We have to show

Lemma 5.2. After forcing with Pω2 over a model of CH the continuous functions
coded in the ground model cover (2ω)2 (in the extension).

How do we construct the required continuous mappings in the ground model?
Let ẋ and ẏ be Pω2-names for elements of 2ω. Assume that both, ẋ and ẏ, are

forced to be new reals. We may do so because the constant functions take care
about covering pairs (x, y) ∈ (2ω)2 where x or y are in the ground model.

We may also assume that there are α, β < ω2 such that ẋ is in fact a Pα-name
forced not to be added in a proper initial stage of the iteration Pα and the same is
true for ẏ with respect to β. Finally, we may assume β ≤ α. In particular, ẏ can
be considered as a Pα-name.

Now let p ∈ Pα. We find q ≤ p with the following property:
(∗)q,ẋ,ẏ Let Tq(ẋ) be the tree of q-possibilities for ẋ defined as in the proof of Lemma

4.3. Then in the ground model there is a continuous map f : [Tq(ẋ)] → 2ω

such that if G is Pα-generic with q ∈ G, then f maps ẋG to ẏG.
Clearly, q forces f(ẋ) = ẏ. Thus, the set of conditions forcing f(ẋ) = ẏ for

some continuous ground model function f is dense in Pα. This shows that for every
Pω2-generic filter G, (ẋG, ẏG) is indeed covered by some continuous ground model
function. Note that the function f in (∗)q,ẋ,ẏ is just a partial function. But since
f is defined on the closed set [Tq(ẋ)], it can be extended continuously to all of 2ω.

This finishes the proof of Lemma 5.2 provided we know

Lemma 5.3. Let α be an ordinal and ẋ a Pα-name for an element of 2ω which
is not added in a proper initial stage of the iteration. Then for every p ∈ Pα and
every Pα-name ẏ for an element of 2ω there is q ≤ p such that (∗)q,ẋ,ẏ holds.
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Proof. We follow closely the proof of Lemma 4.12. We fix ẋ throughout the following
proof.

For p ∈ P and n ∈ ω let pn denote the set of those splitting nodes of p that
have exactly n splitting nodes among their proper initial segments. For q ≤ p
we write q ≤n p if qn = pn. Every ρ ∈ 2n determines an element sρ of pn. Let
p ∗ ρ := psρ

= {s ∈ p : s ⊆ sρ ∨ sρ ⊆ s}.
We call a condition p ∈ P normal if for all splitting nodes s, t ∈ p such that s $ t

and t is a minimal splitting node above s, dom(t) \ dom(s) is odd, i.e., dom(s) and
dom(t) have a different parity.

As in the Pcmax -case, if p is a normal condition and q ≤n p, then there is a
normal condition r ≤n q. This is normalization at n that from now on will be done
automatically, just as in the Pcmax -case.

We extend the notion of normality to conditions in Pα and for F ∈ [α]<ℵ0 and
η : F → ω we define ≤F,η on Pα as for Pcmax (see section 4.2.2). Fusion sequences
are defined as for Pcmax and it should be clear that fusions of fusion sequences in
Pα are again conditions, provided the elements of the fusion sequence are normal.

For f and η as above, p ∈ Pα, and σ ∈
∏

γ∈F 2η(γ), p ∗ σ is defined as in Section
4.2.3.

We also use the notion of faithfulness, but in the present context the definition
is a weaker than in Section 4.2.3.

Definition 5.4. For F and η as above, p ∈ Pα is (F, η)-faithful iff for all σ, τ ∈∏
γ∈F 2η(γ) with σ 6= τ , x[p ∗ σ] ⊥ x[p ∗ τ ].

The corresponding statement to Lemma 4.9 and Lemma 4.11 is

Claim 5.5. Let F and η be as before and suppose that q ∈ Pα is (F, η)-faithful.
a) Let β ∈ α \ F and let F ′ := F ∪ {β} and η′ := η ∪ {(β, 0)}. Then there is

r ≤F,η q such that r is (F ′, η′)-faithful.
b) Let β ∈ F and let η′ := η � F \ {β} ∪ {(β, η(β) + 1)}. Then there is r ≤F,η q

such that r is (F, η′)-faithful.

Proof. In contrast to the Pcmax -case, a) is not trivial here. This is because ≤0 is
not equivalent to ≤. But this is rather a notational issue. a) clearly follows from
the proof of b).

For b) let δ := max F and let {σ0, . . . , σm} be an enumeration of
∏

γ∈F 2η(γ).
We define a ≤F,η-decreasing sequence (qj)j≤m along with names qσ,0 and qσ,1,
σ ∈

∏
γ∈F 2η(γ), for conditions.

Let j ∈ {1, . . . m} and assume that qj−1 has been constructed already. Since ẋ
is not added in a proper initial stage of the iteration, there are qσj ,0 and qσj ,1 such
that for all i ∈ 2

qj−1 ∗ σj � δ  qσj ,i ≤ (q(δ) ∗ (σj(δ)_i))_q � (δ, α)

and
qj−1 ∗ σj � δ  x[qσj ,0] ⊥ x[qσj ,1].

Let qj ≤F,η qj−1 be such that qj ∗ σj � δ decides x[qσj ,0] and x[qσj ,1]. This finishes
the inductive construction of the qj .

Now let r ≤F,η qm be such that r � δ = qm � δ and for all σ ∈
∏

γ∈F 2η(γ) and
all coordinatewise extensions τ ∈

∏
γ∈F 2η′(γ) of σ,

r ∗ τ � δ  r ∗ τ � [δ, α) = qσ,τ(η(β)).

It is easy to check that r works for the claim. �

To conclude the proof of Lemma 5.3, let p ∈ Pα. Using some bookkeeping
and parts a) and b) of Claim 5.5 we construct a sequence (pn)n∈ω and a sequence
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(Fn, ηn)n∈ω witnessing that (pn)n∈ω is a fusion sequence such that p = p0 and
for all n ∈ ω, pn is (Fn, ηn)-faithful. We can construct the sequences (pn)n∈ω

and (Fn, ηn)n∈ω with the additional property that for every n ∈ ω and every σ ∈∏
γ∈Fn

2η(γ), pn ∗ σ decides ẏ � n. Let q be the fusion of the sequence (pn)n∈ω. We
have to check that (∗)q,ẋ,ẏ holds.

Let a ∈ [Tq(ẋ)] and n ∈ ω. Now q ≤Fn,ηn
pn and pn is (Fn, ηn)-faithful. It

follows that there is exactly one σa,n ∈
∏

γ∈Fn
2ηn(γ) such that x[q ∗ σa,n] ⊆ a.

Let f(a) :=
⋃

n∈ω y[q ∗σa,n]. Since for all n ∈ ω, q ∗σa,n ≤ pn ∗σa,n and pn ∗σa,n

decides ẏ � n, f(a) ∈ 2ω. It is easily checked that f : [Tq(ẋ)] → 2ω is a continuous
map witnessing (∗)q,ẋ,ẏ. �

6. Concluding remarks and open problems

The numbers hm(cmin), hm(cmax), Cov(Cont(R)) and Cov(Lip(R)) are examples
of covering numbers of meager ideals. Although the hope expressed by Blass in
[10] to find a classification of all “simple” cardinal invariants of the continuum
was shattered by the construction in [21] of uncountably many different covering
numbers of simply defined meager ideals, there is still hope to find the “largest”
nontrivial covering number of a meager ideal. By “nontrivial” it is meant that the
number can consistently be smaller than the continuum.

At the moment hm(cmax) is a leading candidate for such a number. The num-
bers Cov(Cont(R)) and Cov(Lip(R)) are also very large, and the largest known
nontrivial covering number of an ideal on R2 generated by functions and inverses
of functions is the covering number of the ideal generated by continuously differ-
entiable functions and their inverses. So it would be natural to compare hm(cmax)
to covering by continuously differentiable functions. As mentioned before, the cov-
ering number of the ideal on R2 generated by twice differentiable functions and
inverses of differentiable functions is already continuum.

The meager ideals which historically led to the study of homogeneity numbers
are the convexity ideals of closed subsets of R2. If a closed subset of a Euclidean
space is not covered by countably many convex subsets (namely, its convex subsets
generate a proper σ-ideal), it has a closed subset on which the convex subsets of the
whole set generate a meager ideal (see [24] or [19]). For some closed subsets of the
plane, this meager ideal coincides with the homogeneity ideal of some continuous
pair coloring [20].

Saharon Shelah remarked recently to the authors that he came close to discov-
ering the properties of hm in his investigations of monadic theory of order [29]. In
an attempt to remove GCH from the proof in the last section of [28] Shelah found
a proof from the assumption hm = 2ℵ0 . He was able to prove that hm = 2ℵ0 if
the continuum is a limit cardinal, but did not prove more about hm and eventually
found a way to eliminate GCH which did not involve hm, which was consequently
published in [22].

It is not clear why homogeneity numbers of continuous pair-colorings on Polish
spaces were not studied earlier. We can only speculate about that. In the very short
time since their study was begun, these numbers were related to quite a few subjects.
Apart from the relation to planar convex geometry and to finite random graphs,
which were mentioned above, there are relations to large cardinals, determinacy
and pcf theory. Quite recently, Shelah and Zapletal [30] defined n-dimensional
generalizations of hm(cmin) and integrated forcing, pcf theory and determinacy
theory to prove several duality theorem for those numbers.

We do not know at the moment if ℵ1 < hm < 2ℵ0 is consistent or not. We do not
know if there is a closed planar set whose convexity number is equal to hm(cmax).
We also find the following intriguing:
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Problem 6.1. Are the equalities hm(c) = hm(cmin) and hm(c) = hm(cmax) which
hold in V Pcmax absolute for a reduced coloring c on a Polish space X? In other
words, does a reduced coloring c that satisfies hm(c) = hm(cmax) in some model of
set theory which separates hm(cmin) and hm(cmax) satisfy this in every model that
separates hm(cmin) and hm(cmax)?
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[16] P. Erdős, J. Spencer, Probabilistic methods in combinatorics, Probability and Mathematical

Statistics, Vol. 17, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New

York-London (1974)
[17] I. Farah, Analytic quotients: theory of liftings for quotients over analytic ideals on the inte-

gers Mem. Amer. Math. Soc. 148 (2000), no. 702

[18] Q. Feng, Homogeneity for open partitions of pairs of reals, Trans. Am. Math. Soc. 339 (1993),
No.2, 659–684

[19] S. Geschke and M. Kojman. Convexity numbers of closed sets in Rn,

Proc. Am. Math. Soc. 130 (2002), No.10, 2871–2881
[20] S. Geschke, M. Kojman, W. Kubis, R. Schipperus, Convex decompositions in the plane,

meagre ideals, and colorings of the irrationals, Israel J. Math. 131 (2002), 285–317

[21] M. Goldstern and S. Shelah Many simple cardinal invariants, Arch. Math. Logic 32 (1993),
no. 3, 203–221

[22] Y. Gurevich and S. Shelah. Monadic theory of order and topology in ZFC, Ann. Math. Logic
23 (1982), no. 2-3, 179–198

[23] K.-P. Hart, B. van der Steeg, A small transitive family of continuous functions on the Cantor

set, Topology and its Applications 123, 3 (2002), 409–420
[24] M. Kojman. Convexity ranks in higher dimensions, Fund. Math. 164 (2000), no. 2, 143–163

[25] V. L. Klee, Jr., Convex sets in Linear spaces II, Duke Mathematical Journal 18 (1951),

875–883
[26] K. Kunen, Set theory. An introduction to independence proofs, 2nd print, Studies in Logic

and the Foundations of Mathematics, 102, Amsterdam-New York-Oxford: North-Holland (1983)

[27] J. T. Moore, Open colorings, the continuum and the second uncountable cardinal, Proc.
Amer. Math. Soc., in press

[28] S. Shelah, The monadic theory of order, Annals of Mathematics 102 (1975), 379–419

[29] S. Shelah, personal communication, May 2002



30 STEFAN GESCHKE, MARTIN GOLDSTERN, AND MENACHEM KOJMAN†

[30] S. Shelah and J. Zapletal, Duality and the pcf theory, Math Research Letters 9 (2002), 585–

595
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