
THE COINITIALITIES OF EFIMOV SPACES

STEFAN GESCHKE

Abstract. We use ♦ to construct Efimov spaces of countable and
uncountable coinitiality, showing that at least consistently there
are compact spaces of uncountable cofinality without uncountable
dyadic families.

0. Introduction

In [9] Koppelberg defined the cofinality cof(B) of an infinite Boolean
algebra B to be the least limit ordinal δ such that there is a strictly in-
creasing sequence (Bα)α<δ of subalgebras of B such that B =

⋃
α<δ Bα.

(See also [5].)
Clearly, the cofinality of an infinite Boolean algebra B is an infinite

regular cardinal bounded by the size of B. If C is an infinite quotient
of B, then cof(B) ≤ cof(C). Koppelberg showed that P(ω), and in
fact every infinite complete Boolean algebra, has cofinality ℵ1. More-
over, since every infinite Boolean algebra has an infinite quotient of
size ≤ 2ℵ0 , there is no Boolean algebra whose cofinality exceeds 2ℵ0 .
Koppelberg asked whether there can be any Boolean algebra with a
cofinality > ℵ1.

Let us call a Boolean algebra of cofinality > ℵ1 a Koppelberg algebra.
If B is Koppelberg, then it cannot have an infinite countable quotient
or an infinite complete quotient. Now by Stone duality, the Stone space
Ult(B) cannot contain a nontrivial converging sequence or a copy of
βω. In other words, Ult(B) has to be an Efimov space. The consis-
tency of the existence of an Efimov space was shown by Fedorchuk
[4]. Nowadays, various constructions of Efimov spaces are available.
However, none of these constructions seems to have the potential of
producing the Stone space of a Koppelberg algebra.

On the other hand, CH implies that there are no Koppelberg alge-
bras. It is also known that there are models of set theory in which
2ℵ0 is large but every Boolean algebra has cofinality ≤ ℵ1. (See for
example [10], [8] and [7]).
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1. Coinitialities of compact spaces

By Stone duality, the cofinality of a Boolean algebra can be expressed
in terms of inverse limit representations of the Stone space of the al-
gebra. This yields the notion of coinitiality of a topological space. We
use the notation in [6] for inverse systems.

Definition 1.1. Let X be a topological space. The coinitiality ci(X)
of X is the least limit ordinal δ such X is the limit of an inverse system
{Xα, π

β
α, δ} whose bonding maps πβα are onto and not 1-1, provided

such an inverse system exists.

For every Boolean space X, i.e., if X is the Stone space of a Boolean
algebra A, one can show that ci(X) = cof(A). The fundamental facts
about the cardinal invariant ci(X) are summarized in the following
lemma. The easy proofs can be found in [7].

Lemma 1.2. (a) If X is an infinite closed subspace of a compact space
Y , then ci(Y ) ≤ ci(X).

(b) For every infinite compact space X, ci(X) ≤ cf(w(X)) where
w(X) denotes the weight of X.

(c) For every infinite compact space X, ci(X) ≤ 2ℵ0.

Countable coinitiality can be characterized in terms of double se-
quences.

Definition 1.3. Let X be a compact space and let (xn)n∈ω be a dis-
crete sequence in X. Then (xn)n∈ω is a double sequence if for all free
ultrafilters p over ω, the p-limits of (x2n)n∈ω and (x2n+1)n∈ω are the
same.

Theorem 1.4 (See [7]). Let X be an infinite compact space. Then
ci(X) = ℵ0 if and only if X contains a double sequence.

Since direct limits are often easier to handle than inverse limits, it is
sometimes convenient to compute instead of the coinitiality of a space
X the cofinality of the C∗-algebra C(X) of continuous functions from
X to C.

Definition 1.5. Let A be an infinite dimensional C∗-algebra. Then
the cofinality cof(A) of A is the least infinite cardinal κ such that there
is a strictly increasing chain (Aα)α<κ of closed ∗-subalgebras of A such
that

⋃
α<κAα is dense in A.

Observe that since a C∗-algebra A is a metric space, if (Aα)α<δ is
an increasing chain of closed ∗-subalgebras of A and δ is an ordinal
of uncountable cofinality, then

⋃
α<δ Aα is a closed ∗-subalgebra of A.

Thus, if
⋃
α<δ Aα is dense in A, then it is actually equal to A.

Theorem 1.6 (See [7]). For every infinite compact space X, ci(X) =
cof(C(X)).
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2. Dyadic families

Definition 2.1. Let X be a topological space. A family (Siα)α∈J,i∈2 of
closed subsets of X is dyadic if for each α ∈ J , S0

α and S1
α are disjoint

and for all disjoint finite sets E,F ⊆ J ,⋂
{S0

α : α ∈ E} ∩
⋂
{S1

α : α ∈ F} 6= ∅.

Shapirovskǐı showed that a compact space X maps onto Iω1 iff it
has an uncountable dyadic family [11]. It is easy to show directly that
a compact space has an uncountable dyadic family iff it has a closed
subspace that maps onto 2ω1 .

Adapting Koppelberg’s proof of cof(P(ω)) ≤ ℵ1 [9], we can show

Theorem 2.2. If a compact space X has an uncountable dyadic family,
then ci(X) ≤ ℵ1.

Proof. Suppose X is compact and has an uncountable dyadic family.
By the previous remark, X has a closed subspace that maps onto 2ω1 .
Since the coinitiality of X is bounded from above by the coinitialities of
the infinite closed subspaces of X, we may assume that X itself maps
onto 2ω1 . Let f : X → 2ω1 be a continuous map witnessing this. Using
Zorn’s lemma we may actually assume that f is irreducible, i.e., no
proper closed subspace of X is mapped onto 2ω1 by f .

Let G(2ω1) be the Gleason cover of 2ω1 , i.e., the Stone space of the
completion ro(Frω1) of the free Boolean algebra with ℵ1 generators.
Let g : G(2ω1) → 2ω1 be the Stone dual of the embedding from Frω1

into its completion. G(2ω1) is projective in the category of compact
spaces and hence there is a continuous map h : G(2ω1)→ X such that

G(2ω1)

g
##HH

HH
HH

HH
H

h
// X

f
����

2ω1

commutes. Since f is irreducible, h is onto.
Let C = C(G(2ω1)),

B = {c ∈ C : c = b ◦ h for some b ∈ C(X)}

and

A = {c ∈ C : c = a ◦ g for some a ∈ C(2ω1)}.
Then A and B are closed ∗-subalgebras of C that are isomorphic to
C(2ω1) and C(X), respectively. We say that B is the algebra of ele-
ments of C that factor through h and A is the algebra of elements of
C that factor through g.

Now, whenever α < ω1, there are natural quotient maps πα : 2ω1 →
2α and ρα : G(2ω1)→ G(2α). Here ρα is the Stone dual of the canonical
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embedding from ro(Frα) into ro(Frω1). For α < ω1 let gα : G(2α)→ 2α

be the dual of the embedding of Frα into ro(Frα). The diagram

G(2ω1)

g

��

ρα
// G(2α)

gα

��

2ω1
πα

// 2α

commutes.
For each α < ω1 let Cα be the algebra of elements of C that fac-

tor through ρα and let Aα be the algebra of elements of C that fac-
tor through πα ◦ g. Note that Aα = Cα ∩ A. Since ro(Frω1) =⋃
α<ω1

ro(Frα), G(2ω1) is the inverse limit of the G(2α), α < ω1. It
follows that

⋃
α<ω1

Cα is dense in C and thus, by the remark after
Definition 1.5,

⋃
α<ω1

Cα = C.
For every α < ω1 let Bα = B ∩ Cα. Since C is the union of the Cα,⋃
α<ω1

Bα = B. Since Aα = A∩Cα = A∩Bα and the sequence (Aα)α<ω1

is strictly increasing, the sequence (Bα)α<ω1 is strictly increasing. This
shows that cof(B) ≤ ℵ1. Hence ci(X) ≤ ℵ1 �

3. Simple extensions

In this section we assume ♦ to construct two different Efimov spaces,
one of coinitiality ℵ1 and one of coinitiality ℵ0. This in particular shows
that for compact spaces X being of uncountable coinitiality does not
imply that X contains a copy of βω or an uncountable dyadic family.

Remark 3.1. It is well known that a compact space X contains a copy
of βω if and only if it has a closed subspace that maps onto 22ℵ0 . Under
CH this reduces to a subspace that maps onto 2ℵ1 . Hence under CH
we have that a compact space X contains a copy of βω if and only if
it has an uncountable dyadic family.

Definition 3.2. Let X be a compact space. Then p : Y → X is a
simple extension of X if Y is compact, f is continuous and onto, and
there is at most one point x0 ∈ X whose preimage with respect to p is
not a singleton.
X is simplistic [1] if X is the limit of a continuous inverse system

{Xα, π
β
α, δ} where each πα+1

α : Xα+1 → Xα is a simple extension and
X0 is a singleton.

In other words, exactly one point is split when passing from X to Y ,
and it is split into exactly 2 points. The Stone dual of a simple exten-
sion is a minimal extension, where a Boolean algebra A is a minimal
extension of a proper subalgebra B if there is no subalgebra of A that
is strictly between B and A, i.e., if A is a minimal proper superalgebra
of B.
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Lemma 3.3 (Koppelberg [9]). If X is simplistic, then X has no un-
countable dyadic family.

For a topological proof of this lemma see [2].

Theorem 3.4. Assume ♦. Then there is a zero-dimensional Efimov
space X of coinitiality ℵ1 without isolated points.

Proof. For concreteness, we construct X as a subspace of 2ω1 . X will
be the limit of a continuous inverse system {Xα, π

β
α, ω1} where each

Xα is a subspace of 2α and each πβα, α < β < ω1, is the restriction of
the projection from 2β to 2α to Xβ. For limit ordinals δ < ω we let
Xδ be the limit of the inverse system {Xα, π

β
α, δ}. Note that Xδ can

be naturally considered as a subset of 2δ. For α < ω1, we will choose
Xα+1 ⊆ 2α+1 so that πα+1

α : Xα+1 → Xα is a simple extension. By
Lemma 3.3 this implies that X has no uncountable dyadic family and
therefore contains no copy of βω.

For all α < ω we choose Xα as a closed subspace of 2α such that
for all α < ω, pα+1

α : Xα+1 → Xα is a simple extension and the inverse
limit Xω ⊆ 2ω of the Xα, α < ω, has no isolated points. Since we will
never introduce isolated points during the remaining construction, all
the Xα, ω ≤ α < ω1 will be homeomorphic to 2ω and and the target
space X will have no isolated points.

By ♦, CH holds and thus (2<ω1)ω is of size ℵ1. Hence, using some
suitable coding, from the ♦-sequence we can obtain a sequence (xαn)n<ω,α<ω1

such that for α < ω1, (xαn)n∈ω is a sequence in 2α and for every sequence
(yn)n∈ω in 2ω1 ,

{α < ω1 : (yn � α)n∈ω = (xαn)n∈ω}
is stationary in ω1.

Suppose for some α < ω1 we have defined Xα. We define Xα+1 ⊆
2α+1.

First assume that (xαn)n∈ω is not a double sequence in Xα. Choose
any point x0 ∈ Xα and a strictly descreasing sequence (An)n∈ω of clopen
subsets of Xα such that A0 = Xα and

⋂
n∈ω An = {x0}. Let

A = {x0} ∪
⋃
n∈ω

A2n \ A2n+1

and
B = {x0} ∪

⋃
n∈ω

A2n+1 \ A2n+2.

The crucial property of A and B is that both sets are closed, union up
to Xα and have intersection {x0}.

If (xαn)n∈ω is a double sequence in Xα, we choose x0 to be an accu-
mulation point of (xαn)n∈ω. This is possible since Xα is compact. Since
(xαn)n∈ω is a double sequence, x0 is an accumulation point of (xα2n)n∈ω.
Since Xα is first countable, there is a strictly increasing sequence (ni)i∈ω
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of natural numbers such that (xα2ni)i∈ω converges to x0. Since (xαn)n∈ω
is a double sequence, (xα2ni+1)i∈ω converges to x0 as well.

Now let (An)n∈ω be a strictly descreasing sequence of clopen subsets
of Xα such that A0 = Xα and

⋂
n∈ω An = {x0}. We can thin out the

sequence (ni)i∈ω to a strictly increasing sequence (mi)i∈ω such that for
some strictly increasing sequence (ki)i∈ω of natural numbers we have
that for all i ∈ ω, x2mi , x2mi+1 ∈ Aki and for all j < i, x2mi , x2mi+1 6∈
Akj . We can assume that k0 = 0.

Now for each i ∈ ω we choose a clopen set Bi ⊆ Aki \ Aki+1 such
that x2mi ∈ Bi and x2mi+1 6∈ Bi. Let

A = Xα \
⋃
i∈ω

Bi

and

B = {x0} ∪
⋃
n∈ω

Bi.

A and B are nonempty closed sets that union up to Xα and have
intersection {x0}.

In either case let Xα+1 consist of all functions x ∈ 2α such that
(x � α ∈ B and x(α) = 0) or (x � α ∈ A and x(α) = 1).

Note that Xα+1 is a simple extension of Xα since only the point x0

has two preimages in Xα+1. It is easily checked that Xα+1 is a closed
subspace of 2α+1 without isolated points. This finishes the definition
of the inverse system whose limit is our target space X.

As already indicated previously, X has no isolated points. By Lemma
3.3, the space has no uncountable dyadic family and therefore contains
no copy of βω. We show that X also has no double sequences, from
which it follows that X is of coinitiality ℵ1.

Suppose (yn)n∈ω is a double sequence in X. Then for some α < ω1,
(yn � α)n∈ω is discrete and hence a double sequence. For every β < ω1

with β ≥ α it holds that (yn � β)n∈ω is a double sequence. By the
choice of (xγn)n∈ω,γ∈ω1 , there is β ≥ α such that (yn � β)n∈ω = (xβn)n∈ω.
When we constructed Xβ+1, a strictly increasing sequence (ni)i∈ω was

chosen such that (xβ2ni)i∈ω and (xβ2ni+1)i∈ω converge to a point x0 ∈ Xβ.

Since (yn � β)n∈ω = (xβn)n∈ω is discrete, x0 is not one of the elements of
the sequence yn � β.

The point x0 has two preimages in Xβ+1, namely x0
_0 and x0

_1.
All the other points of Xβ only have a single preimage. In particular,
each yn � β has only a single preimage in Xβ+1, namely yn � β+1. Xβ+1

is the union of two disjoint clopen sets C0 = {x ∈ Xβ+1 : x(β) = 0}
and C1 = {x ∈ Xβ+1 : x(β) = 1}. By the construction of Xβ+1, for

each i ∈ ω the preimage of xβ2ni in Xβ+1, i.e., y2ni � β+ 1, is an element

of C0 and the preimage of xβ2ni+1, i.e., y2ni+1 � β + 1, is an element of
C1.
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Since C0 and C1 are closed, the sets {y2ni � β + 1 : i ∈ ω} and
{y2ni+1 � β + 1 : i ∈ ω} have disjoint closures. In particular, (yn �
β + 1)n∈ω is not a double sequence. A contradiction. �

Theorem 3.5. Assume ♦. Then there is a zero-dimensional Efimov
space X of coinitiality ℵ1 with infinitely many isolated points.

Proof. For each α < ω choose Xα as a closed subspace of 2α such that
each pα+1

α : Xα+1 → Xα is a simple extension and such that the inverse
limit Xω ⊆ 2ω of the Xα, α < ω, is homeomorphic to the disjoint union
of 2ω and the one-point compactification of the discrete space ω.

We continue the construction of the sequence (Xα)α<ω1 as in the
proof of Theorem 3.4. We have to make sure that we never split any
of the original isolated points of Xω. This is possible since no discrete
sequence accumulates at an isolated point and since we always have
non-isolated points at our disposal that can be split at stage α ≥
ω. This construction yields a zero-dimensional Efimov space with an
infinite set of isolated points. �

4. Collapsing coinitialities

If a compact space X has an infinite set of isolated points, we can
easily turn it into a space of countable coinitiality by splitting isolated
points.

Let X be a compact space with infinitely many isolated points. Let
(xn)n∈ω be a 1-1 sequence of isolated points in X. Let Y be the space
obtained from X by splitting each xn into two distinct points y2n and
y2n+1. In other words, Y = X \ {xn : n ∈ ω} ∪ {yn : n ∈ ω} where
{yn : n ∈ ω} is disjoint from X. The topology on Y is generated by
the sets {yn}, n ∈ ω, and

O \ {xn : n ∈ ω} ∪ {ym : m = 2n or m = 2n+ 1

for some n ∈ ω with xn ∈ O},
O an open subset of X.

Theorem 4.1. The space Y defined above is compact and cof(Y ) = ℵ0.

Proof. It is easily checked that (yn)n∈ω is a double sequence in Y . �

Corollary 4.2. Assume ♦. Then there is a zero-dimensional Efimov
space X of countable coinitiality.

Proof. By Theorem 3.5 there is a zero-dimensional Efimov spaceX with
an infinite set of isolated points. From X we construct a compact space
Y of countable cofinality as in Theorem 4.1. It is easily checked that
Y is zero-dimensional and does not contain a copy of βω. Now assume
that Y contains a nontrivial convergent sequence. In this case one of
the three sets {y2n : n ∈ ω}, {y2n+1 : n ∈ ω} and Y \ {yn : n ∈ ω}
contains a nontrivial convergent sequence, possibly converging to a
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point in Y that lies outside the set itself. If one of the first two sets
contains such a sequence, then so does {xn : n ∈ ω}, a contradiction. If
Y \{yn : n ∈ ω} contains such a sequence, then so does X\{xn : n ∈ ω},
again conradicting the choice of X. �

5. Discussion

The author had conjectured previously that the absence of double
sequences in an infinite compact space implies the existence of an un-
countable dyadic family. This conjecture is refuted by Theorem 3.4. It
is very likely that Efimov spaces of countable and uncountable cofinal-
ity can be constructed assuming just CH, using the method developed
in [3].

The main question, whether it is consistent that there is a compact
space of coinitiality > ℵ1 remains wide open. We conclude with two
less ambitious problems.

Problem 5.1. Characterize compact spaces of coinitiality ≤ ℵ1.

Problem 5.2. Is it consistent that every compact space of uncountable
coinitiality contains an uncountable dyadic family? What happens
under PFA?

Observe that the last problem is a weakening of Efimov’s problem
whether it is consistent that every infinite compact space space has a
convergent sequence or contains a copy of βω.
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