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Abstract. We introduce and analyze Boolean algebras acted on
continuously (with respect to the discrete topology on the Boolean
algebra) by a topological monoid T , so-called T -Boolean algebras.
These are the duals of Boolean flows, and by analyzing injective
T -Boolean algebras we are able to characterize projective Boolean
flows. Moreover, we characterize the projective T -Boolean algebras
in the case that T is a group. This characterization shows that the
existence of nontrivial projective T -Boolean algebras depends on
the properties of T .

1. Introduction

Boolean algebras with actions, herein termed T -Boolean algebras or
T -algebras for short, is a subject of intrinsic interest and importance.
Moreover, any systematic program of investigation of topological dy-
namics must place the topic of Boolean flows, i.e., Boolean spaces with
actions, high on its list of priorities, and any investigation of Boolean
flows leads directly to the subject of T -algebras via the Stone duality
with actions outlined in Subsection 1.2.

In this article we take up the central issues of injective and projective
T -Boolean algebras. This has already been for discrete monoids T ,
i.e., without the continuity assumption on the actions. (See Cornish’s
book [2] for a treatment and [6] for a general overview of categorical
properties such as injectivity.) However, things become more involved
once topology is added.

It is natural to consider continuous actions, since infinite monoids or
groups often come with a topology on them, and many natural group
or monoid actions are continuous in the sense that the group or monoid
T acts on a set that has some topology and for every point in this set
the evaluation map from T to the set is continuous.
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Here the right topology on the Boolean algebras is the discrete topol-
ogy, since with this topology continuous actions on Boolean algebras
are dual via Stone duality to continuous actions on the respective Stone
spaces, i.e., to Boolean flows.

It develops that, although the usual categorical arguments establish
the existence and uniqueness of the injective hull of any T -algebra A,
the structure of this hull is quite complicated even when that of A is not.
Among the more significant results of our research is a characterization
of injective T -algebras in terms of systems of ideals; this can be found
in Subsections 4.3, 4.4, and 4.5.

It also develops that nontrivial projective T -algebras exist only for
rather special topological monoids T . We characterize those monoids
within a class slightly broader than topological groups in Theorem
6.2.6. A fully satisfactory characterization of which topological monoids
admit nontrivial projective T -algebras must await a deeper understand-
ing than is currently available to the authors. Note, however, that
nontrivial projectives always exist in the case of discrete monoids.

The neccessary background on Boolean algebras is provided by [1]
and [7], for groups and monoids an introduction to algebra such as [5]
is sufficient, for general topology and topological groups we refer the
reader to [3] and especially the chapter on uniform spaces therein, and
the concepts from category theory that we use can be found in [4].

1.1. Actions. We fix a topological monoid T throughout. We refer to
the elements of T as actions, and denote them by the letters s, t, and r,
often with subscripts. Let C be a category and C an object of C. A left
action of T on C (right action of T on C) is a monoid homomorphism
(antimorphism) φC : T → Hom C (C, C), i.e., φC(1T ) = 1C and for all
ti ∈ T , and

φC(t1)(φC(t2)) = φC(t1t2) (φC(t1)(φC(t2)) = φC(t2t1)).

We suppress nearly all mention of φC, writing φC (t) (c) as tCc (ctC)
or simply tc (ct). In this simplified notation, the definition of a left
(right) action is just that 1c = c and (t1t2) c = t1 (t2c) (c1 = c and
c (t1t2) = (ct1) t2) for all c ∈ C and ti ∈ T . We then have an enriched
category TC (CT) whose objects are the C objects C acted upon by
T in such a way that the evaluation map (t, c) 7−→ tc ((c, t) 7−→ ct) is
continuous from T×C (C×T ) into C, where C either has a topological
structure or is given the discrete topology, and T ×C (C × T ) has the
product topology. This is what we mean by the continuity of actions.

It is worth pointing out that for locally compact C there is a natural
topology on the set HomC(C, C) such that the evaluation map (t, c) 7−→
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tc ((c, t) 7−→ ct) from T ×C (C×T ) into C is continuous if and only if
φC : T → Hom C (C, C) is. By [3, Theorem 3.4.3] that topology is the
compact open topology generated by the sets

M(A, B) = {f ∈ HomC(C, C) : f(A) ⊆ B}

where A ⊆ C is compact and B ⊆ C is open. If C is discrete, then the
compact open topology on HomC(C, C) is just the subspace topology
inherited from the product topology on CC .

The TC (CT) morphisms are the C morphisms f : C → B between
TC (CT) objects C and B which commute with the actions, i.e., those
which make this diagram commute. Maps commuting with the actions

C C

B B

-

-
? ?

tA

tB

f f

are also called T -equivariant maps.
We sometimes distinguish between the simpler objects of C and the

more complicated objects of TC (CT) by referring to the former as
naked. In the case T = {1} the category TC (CT) is equivalent to the
category C of naked objects. This is witnessed by the forgetful functor
from TC (CT) to C. We refer to the case T = {1} as the classical or
no-action situation.

From the category Ba of Boolean algebras with Boolean homomor-
phisms we obtain the category BaT of T -Boolean algebras and T -
Boolean homomorphisms. We consider no other types of algebras in this
article, so we simplify the terminology by dropping the word Boolean,
referring to the objects of Ba and of BaT as algebras and T -algebras,
respectively, and to the corresponding morphisms as morphisms and T -
morphisms. We reiterate that T -algebras carry the discrete topology,
and that T acts on them on the right.

Likewise from the category Sp of spaces with continuous functions
we obtain the category TSp of T -spaces, or T -flows, or simply flows,
and likewise the category SpT of antiflows. The distinction between
the two is that T acts on flows on the left and on antiflows on the
right. T itself has two roles to play: it is a flow under the action of left
multiplication and an antiflow under the action of right multiplication.
Finally, from the full subcategory BSp of Sp consisting of the Boolean
spaces, i.e., compact Hausdorff spaces with a clopen base, we obtain
the category TBSp of Boolean flows.
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1.2. Stone duality with actions. Stone duality extends to the action
categories without a hitch. In fact, our interest in injective T -algebras
arose from our desire to understand their duals, projective Boolean
flows. However, we emphasize T -algebras in this article, pausing only
occasionally to translate the results into terms of Boolean flows.

The main purpose of mentioning duality here is to point out that the
definition of T -algebra is the right one. In particular, the continuity
of evaluation on a Boolean flow is equivalent to the continuity of eval-
uation on its clopen algebra only when the latter carries the discrete
topology. The following lemma characterizes continuity of actions both
on discrete spaces and on Boolean spaces.

Lemma 1.2.1. a) Let C be some category. Let C ∈ C be discrete and
let φC be a right action of T on C. Then φ is continuous if and only
if for all a, b ∈ C the set {t ∈ T : a = bt} is open in T .

b) Let X be a Boolean space and let φX be a left action of T on X.
Then φX is continuous if and only if for all clopen sets a, b ⊆ X the
set {t ∈ T : t(a) ⊆ b} is open in T .

Proof. a) It is easily checked that for a discrete space C the com-
pact open topology on HomC(C, C) is generated by sets of the form
{f ∈ HomC(C, C) : a = f(b)}, a, b ∈ C}. It follows that φC is continu-
ous if and only if for all a, b ∈ C, {t ∈ T : a = bt} is open in T .

b) If φX is continuous, then {t ∈ T : t(a) ⊆ b} is open since it is
a preimage under φX of a generator of the compact open topology on
HomBSp(X, X).

Now suppose that for all clopen a, b ⊆ X the set {t ∈ T : t(a) ⊆ b}
is open in T . In order to show the continuity of φX , it enough to show
that preimages under φX of generators of the compact open topology
on HomBSp(X, X) are open in T .

Let c ⊆ X be compact and let U ⊆ X be open. We show that
{t ∈ T : t(c) ⊆ U} is open in T . Let t0 be such that t0(c) ⊆ U . Since
t0 : X → X is continuous, t0(c) is compact. Hence there exists a clopen
set b ⊆ U such that t0(c) ⊆ b. Again by the continuity of t0, a = t−1

0 (b)
is clopen. Now we have

t0 ∈ {t ∈ T : t(a) ⊆ b} ⊆ {t ∈ T : t(c) ⊆ U}

and {t ∈ T : t(a) ⊆ b} is open.
This shows that {t ∈ T : t(c) ⊆ U} is open. �

Theorem 1.2.2. Let X be a Boolean space and B its algebra of clopen
subsets. Then every left action φX on X gives rise to a right action φB
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on B by the rule

bt = φB (t) (b) ≡ φX (t)−1 (b) = t−1 (b) .

Conversely, every right action φB on B gives rise to a left action φX

on X by the rule

tx = φX (t) (x) ≡
⋂

x∈φB(t)(b)

b =
⋂

x∈bt

b.

These two processes are inverses of one another. Furthermore, φX

renders evaluation continuous on X if and only if φB renders evaluation
continuous on B. Thus are the categories BaT and TBSp equivalent.

Proof. Let φX be a continuous left T -action on X. For every t ∈ T ,
φX(t) is a continuous map from X to X. Classical Stone duality tells
us that φB(t) : B → B : b 7→ φX(t)−1(b) is well defined and a Boolean
homomorphism. It is easily checked that φB : T → homBa(B, B) is a
monoid homomorphism.

We now show that φB continuous with respect to the discrete topol-
ogy on B. By Lemma 1.2.1 a) it is sufficient to prove that for all
a, b ∈ B the set {t ∈ T : a = bt} = {t ∈ T : t−1(a) = b} is open in T .
But

{t ∈ T : t−1(a) = b} = {t ∈ T : t(b) ⊆ a} ∩ {t ∈ T : t(X \ b) ⊆ X \ a}

and by Lemma 1.2.1 it follows from the continuity of φX that the two
sets on the right hand side of the equation are open in T .

Now assume that φB is a continuous right T -action on B with respect
to the discrete topology on B. Again by Stone duality, for every t ∈ T ,
the Boolean homomorphism φB(t) dualizes to a continuous map φX(t) :
X → X as defined in the statement of the theorem. Again it is easily
checked that φX : T → homBSp(X, X) is a monoid homomorphism.

For the continuity of φX let a, b ∈ B. By Lemma 1.2.1 b) it is
sufficient to show that {t ∈ T : t(a) ⊆ b} is open in T . By the
definition of φX , t(a) ⊆ b if and only if a ⊆ bt. Let t0 ∈ T be such that
a ⊆ bt0. The set {t ∈ T : bt0 = bt} is open by the continuity of φB and
Lemma 1.2.1 a). Moreover,

t0 ∈ {t ∈ T : bt0 = bt} ⊆ {t ∈ T : t(a) ⊆ b},

showing that {t ∈ T : t(a) ⊆ b} is open in T . �

Stone duality helps to clarify the nature of epimorphisms and mono-
morphisms in both TBSp and BaT.

Proposition 1.2.3. In both TBSp and BaT, epimorphisms are sur-
jective and monomorphisms are injective.
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Proof. Consider a TBSp morphism f : X → Y . The product P ≡
X×X is a Boolean flow under componentwise actions, i.e., t (x1, x2) ≡
(tx1, tx2) for all t ∈ T and (x1, x2) ∈ P , and the projection maps
pi : P → X, i = 1, 2, are flow surjections. Let

Z ≡ {(x1, x2) ∈ P : f (x1) = f (x2)} ,

a closed subflow of P and therefore itself a TBSp object. If f is
not injective then there are x1 6= x2 in X such that f (x1) = f (x2).
The corresponding point p ≡ (x1, x2) lies in Z, and p1 (p) = x1 6=
x2 = p2 (p). Since fp1 = fp2, f is not a monomorphism. This proves
that monomorphisms in TBSp are injective, and it follows from Stone
duality that epimorphisms in BaT are surjective. A similar argument
shows that monomorphisms in BaT are injective, and dualizes to show
that epimorphisms in TBSp are surjective. �

2. Pointed antiflows

Antiflows of a particular sort arise as a means of classifying the
elements of a T -algebra according to the complexity of their orbits.
This is because the orbit aT ≡ {at : t ∈ T} of an element a in a T -
algebra A is a discrete antiflow having source a.

2.1. Pointed antiflows defined.

Definition 2.1.1. A pointed antiflow is an object of the form (R, s),
where R is a discrete antiflow and s is a source for R, i.e., for all r ∈ R
there is some t ∈ T such that st = r. The pointed antiflow morphisms
are the antiflow morphisms which take the designated source of the do-
main to the designated source of the codomain. We use pSpT to denote
the category of pointed antiflows and pointed antiflow morphisms.

We remind the reader that T acts on any antiflow on the right, and
does so in such a way that evaluation is continuous. A pointed antiflow
is distinguished among general antiflows by two additional features: a
pointed antiflow is discrete and has a source.

Observe that a pointed antiflow is really just a discrete antiflow quo-
tient of T , with the image of the identity as source. In fact, for every
pointed antiflow (R, s) there is a unique antiflow surjection ρR : T → R
such that ρR (1) = s, and it is defined by the rule ρR (t) = st for all
t ∈ T . Consequently there are, up to antiflow isomorphism, only a set’s
worth of pointed antiflows.

Definition 2.1.2. We use {Ri : i ∈ I} to designate the set of isomor-
phism types of pointed antiflows of T ; more precisely, every pointed an-
tiflow is pSpT isomorphic to exactly one Ri. And we use ρi : T → Ri

to designate the corresponding antiflow morphism, i.e., ρi (t) = sit for
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all t ∈ T . Moreover, any two pointed antiflows (R1, s1) and (R2, s2)
admit at most one pSpT morphism ρ1

2 : R1 → R2, given by the rule
ρ1

2 (s1t) = s2t, and it satisfies ρ1
2ρ1 = ρ2 when it exists.

2.2. Suitable relations. The reason for the uniqueness of the mor-
phisms ρi and ρi

j, i, j ∈ I, is that pointed antiflows are in one-to-one
correspondence with certain equivalence relations on T . Given i ∈ I,
define

t′ ∼i t′′ ⇐⇒ sit
′ = sit

′′.

Then ∼i is an equivalence relation on T which is right invariant in the
sense that for all t, t′, t′′ ∈ T ,

t′ ∼i t′′ =⇒ t′t ∼i t′′t.

And ∼i has equivalence classes which are open, and hence clopen. We
refer to an equivalence relation with these two properties as a suitable
relation.

Given a suitable relation ∼ on T , let R designate the discrete space
T/∼, i.e.,

R ≡ {[t] : t ∈ T} ,

where [t] denotes the equivalence class of t. Let t ∈ T act on [t′] ∈ R
by the rule

[t′] t = [t′t] .

Then R is a pointed antiflow with source s ≡ [1]. Therefore there is a
unique i ∈ I for which (R, s) is antiflow isomorphic to (Ri, si), and ∼
is actually ∼i.

Remark 2.2.1. The pointed antiflows are in one-to-one correspondence
with the suitable relations.

(1) (T, 1) is a pointed antiflow if and only if T is discrete.
(2) If T is connected then its only pointed antiflow contains a single

point.
(3) If T is compact then all its pointed antiflows are finite.

2.3. The lattice of pointed antiflows. The index set I inherits a
partial order from the refinement ordering on suitable relations: we
define i ≥ j in I if ∼i is finer than ∼j, i.e., if [t]i ⊆ [t]j for all t ∈ T ,

where [t]i designates the equivalence class of t ∈ T with respect to ∼i.

Proposition 2.3.1. i ≥ j in I if and only if there is a pSpT morphism
ρi

j : Ri → Rj. The morphism is unique when it exists, and I is a lattice
under this order.
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Proof. Consider i, j ∈ I. If i ≥ j then the map [t]i 7−→ [t]j is a pSpT

morphism. Conversely if ρi
j exists then for all t, t′ ∈ T we would have

t ∼i t′ ⇐⇒ sit = sit
′ =⇒ ρi

j (sit) = ρi
j (sit

′) =⇒ ρi
j (si) t = ρi

j (si) t′

=⇒ sjt = sjt
′ ⇐⇒ t ∼j t′.

That the order is a lattice ordering depends on three observations.
First, the meet or join (in the lattice of equivalence relations on T ) of
two right-invariant relations is right invariant. Second, two equivalence
relations on T with clopen classes have a join with the same feature.
And third, any equivalence relation coarser than one whose classes are
clopen also has clopen classes. �

Corollary 2.3.2. i ≥ j in I if and only if

sit = sit
′ =⇒ sjt = sjt

′

for all t, t′ ∈ T .

At the expense of a little redundancy, we offer an exterior formulation
of the fact that I is an upper semilattice. We use i ∨ j to denote the
supremum of i and j in I.

Proposition 2.3.3. For i, j ∈ I, Ri∨j is pSpT isomorphic to

{(ri, rj) ∈ Ri × Rj : sit = ri and sjt = rj for some t ∈ T} ,

with coordinatewise actions and source (si, sj). Furthermore, the pro-
jection maps are pSpT morphisms.

We close this subsection by pointing out that when T is a topological
group, I is anti-isomorphic to its lattice of open subgroups.

Definition 2.3.4. For any element r in any pointed antiflow Ri we
designate the stabilizer of r in T by

stab r ≡ {t ∈ T : rt = r}.

Note that stab r is a clopen submonoid of T . When r is the source si

of Ri, we call stab r a source stabilizer.

The terminology of Definition 2.3.4 applies to any element a in a
T -algebra A, since the orbit (aT, a) ≡ ({at : t ∈ T} , a) is a pointed
antiflow. That is, stab a = {t ∈ T : at = a}.

Proposition 2.3.5. Suppose that T is a topological group. Then the
lattice I of isomorphism types of pointed antiflows is anti-isomorphic
to the lattice of open subgroups of T via the map

i 7→ stab si.

The inverse of this map is

U 7→ (T/U, U),
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where T/U denotes the pointed antiflow of right cosets of U acted upon
by right multiplication. Thus I is a lattice in this case.

Proof. For every i ∈ I, the ∼i-class of 1 is just stab si. Since the ∼i-
classes are clopen, so is stab si. If T is a topological group, then for
every t ∈ T the ∼i-class of t is simply the right coset (stab si)t. In
particular, ∼i is uniquely determined by stab si and Ri is isomorphic
to (T/ stab si, stab si).

On the other hand, for every open subgroup U of T , (T/U, U) is
indeed a pointed antiflow whose source stabilzer is U . The continuity
of the action of T on (T/U, U) follows from the fact that for all t0, t1 ∈ T
the set {t : Ut0t = Ut1} equals t−1

0 Ut−1
1 . The latter set is open since U

is. �

It follows from Proposition 2.3.5 that for topological groups T , the
suitable relations are in bijective order-reversing correspondence with
the source stabilizers. The broader class of topological monoids with
this feature will play a role in Section 6.

Definition 2.3.6. Let T be a topological monoid. We say that the
suitable relations on T correspond to the source stabilizers if for i, j ∈ I,

i ≥ j ⇐⇒ stab si ⊆ stab sj.

2.4. Constructing T̂ . For the purpose of analyzing T -algebras, the
only pertinent feature of T is its actions on pointed antiflows. Thus
we may exchange T for an associated topological monoid T̂ , formed by
isolating this pertinent feature (Theorem 2.6.1).

We indulge in this development to point out that the action of a
given topological monoid T on a T -algebra may, in effect, be other
than what it first appears. For example, if T is connected then T̂ has
a single point and the action is, in fact, trivial; see Remark 2.2.1(2).
On the other hand, there may be actions implicit in T which are not
present in T but in T̂ , i.e., T̂ may be larger than T ; see Example 2.4.6.
However, the reader who is only interested in injective and projective
objects in BaT, the main content of this article, may choose to skip
this development.

Let i ∈ I. We designate homSp (Ri, Ri) = RRi

i by Vi, and we make
Vi into a topological monoid by using as basic neighborhoods of v ∈ Vi

sets of the form

{v′ ∈ Vi : sv′ = sv for all s ∈ S} ,

for finite a subset S ⊆ Ri. In other words, Vi carries the product
topology induced by the discrete topology on Ri. Note that the prod-
uct topology on Vi coincides with the compact open topology since all
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subsets of Ri are open and the compact subsets of Ri are precisely the
finite subsets.

Now Vi is a topological monoid acting continuously on Ri in the
natural way. We designate the action of T on Ri by φi, i.e., φi : T → Vi

is the map such that φi(t)(r) = rt for every r ∈ Ri. We write Ti for
φi(T ). Note that Ti is the only part of T that is really visible from Ri’s

point of view. We will construct T̂ from the Ti, i ∈ I.
Let V designate the product

∏
I Vi, regarded as a topological monoid

with componentwise multiplication and product topology. Let φ̂i :
V → Vi designate the ith projection map. Finally, define φ : T → V by
the rule

φ (t) (i) ≡ φi (t) = ti.

For i ≥ j in I, the pSpT morphism ρi
j : Ri → Rj naturally induces

a topological monoid homomorphism φi
j : Ti → Tj as follows. For any

ti ∈ Ti we define the action of φi
j (ti) on an arbitrary rj ∈ Rj by the

rule

(rj) φi
j (ti) ≡ ρi

j (riti) ,

where ri ∈ Ri is chosen to satisfy ρi
j (ri) = rj. The definition is in-

dependent of the choice of ri because ρi
j commutes with the actions.

Writing ri as sit
′
i for some t′ ∈ T , so that rj = sjt

′
j, gives the simpler

formula (
sjt
′
j

)
φi

j (ti) = sit
′
iti = si (t

′t)i .

Note that φi
j is the unique monoid homomorphism that makes the

following diagram commutative:

T

φi

φj

Ti
φi

j

Tj

The construct that emerges naturally here is the inverse limit T̄ in
the category of topological monoids, held together by the bonding maps
φi

j for i ≥ j in I. In this case we can realize T̄ concretely as

T̄ = lim
←−I

Ti =

{
t̄ ∈
∏

I

Ti : ∀i ≥ j
(
φi

j (t̄ (i)) = t̄ (j)
)
}

.

T̂ is defined to be the closure of T̄ in V . Of course, φ (T ) is dense in

T̄ , so T̂ is also the closure of φ (T ) in V . We abbreviate φ̂i

(
t̂
)

to t̂i for

elements t̂ ∈ T̂ .
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Remark 2.4.1. The following hold for any topological monoid T .

(1) All the maps φ, φi, and φ̂i are continuous monoid homomor-

phisms, and φ̂iφ = φi for each i ∈ I. In other words, the
following diagram commutes:

T
φ

φi

T̄

φ̂i

⊆

T̂

φ̂i

Ti

⊆
Vi

Moreover, since φ̂i(T̂ ) ⊆ Vi, T̂ acts continuously on Ri.

(2) If each pointed antiflow of T is finite then T̂ is compact.
(3) φ is injective if and only if the common refinement of the suit-

able relations is the identity relation, i.e., each pair of distinct
points of T is separated by a suitable relation.

(4) T̂ is discrete if and only if φ(T ) is discrete if and only if I has
a greatest element.

Proof. (1) is straightforward.
For (2) observe that if every Ri is finite, then every Vi is finite.

Thus, V is a product of finite spaces and hence compact. T̂ is a closed
subspace of V and therefore compact as well.

For (3) let t, t′ ∈ T . Then φ(t) = φ(t′) if and only if for all i ∈ I,
φi(t) = φi(t

′). If for some i ∈ I, t 6∼i t′, then sit 6= sit
′ and hence

φ(t) 6= φ(t′). On the other hand, if φi(t) 6= φi(t
′), then there is ri ∈ Ri

such that rit 6= rit
′. Now (riT, ri) is a pointed antiflow and hence it is

isomorphic to Rj for some j ∈ I. Clearly, φj(t) 6= φj(t
′).

For the proof of (4) notice that if T̂ is discrete then so is φ(T ), being

a subspace of T̂ .
Now assume that φ(T ) is discrete. T acts continuously on T̂ by the

rule

t̂t ≡ t̂φ(t).

For every t ∈ T we have 1T̂ t = φ(1T )φ(t) = φ(t). Hence φ(T ) is the

orbit of 1T̂ under the action of T on T̂ . It follows that (φ(T ), 1T̂ ) is a
pointed antiflow of T . Let i be the corresponding element of I.

For all t, t′ ∈ T and all j ∈ I we have

1T̂ t = 1T̂ t′ ⇒ φ(t) = φ(t′) ⇒ φj(t) = φj(t) ⇒ sjt = sjt
′.

It follows that t ∼i t′ implies t ∼j t′. Hence i is the largest element of
I.
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Finally, assume that I has a greatest element i. Then T̄ = φ(T ) and

φ̂i : φ(T ) → Ti is an isomorphism. Now the crucial observation is that
an element ti of Ti is already determined by siti.

To see this let t, t′ ∈ T be such that sit = sit
′. We have to show that

for every r ∈ Ri, rt = rt′. Let r ∈ Ri and consider the pointed antiflow
(rT, r). Since i is the greatest element of I, there is a pSpT morphism
ρ : (Ri, si) → (rT, r). Now

rt′ = ρ(si)t
′ = ρ(sit

′) = ρ(sit) = rt.

We are now ready to show that T̂ is discrete.
Let f ∈ T̂ . The set

U ≡ {f ′ ∈ T̂ : f ′(i)(si) = f(i)(si)}

an open neighborhood of f in T̂ . Since φ(T ) is dense in T̂ , there is
t ∈ T with φ(t) ∈ U . By the observation above, φi(t) is uniquely
determined. Since i is the largest element of I, φi(t) detemines φ(t),
i.e., the intersection of φ(T ) and U is a singleton. Since f is in the
closure of φ(T ), we have f = φ(t). It follows that U is a singleton. i.e.,

f is an isolated point of T̂ . This shows that T̂ is discrete. �

Proposition 2.4.2. T̂ has the same lattice I of pointed antiflows as T
does.

Proof. For each action φi of T on one of its pointed antiflows Ri we have
the corresponding action φ̂i of T̂ on Ri, and φφ̂i = φi by construction.
Conversely any action of T̂ on a pointed antiflow, when followed by φ,
gives an action of T on that flow. This shows that the pointed antiflows
of T are the same as those for T̂ . Furthermore, the order on I imposed
by T is the same as that imposed by T̂ . For if i ≥ j in I by virtue of the
pSpT morphism ρi

j : Ri → Rj then this ρi
j is also a pSpT̂ morphism,

i.e., it commutes with each t̂ ∈ T̂ . The reason is that for ri ∈ Ri and
rj ≡ ρi

j (ri) there is some t ∈ T such that rit̂i = riti and rj t̂j = rjtj,
hence

ρi
j

(
rit̂i
)

= ρi
j (riti) = ρi

j (ri) ti = rjtj = rj t̂j = ρi
j (ri) t̂j.

Thus i ≥ j in the order imposed on I by T̂ . �

Corollary 2.4.3.
̂̂
T = T̂ .

Remark 2.4.4. Let i ∈ I. We denote the equivalence relation on T̂ that
corresponds to Ri by ∼i, just like the corresponding relation on T .

(1) For elements t, t′ ∈ T , t ∼i t′ if and only if φ(t) ∼i φ(t′).

(2) Each ∼i class of T̂ contains an element of φ (T ).
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Proof. The proof of (1) is straightforward. For (2) let t̂ ∈ T̂ . Then

φ̂i(t̂) ∈ Ti. Hence for some t ∈ T , φi(t) = φ̂i(t̂). But now sit̂ = siφ(t)
and hence t̂ ∼i φ(t). �

Let us have a closer look at the special case when T is a topological
group.

Proposition 2.4.5. Suppose that T is a topological group. Then T̄ is
a group, but T̂ need not be a group. The identity element of T̄ has a
neighborhood base consisting of the open subgroups of T̄ .

Proof. If T is a group, then each Ti, being a quotient of T by a monoid
homomorphism, is a group as well. It follows that the inverse limit T̄
is a group. Example 2.4.6 shows that T̂ is not necessarily a group.

We show that 1T̄ has a neighborhood base consisting of open sub-
groups of T̄ . Let O be an open neighborhood of 1T̄ . Since the topology
on T̄ is induced by the product topology on V , there are n ∈ N,
i0, . . . , in−1 ∈ I and finite sets Sk ⊆ Rik , k < n, such that

U ≡ {t̄ ∈ T̄ : ∀k < n∀r ∈ Sk(rt̄ = r)} ⊆ O.

Clearly, U is an open subgroup of T̄ . �

Here is an example which illustrates the ideas in this subsection. It
makes the point that T need not coincide with T̂ even when φ : T → T̂
is injective, and that T̂ need not be a group even when T is.

Example 2.4.6. Let T be the group of permutations of the natural
numbers N under composition, equipped with the topology inherited
from the product topology on NN . T is a topological group. For each
m ∈ N define the equivalence relation ∼m by declaring

t ∼m t′ ⇐⇒ it = it′ for all i ≤ m.

(We choose to write the permutation to the right of its input.) Then
∼m is a suitable relation, and every suitable relation is refined by one of
these. Thus we may identify [t]m with the m-tuple (1t, 2t, . . . , mt), and
identify Rm ≡ T/∼m with the set of all m-tuples of distinct elements
from N . The source of Rm is sm = (1, 2, . . . , m), and the action of
t ∈ T on (i1, i2, . . . , im) is given by

(i1, i2, . . . , im) t = (i1t, i2t, . . . , imt).

The natural order on N coincides with the refinement ordering on the
corresponding suitable relations, and if m ≥ n then the pSpT mor-
phism ρm

n : Rm → Rn is simply restriction, i.e.,

ρm
n (i1, i2, . . . , im) = (i1, i2, . . . , in) .
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Following the construction of T̂ let φn : T → Vn = RRn
n be the action

of T on Rn and let Tn ≡ φn(T ). The induced map φ : T → V =
∏

N Vn

is clearly injective. In fact,

snφ (t) (n) = sn = (1t, 2t, . . . , nt).

For every f ∈
∏

N Vn, f ∈ T̂ = clV φ (T ) if and only if for all n ∈ N
there is a permutation tn ∈ T such that for all m ≤ n, (1, . . . , m)tn =
(1, . . . , m)f(m). However, the permutation tn does not have to be the

same for all n. It follows that f ∈ T̂ implies that for all m and n with
m ≤ n, (1, . . . , m)f(m) is the restriction of (1, . . . , n)f(n) to the first

m coordinates. Therefore every f ∈ T̂ = clV φ (T ) corresponds to a
function g : N → N such that for every n,

(1, . . . , n)f(n) = (g(1), . . . , g(n)).

Every function g that arises in this way is one-to-one.
On the other hand, if g : N → N is one-to-one, for every n and every

n-tuple (i1, . . . , in) of distinct natural numbers let

(i1, . . . , in)f(n) ≡ (g(i1), . . . , g(in)).

Now f ∈ T̂ since for all n we can choose a permutation tn ∈ T such
that

(1, . . . , n)tn = (g(1), . . . , g(n)).

It follows that the elements of T̂ correspond to one-to-one functions
from N to N . This correspondence is in fact a monoid isomorphism.
Hence T̂ is not a group.

2.5. The type of an element of a T -algebra. Pointed antiflows
arise as a means of classifying elements of a T -algebra A according to
the complexity of their orbits. Let A be an algebra on which T acts,
and for each a ∈ A let ∼a designate the relation on T defined by the
rule

t ∼a t′ ⇐⇒ atA = at′A,

for t, t′ ∈ T . (Here and in what follows we use tA to abbreviate φA (t),
where

φA : T → hom A ≡ homBa (A, A)

is the action of T on A.) Then ∼a is a right-invariant equivalence
relation, and A is a T -algebra, i.e., evaluation is continuous, if and
only if each ∼a is a suitable relation.

Definition 2.5.1. We say that the type of an element a of a T -algebra
A is i ∈ I, and write type a = i, provided that ∼a is ∼i.

Remark 2.5.2. Let a be an element of a T -algebra A.
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(1) To assert that a is of type at most i is to assert that for all
t, t′ ∈ T ,

siti = sit
′
i =⇒ atA = at′A.

(2) If the suitable relations on T correspond to the source stabi-
lizers, then to assert that a is of type at most i is to assert
that

stab si ⊆ stab a.

Lemma 2.5.3. Let a and b be elements of a T -algebra A. Then

type(a ∨ b) ∨ type(a ∧ b) ≤ type a ∨ type b, and

type a = type a,

where a denotes the complement of a. Therefore, for all i ∈ I,

{a ∈ A : type a ≤ i}

is a subalgebra of A, but need not be a T -subalgebra.

Proof. The map
ρa

a : aT → aT ; at 7→ at

is a pSpT isomorphism. Hence type(a) = type(a).
Now consider the pointed antiflow

R ≡ ({(at, bt) : t ∈ T}, (a, b)).

R is isomorphic to Rtype a∨type b. The map

ρa,b
a∧b : R → ((a ∧ b)T, a ∧ b); (at, bt) 7→ (a ∧ b)t

is a pSpT morphism showing that

type(a ∧ b) ≤ type a ∨ type b.

Similarly,
type(a ∨ b) ≤ type a ∨ type b.

It follows that for every i ∈ I the elements of A of type at most i
form a subalgebra of A. Example 2.5.4 shows that this subalgebra does
not have to be a T -subalgebra. �

Example 2.5.4. Let T be S3, the group of all permutations of the set
{1, 2, 3}. We consider the action of T on {1, 2, 3} as a left-action since
we consider {1, 2, 3} as a Boolean space. Let A be the powerset algebra
of {1, 2, 3}. The action of T on {1, 2, 3} induces a right-action on A by
letting at = t−1(a) for every t ∈ T .

Note that stab{1}, stab{2} and stab{3} are pairwise incomparable
(with respect to ⊆) subgroups of T . It follows that the types of {1},
{2} and {3} are pairwise incomparable. Therefore

B ≡ {a ∈ A : type a ≤ type{1}} = {∅, {1}, {2, 3}, {1, 2, 3}}.
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B is a subalgebra of A, but the T -subalgebra of A generated by B is
already all of A.

A crucial observation is that morphisms reduce type.

Proposition 2.5.5. If f : A → B is a T -morphism then for all a ∈ A,

type a ≥ type f (a) .

T acts on I on the right, essentially by shifting each source si of Ri

to sit. The key observation is that if ∼i is a suitable relation on T then
so is the relation ∼it defined by the rule

t′ ∼it t′′ ⇐⇒ tt′ ∼i tt′′

for t′, t′′ ∈ T .

Remark 2.5.6. The following hold for i ∈ I and t, t′, t′′ ∈ T .

(1) (it) t′ = i (tt′).
(2) t′ ∼it t′′ if and only if sitit

′
i = sitit

′′
i .

(3) A pointed antiflow corresponding to the suitable relation ∼it is
(sitT, sit), where sitT ≡ {sitt

′ : t′ ∈ T}, and where the action
is given by

(sitt
′)φj (t′′) = siφi (tt

′t′′)

for t′, t′′ ∈ T .

Proposition 2.5.7. Suppose a is an element of a T -algebra A and
t ∈ T . Then

type (atA) = (type a) t.

Proof. Let type a ≡ i and type (atA) ≡ j. Then for t′, t′′ ∈ T ,

t′ ∼it t′′ ⇐⇒ tt′ ∼i tt′′ ⇐⇒ si (tt
′)i = si (tt

′′)i

⇐⇒ a (tt′)A = a (tt′′)A ⇐⇒ (atA) t′A = (atA) t′′A

⇐⇒ t′ ∼j t′′.

Since the suitable relations ∼it and ∼j coincide, it follows that it = j
in I, which is the desired conclusion. �

One might idly conjecture that, in the notation of Lemma 2.5.7, i ≥
it by virtue of the map ri 7−→ rit, ri ∈ Ri. But this is most assuredly
not the case, since this map is generally not a pSpT morphism. This
phenomenon occurs in Example 2.5.4: the types of {1} and {2} are
incomparable, but if t ∈ S3 is the transposition that exchanges 1 and
2, then {2} = {1}t, i.e., (type{1})t = type{2}.
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Proposition 2.5.8. Let A be a T -algebra and i ∈ I. Then for each
i ∈ I,

Ai ≡

{
a ∈ A : type a ≤

∨

T0

it for some finite T0 ⊆ T

}

is a T -subalgebra of A, and

A = lim
→
{Ai : i ∈ I} .

Proof. The fact that Ai is a T -subalgebra follows from Proposition 2.5.7
and Lemma 2.5.3. And since each element a ∈ A has a type i ∈ I and
is therefore contained in Ai, it follows that A is the direct limit of the
Ai’s. �

2.6. Trading T for T̂ .

Theorem 2.6.1. For every action φA of T on a T -algebra A there is
a unique corresponding action φ̂A of T̂ on A such that φ̂Aφ = φA.

T T̂

hom A

-

?

�
�

��	

φ

φA
φ̂A

Proof. Consider t̂ ∈ T̂ and a ∈ A such that type a = i ∈ I, and find
t ∈ T such that φ (t) ∼i t̂; see Remark 2.4.4(2). If an action φ̂A is
to exist satisfying this theorem, it follows from Remarks 2.4.4(1) and
2.5.2(1) that

aφ̂A

(
t̂
)
≡ at̂A = atA ≡ aφA (t) .

Therefore take this as the definition of φ̂A. First observe that at̂A is
well defined, for if t′ is another element of T such that φ (t′) ∼i t̂ then
φ (t) ∼i φt′, hence siti = sit

′
i, with the result that atA = at′A because

type a = i. Next we claim that t̂A is a Boolean morphism. For

at̂A = atA = atA = at̂A

because the same element t ∈ T used to define at̂A can also be used to
define at̂A since type a = type a by Lemma 2.5.3. And for a, b ∈ A we
may take k = type a∨ type b and find t ∈ T such that φ (t) ∼k t̂. Then
because tA is a Boolean morphism which agrees with t̂A at a, b, a ∨ b,
and a ∧ b, we get

(a ∨ b) t̂A = at̂A ∨ bt̂A and (a ∧ b) t̂A = at̂A ∧ bt̂A.
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To verify that φ̂A is a monoid morphism consider t̂′, t̂ ∈ T̂ and a ∈ A,
let type a = i, and find t ∈ T such that φ (t) ∼i t̂. Then at̂A = atA,
and

type
(
at̂A
)

= type (atA) = (type a) t = it.

Next find t′ ∈ T such that φ (t′) ∼it t̂′, so that
(
at̂A
)
t̂′A = (atA) t̂′A = (atA) t′A = a (tt′)A .

To show that a (tt′)A = a
(
t̂t̂′
)

A
we must show that t̂t̂′ ∼i φ (tt′).

But this is easy. Because t̂ ∼i φ (t) we know that sit̂i = siti, hence
sit̂it̂

′
i = sitit̂

′
i, and from the fact that t̂′ ∼it φ (t′) we know from Remark

2.5.6(2) that sitit̂
′
i = sitit

′
i, hence sit̂it̂

′
i = sitit

′
i, from which the desired

conclusion follows. This completes the verification that φ̂A is a monoid
morphism. Finally, evaluation is continuous by construction. �

3. T -algebras

In this section we record the basic facts concerning T -algebras which
will be necessary in what follows. We use ⊥ and > to denote the
smallest and the largest element of a given Boolean algebra.

3.1. T -Morphisms and T -ideals.

Definition 3.1.1. A T -ideal of a T -algebra A is an ideal I with the
property that at ∈ I for all a ∈ I and all t ∈ T .

Such ideals determine the T -surjections.

Proposition 3.1.2. For any T -morphism f : A → B,

I = {a ∈ A : f (a) = ⊥}

is a T -ideal. Conversely, for a given T -ideal I there is one and only
one way to have T act on the quotient A/I so as to make the actions
commute with the quotient map g, namely by defining

g (a) t = g (at)

for each t ∈ T and a ∈ A. In this case A/I is a T -algebra and g is a
T -morphism.

Lemma 3.1.3. Any ideal I of a T -algebra A has a largest T -ideal
contained in it, namely

IT ≡ {a ∈ A : at ∈ I for all t ∈ T} .

If I ⊆ A is an ideal of the T -algebra A, then the quotient map
f : A → A/I has a factorization f = gf̂ where f̂ : A → A/IT and

g : A/IT → A/I are the quotient maps. Note that f̂ is a T -morphism.
This observation gives rise to the following definition.
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Definition 3.1.4. A factorization gf̂ = f of a naked surjection f is
a Ba-BaT factorization if f̂ and g are surjections such that g ∈ Ba

and f̂ ∈ BaT. Such a factorization is minimal if it has the additional
feature that any Ba-BaT factorization kh = f has h as an initial factor
of f̂ , i.e., f̂ = lh for some l ∈ BaT.

Proposition 3.1.5. Every naked surjection out of a T -algebra has a
minimal Ba-BaT factorization.

Proof. If I is the kernel of f , then let f̂ : A → A/IT and g : A/IT →

A/I be the canonical maps. We show that the factorization f = gf̂
is minimal. Suppose f = kh is another Ba-BaT factorization of f .
Let J be the kernel of h. J is a T -ideal contained in I. Hence J ⊆
IT . The image of h is canonically T -isomorphic to A/J and hence we
may assume that h is just the quotient map from A onto A/J . Let

l : A/J → A/IT be the canonical map. Now clearly f̂ = lh, showing

that gf̂ is indeed minimal. �

Lemma 3.1.6. Let A0 be a subset of the T -algebra A, and let I be
a T -ideal of A such that I ∩ A0 ⊆ {⊥}. Then there is a T -ideal J
maximal with respect to J ⊇ I and J ∩ A0 ⊆ {⊥}.

Recall that in any category C, a morphism f : A → B is called essen-
tial if it is injective, and every morphism out of B whose composition
with f is injective must itself be injective.

Proposition 3.1.7. The following are equivalent for a T -injection f :
A → B.

(1) f is essential.
(2) Every nontrivial T -ideal of B meets f (A) nontrivially.
(3) For every ⊥ < b ∈ B there is some ⊥ < a ∈ A and finite

T ′ ⊆ T such that f (a) ≤
∨

T ′ bt
′.

Proof. By Proposition 3.1.2, the non-essentiality of f is equivalent to
the existence of a T -ideal I ⊆ B such that I∩f (A) = {⊥}. An element
b > ⊥ of such an ideal would violate the condition of this proposition,
and any b ∈ B which violated this same condition would generate a
proper T -ideal corresponding to a T -surjection denying essentiality. �

Proposition 3.1.8. For every T -injection f there is a T -surjection g
such that gf is essential.

A B

C

-

?

@
@

@@R

f

g
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Proof. Let J be a T -ideal of B maximal with respect to J∩f (A) = {⊥},
and let g : B → C ≡ B/J be the natural map. �

Definition 3.1.9. A T -algebra A is simple if it has no proper T -
homomorphic images.

Proposition 3.1.10. Every T -algebra has a simple quotient.

Proof. Any T -algebra A has a maximal proper T -ideal by Lemma 3.1.6,
with A0 and I there taken to be {>} and {⊥}, respectively. And the
corresponding quotient is simple by Proposition 3.1.2 �

We use 2 to denote the algebra containing only greatest element >
and least element ⊥. When regarded as a T -algebra, the action is
presumed to be trivial, as indeed it must be.

Proposition 3.1.11. The following are equivalent for a T -algebra A.

(1) A is simple.
(2) A has no proper T -ideals.
(3) 2 is essentially embedded in A.
(4) For all ⊥ < a ∈ A there is some finite subset T0 ⊆ T such that∨

T0
at0 = >.

3.2. The reduction to discrete T . Let Td denote the monoid T with
discrete topology. We will construct cofree T -algebras over naked al-
gebras by the strategy of first constructing cofree Td-algebras and then
passing to the corresponding T -algebra by restricting to a particular
subalgebra. The first use of this strategy comes in the following sub-
section.

Suppose B is an algebra on which T acts, i.e., a Td-algebra. Slightly
abusing notation, for i ∈ I and b ∈ B we write type b ≤ i if there is a
T -equivariant map from Ri to aT that maps si to b. Now Bi can be
defined as in Proposition 2.5.8.

Lemma 3.2.1. Let B be as above.

(1) Let b ∈ B. Then T acts continuously on bT iff for some i ∈ I,
type b ≤ i.

(2) The set

BT ≡ {b ∈ B : ∃i ∈ I (type b ≤ i)}

is the largest subalgebra of B which forms a T -algebra under
the relativised actions. BT is the direct limit of the algebras Bi,
i ∈ I.

Proof. For (1) assume ρ : Ri → bT is a T -equivariant map such that
ρ(si) = b. To show the continuity of the action of T on bT , we have
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to show that for all a ∈ bT and all t ∈ T the set {t′ ∈ T : at = at′} is
open in T . But

{t′ ∈ T : at = at′} =
⋃
{{t′′ ∈ T : rt′ = rt′′} : r ∈ ρ−1(a) ∧ at′ = at}

and the sets {t′′ ∈ T : rt′ = rt′′} are open by the continuity of the
action of T on Ri.

On the other hand, if T acts continuously on bT , then for some i ∈ I,
(bT, b) is actually isomorphic to Ri.

(2) easily follows from (1). �

Theorem 3.2.2. BaT is a mono-coreflective subcategory of BaTd [4,
36.1], and the coreflective morphism for B ∈ BaTd is the insertion of
BT in B.

Proof. Let f : A → B be a Td-morphism for which A ∈ BaT. We

A B

BT

-

@
@

@@R

6

f

i

claim that f (A) ⊆ BT . For if a ∈ A then for any t ∈ T we have a
neighborhood U ⊆ T of t such that at = at′ for all t′ ∈ U . But then

f (a) t = f (at) = f (at′) = f (a) t′

for all t′ ∈ U . This proves the claim that f (a) ∈ BT . �

3.3. Freely adding actions to a naked algebra. In this subsection
we show that, although there are many ways to endow a naked algebra
with actions, adding such actions “as freely as possible” can be done
in one and only one way. More precisely, for a given naked algebra B
there exist a unique T -algebra A and naked morphism p : A → B such
that for any other T -algebra C and naked morphism f : C → B there
is a unique Bat morphism g : C → A such that pg = f . That is, p

C B

A

-

@
@

@@R

6

f

p
g

is an F -co-universal map for B [4, VII 26.1], where F : BaT → Ba

is the functor which forgets the actions. (We are, in effect, showing
that F has a right adjoint [4, VII 27.3].) We refer to this situation by
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saying that BaT is cofree over Ba. The T -algebra A together with the
morphism p : A → B is the cofree T -algebra over B.

We fix a naked algebra B, and set

A ≡
∏

t∈T

Bt,

where Bt is a copy of B for each t ∈ T . We view each element of A as
a map from T into B. Let t ∈ T act on a ∈ A according to the rule

(at) (t′) ≡ a(tt′)

for all t′ ∈ T . It is easy to check that A ∈ BaTd, i.e., that T acts on
A. Project A onto B by the Ba morphism p defined by p (a) = a (1).

Proposition 3.3.1. BaTd is cofree over Ba, and the cofree Td-algebra
over a naked algebra B is p : A → B.

Proof. Given a Ba morphism f whose domain C is a Td-algebra, a

C B

A

-

@
@

@@R

6

f

p
g

Td-morphism g which makes the diagram commute must satisfy

g (c) (t) = g (c) (t1) = (g (c) t) (1) = (g (ct)) (1) = pg (ct) = f (ct) .

So if we take this requirement as a definition of g we clearly get a
homomorphism which makes the diagram commute. To check that g
commutes with the actions, observe that

(g (c) t) (t′) = g (c) (tt′) = f (c (tt′)) = f ((ct) (t′)) = g (ct) (t′)

for all c ∈ C and t, t′ ∈ T . �

Proposition 3.3.2. BaT is cofree over Ba, and the cofree T -algebra
over a naked algebra B is p : AT → B.

Proof. Given a Ba morphism f : C → B whose domain is a BaT

object, the morphism g of Proposition 3.3.1 factors through AT by
Theorem 3.2.2. �

For i ∈ I we say that an element a of the Td-algebra A is constant
on every ∼i class if for all t, t′ ∈ T with t ∼i t′, at = at′.
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Lemma 3.3.3. An element of A has type at most i if and only if it is
constant on each ∼i class. Therefore

AT = {a ∈ A : ∃i ∈ I (a is constant on each ∼i class)} .

Furthermore, for any i ∈ I the elements of Ai are those a ∈ A which
are constant on all ∼j classes, where j =

∨
T0

it for some finite T0 ⊆ T .

Proof. If type a ≤ i then for all t, t′ ∈ T we have

t ∼i t′ ⇐⇒ sit = sit
′ =⇒ at = at′

by Remark 2.5.2(1). On the other hand, if a is constant on ∼i classes
and t ∼i t′ then by the right invariance of ∼i we have tt′′ ∼i t′t′′ for all
t′′ ∈ T . This implies that a (tt′′) = a (t′t′′), i.e., (at) (t′′) = (at′) (t′′) for
all t′′ ∈ T , which is to say that at = at′. This shows that type a ≤ i by
Remark 2.5.2(1). �

We summarize the results of this subsection.

Theorem 3.3.4. The cofree T -algebra over B is the subalgebra of A
consisting of those elements which are constant on the classes of some
suitable relation on T .

3.4. Free T -algebras over pointed antiflows. For i ∈ I let Fi des-
ignate the free algebra over the generating set Ri. Recall that for t ∈ T ,
ti denotes the action of t on Ri, i.e., the map φi(t) : Ri → Ri. Each ti
lifts uniquely to a morphism on Fi, and the actions thus defined make
Fi a T -algebra.

Consider now a T -algebra A with element a of type at most i. The
map sit 7→ at is a pSpT morphism from (Ri, si) onto the orbit (aT, a)
of a. We show that this map lifts to a unique T -morphism f from Fi

into A. It is in this sense that Fi serves as the free T -algebra over Ri.

(Ri, si)
⊆

Fi

f

(aT, a)
⊆

A

Proposition 3.4.1. Let a be an element of a T -algebra A of type at
most i ∈ I. Then there is a unique T -morphism f : Fi → A such that
f (si) = a.

Proof. Since type a ≤ i, there is a unique T -equivariant map ρ : Ri →
aT with ρ(si) = a. In order for f to respect the actions we must have
f � Ri = ρ for each t ∈ T . The fact that Fi is the free algebra over Ri

then provides a unique extension of ρ to a morphism f : Fi → A.



24 R. N. BALL, S. GESCHKE, J. N. HAGLER

We have to show that f commutes with the actions on Fi. Let v, w ∈
Fi and suppose that we already know that for all t ∈ T , f(vt) = (f(v))t
and f(wt) = (f(w))t. Then

f((v ∧ w)t) = f(vt ∧ wt) = f(vt) ∧ f(wt)

= (f(v))t ∧ (f(w))t = (f(v) ∧ f(w))t = (f(v ∧ w))t

and

f
(
vt
)

= f(vt) = (f(v))t =
(
f(v)

)
t = (f(v))t = f(vt).

Since the elements of Fi are Boolean combinations of members of Ri

and since the restriction of f to Ri is T -equivariant, it follows that f
is T -equivariant. �

Since the free T -algebra Fi over Ri plays a prominent role in what
follows, particularly in Section 6, we allow ourselves a closer look at
its elements. The context of this discussion is a little more general
than that of Theorem 3.4.1. Suppose that F is a naked algebra with
subset R ⊆ F . We use 〈R〉Ba to designate the subalgebra generated by
R. R generates F if 〈R〉Ba = F , and R freely generates F as a naked
algebra if every set map from R into another algebra A lifts to a unique
morphism from F into A. This is equivalent to the condition that

〈S1〉Ba ∩ 〈S2〉Ba = 〈S1 ∩ S2〉Ba

for finite S1, S2 ⊆ R. (See [1, V.3] for another equivalent formulation.)
Therefore every w ∈ F has a smallest subset S ⊆ R for which w ∈
〈S〉Ba; we refer to S as the support of w, and write S = supp w. Note
that supp w is a finite set and that supp w = ∅ if and only if w is ⊥ or
>.

We can understand the concept of support more concretely. Let w
be an element of 〈S〉Ba \ {⊥,>}. Then there is some finite set S ′ ⊆ S
such that w ∈ 〈S ′〉Ba. So assume that S is finite. The laws of Boolean
algebra allow w to be expressed as

w =
∨

Θ

∧

S

sθ(s)

for some Θ ⊆ {±1}S. (Here {±1}S designates the set of all maps from
S into {±1}, and s1 and s−1 designate s and the complement s of s,
respectively.) This representation may be redundant because the laws
of Boolean algebra may make it possible to omit an element s from S,
restrict the functions of Θ to S \ {s}, and still have a representation
of w. The criterion for being unable to omit s from S is exactly that
there be a function θ ∈ Θ such that changing its value only at s results
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in another function not in Θ. The support of w is precisely the subset
of S consisting of those elements which cannot be omitted from S in
this sense. Thus

w =
∨

Λ

∧

supp w

sθ(s)

for some Λ ⊆ {±1}supp w, and this representation is a normal form, i.e.,
it is unique to w.

Proposition 3.4.3 will find use in Subsection 6.2.

Lemma 3.4.2. Suppose F is a T -algebra which is freely generated as
a naked algebra by a subset R ⊆ F . Then

supp (wt) ⊆ (supp w) t

for any w ∈ F \ {⊥,>} and any t ∈ T .

Proof. Abbreviate supp w to S. If we write w in normal form and act
on it by t, we get

wt =

(
∨

Θ

∧

S

sθ(s)

)
t =

∨

Θ

∧

S

(st)θ(s) =
∨

Λ

∧

St

sλ(s),

where in the rightmost expression s ranges over St and Λ is some
subset of {±1}St. Now this expression for wt may be redundant, but
in that case it can be reduced to the normal form for wt by removing
extraneous elements from St. That is, supp (wt) ⊆ St = (supp w) t.

�

Proposition 3.4.3. Suppose F is a T -algebra which is freely generated
as a naked algebra by a subset R ⊆ F . Then

supp (wt) = (supp w) t

for any w ∈ F \ {⊥,>} and any t ∈ stab w.

Proof. Abbreviate supp w to S. Then we have

S = supp w = supp (wt) ⊆ (supp w) t = St.

But these sets are finite, and the cardinality of St does not exceed that
of S. Therefore St = S �

For w ∈ Fi and t ∈ T , Theorem 3.4.1 allows for a very useful no-
tational device. Since an element w ∈ Fi \ {⊥,>} has the normal
form

w =
∨

Θ

∧

S

sθ(s)
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for S ≡ supp w and Θ ⊆ {±1}S, and since each s ∈ S is a translate of
the source, say s = sits, we may write

w =
∨

Θ

∧

S

(sits)
θ(s) .

Note that the latter form is no longer unique to w because of the
multiplicity of choices of ts for s.

By viewing si as an indeterminate, we can think of w as a Boolean
word in translates of this free variable. So if A is a T -algebra, a ∈ A
is of type ≤ i and f is the unique BaT morphism from Fi to A that
maps si to a as in Theorem 3.4.1, then we often write the image of w
under f as

f(w) = w (a) =
∨

Θ

∧

S

f(sits)
θ(s)
∨

Θ

∧

S

(ats)
θ(s) =

∨

Θ

∧

S

aθ(s)ts.

This notation is unambiguous precisely because a has type at most i,
i.e., meaning that for t, t′ ∈ T , at = at′ whenever sit = sit

′. Thus all
references to w (a) for words w ∈ Fi \ {±1} are implicitly references to
Theorem 3.4.1. In particular, the notation w (a) makes no sense unless
a is of type at most i.

3.5. Free products in BaT. We leave the routine verification of the
following lemma to the reader.

Lemma 3.5.1. Let {Aj : j ∈ J} be a family of T -algebras and let ej :
Aj → B be their coproduct in Ba. For t ∈ T and j ∈ J let tj : Aj → Aj

denote the actual action of t on Aj. Then for each j ∈ J , the map
ejtj : Aj → B is a Ba morphism. By the coproduct property, there is
a Ba morphism tB : B → B such that for all j ∈ J , ejtj = tBej. Let
t act on B by the Ba morphism tB. Then ej : Aj → B is also the

A1

A1

B

B

A2

A2

-

-

�

�

? ? ?

e1

e1

e2

e2

t1 tB t2

coproduct of the Aj’s in BaT.

The coproduct of algebras, respectively T -algebras, is also called
their free product. The following corollary easily follows from Theorem
3.4.1.

Corollary 3.5.2. Every T -algebra is an image under an epimorphism
of a coproduct of T -algebras of the form Fi, i ∈ I.
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3.6. Free T -algebras over sets. A T -algebra F is free over the set
X provided that there is an injective set map e : X → F such that
for every T -algebra A and every set map f : X → A there is a unique
T -morphism g : F → A such that ge = f . We say that the set map
f lifts uniquely to the T -morphism g. Any two T -algebras free over
the same set X are isomorphic over X, and so are determined up to
isomorphism solely by the cardinality of X.

The trivial free T -algebra, namely the free T -algebra over ∅, always
exists; it is the two-element algebra 2. Now BaT is closed under free
products by Lemma 3.5.1, and the free product of free T -algebras is
free. Therefore free T -algebras exist over all sets if they exist over
singletons.

The question is to determine when free T -algebras exist over all sets.
We describe this situation succinctly by saying that nontrivial free T -
algebras exist.

Recall from Section 2.4 the definition of T̄ and T̂ . T̄ is the inverse
limit of the Ti’s, where Ti ⊆ RRi

i is the image φi(T ) of T under the

action on Ri, and T̂ is the closure of T̄ in the product of the topological
monoids RRi

i .

Theorem 3.6.1. The following are equivalent for a topological monoid
T .

(1) Nontrivial free T -algebras exist.
(2) The lattice I of types of T has a greatest element.

(3) T̂ is discrete.

If T is a topological group, these conditions are equivalent to the fol-
lowing.

(4) T possesses a smallest open subgoup.

(5) T̂ is a discrete topological group.

Proof. We have already remarked on the equivalence of (2) and (3) in
Remark 2.4.1(4). To show that (1) implies (2), suppose that F is the
free algebra over a singleton set X ≡ {x}, and identify x with its image
e (x) ∈ F . Let i ≡ type x and fix j ∈ I. Let Fj be the T -algebra of
Theorem 3.4.1, and let g : F → Fj be the T -morphism which results
from lifting the set map x 7→ sj. Then by Proposition 2.5.5 we get

i = type x ≥ type g (x) = type sj = j.

This shows that i is the largest element of I.
Now suppose that I has a greatest element i. We claim that the

T -algebra Fi of Theorem 3.4.1 is the free T -algebra over the singleton
set {si}. That is because any set map f from {sj} into a T -algebra
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A takes sj to an element of type j ≤ i, and hence lifts to a unique
T -morphism g : Fj → A by Theorem 3.4.1.

Now let T be a topological group. The equivalence of (2) and (4)
follows from Proposition 2.3.5. By Theorem 2.4.5, T̄ is a topological
group. If T̂ is discrete, then T̂ = T̄ and hence T̂ is a topological group.
This shows the equivalence of (3) and (5). �

3.7. Extending mappings to morphisms. For a subset B of a T -
algebra C we let

BT ≡ {bt : t ∈ T, b ∈ B} .

We use 〈B〉Ba and 〈B〉BaT to denote the subalgebra generated in the
category of the subscript. Note that 〈B〉BaT = 〈BT 〉Ba.

Lemma 3.7.1. Suppose that A and C are T -algebras and that B is
a subset of C. Then a mapping f : B → A can be extended to a T -
morphism f̂ : 〈B〉BaT → A if and only if it satisfies the following pair
of conditions.

(1) bt = b′t′ =⇒ f (b) t = f (b′) t′ for all t, t′ ∈ T and b, b′ ∈ B.
(2) For all finite subsets B ′, B′′ ⊆ B and T ′, T ′′ ⊆ T we have
∧

T ′,B′

b′t′ ∧
∧

T ′′,B′′

b′′t′′ = ⊥ =⇒
∧

T ′,B′

f (b′) t′ ∧
∧

T ′′,B′′

f (b′′)t′′ = ⊥

Proof. The existence of f̂ certainly implies the conditions. Assuming
them, first extend f to BT by declaring f̂ (bt) = f (b) t, an extension
which is well-defined by the first condition. Then the second condition
is a well-known criterion for the extension of f̂ to all of 〈BT 〉Ba; see

[1, V.2]. Since 〈BT 〉Ba = 〈B〉BaT, and since it is easy to verify that f̂
commutes with the actions, the result follows. �

Proposition 3.7.2. Suppose that we have T -algebras C and A with
elements c and a, respectively, a subalgebra B ≤ C, and a morphism
f : B → A. Then f can be extended to a morphism f̂ : 〈B, c〉 → A

such that f̂ (c) = a if and only if the following conditions are satisfied.

(1a) The type of a is at most the type of c, i.e., ct = ct′ =⇒ at = at′

for all t, t′ ∈ T .

(1b) For all t ∈ T and b ∈ B, ct = b =⇒ at = f (b) .

(2) For all b ∈ B and all finite subsets T ′, T ′′ ⊆ T we have

b ∧
∧

T ′

ct′ ∧
∧

T ′′

c̄t′′ = ⊥ =⇒ f (b) ∧
∧

T ′

at′ ∧
∧

T ′′

at′′ = ⊥
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Proof. All these conditions are clearly necessary. To prove their suffi-
ciency apply Lemma 3.7.1 to B ∪ {c}. Conditions (1a) and (1b) above
together imply condition (1) of the lemma, while condition (2) here
implies its counterpart in the lemma. �

4. Injectives

4.1. Injectivity defined.

Definition 4.1.1. A T -algebra A is injective provided that for all
morphisms f : B → A and all monomorphisms g : B → C there is a
morphism h : C → A such that hg = f .

B

f

g
C

h

A

An injective hull of A is an essential embedding of A into an injective
object.

We first show the existence and uniqueness of injective hulls of T -
algebras in Subsection 4.2. Although this follows from simple categor-
ical principles, we outline the construction because we need to under-
stand the structure of these hulls as concretely as possible. We then
characterize injectivity in terms of systems of ideals in Subsections 4.3,
4.4, and 4.5.

4.2. The existence and uniqueness of the injective hull. We
begin by showing that injective T -algebras exist. Recall that the cofree
T -algebra of Theorem 3.3.4 over a naked algebra B is the subalgebra
(BT )T of BT consisting of the elements that are constant on the classes
of some suitable relation on T .

Lemma 4.2.1. Let p : A → B be the cofree T -algebra over the naked
complete algebra B. Then A is injective in BaT.

Proof. Given the injection e and T -morphism f , let g be any morphism
induced by the injectivity of B in Ba such that ge = pf . Then let h be

D B

AC

-

-

@
@

@@R

66

g

ph

f

e

the T -morphism induced by the cofree property of A such that ph = g.
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To show that he = f simply observe that for all t ∈ T ,

(he (c)) (t) = (he (c)) (t1) = (he (c) t) (1) = phe (ct) = ge (ct) = pf (ct)

= f (ct) (1) = (f (c) t) (1) = f (c) (t1) = f (c) (t) .

This proves the lemma. �

We continue by showing that BaT has enough injectives.

Lemma 4.2.2. Every T -algebra can be embedded in an injective object.

Proof. Let e be the insertion of C in its injective hull B in Ba. (B

C B

A

-

@
@

@@R

6

e

p
f

is just the completion of C.) Let p : A → B be the cofree T -algebra
over B, and let f be the induced T -morphism. Then A is injective by
Lemma 4.2.1, and f is injective because e is. �

For given morphisms ej : C → Ej, j = 1, 2, we say that a morphism
k : E1 → E2 is over C if ke1 = e2.

Proposition 4.2.3. Every T -algebra C has a maximal essential ex-
tension g : C → E. That is, g is essential, and every other essential
extension of C embeds in E over C.

Proof. Let f be the injection of Lemma 4.2.2, and let q be the quotient
of Lemma 3.1.8. The composition g ≡ qf is essential by construction.

D C

AE

�

�

@
@

@@R ??

e

fh

q

k

Given an essential extension e, let h be a T -morphism produced by the
injectivity of A. Then k ≡ qh is injective because ke = qhe = qf is
injective and e is essential. �

For a proof of the next result, see [1, I.20].

Proposition 4.2.4. The following are equivalent for a T -algebra E.

(1) E is injective.
(2) E is a retract of each of its extensions.
(3) E has no proper essential extensions.

We summarize the development of this subsection.
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Theorem 4.2.5. Every T -algebra has an injective hull which is unique
up to isomorphism over it.

4.3. Systems of ideals. Having proved the existence and uniqueness
of injective hulls of T -algebras in Theorem 4.2.5, we turn to the question
of characterizing injective T -algebras. This is the content of Theorem
4.3.10, which requires the notion of an i-system of ideals.

Example 4.3.1. Let A be a naked algebra and let L0, L1 ⊆ A be ideals
such that for all a ∈ L0 and b ∈ L1, a ∧ b = ⊥. Then there are an
extension B of A and b ∈ B such that L0 = {a ∈ A : a ≤ b} and
L1 =

{
a ∈ A : a ≤ b

}
. (Recall that b stands for the complement of b

in B.)
Now let F be the free Boolean algebra over a single generator x. Let

f : F → B be the unique Ba morphism that maps x to b. For w ∈ F
let L(w) ≡ {a ∈ A : a ≤ f(w)}. Clearly, L(⊥) = {⊥}, L(>) = A,
L(x) = L0 and L(x) = L1. The system of ideals {L(w) : w ∈ F}
describes the position relative to A of an element of some extension of
B.

With actions, the situation gets more complicated. The following
definition gives a generalization of the systems of ideals of Example
4.3.1 to T -algebras.

Definition 4.3.2. Let A be a T -algebra and i ∈ I. Let Fi be the free
T -algebra over (Ri, si) (see Subsection 3.4). Then an i-system of ideals
of A, or simply an i-system, is a family

S = {L (w) : w ∈ Fi}

of ideals of A with the following properties.

(1) L (⊥) = {⊥} and L (>) = A.
(2)

⋂
K L (wk) ⊆ L (w) for all finite subsets {wk : k ∈ K} and ele-

ments w of Fi such that
∧

K wk ≤ w in Fi.
(3) L (w) t ≡ {bt : b ∈ L (w)} ⊆ L (wt) for all t ∈ T and w ∈ Fi.

Example 4.3.3. Let A be a T -algebra and a ∈ A. Let i ∈ I be such
that type a ≤ i. Recall that w 7→ w(a) is the unique BaT morphism
from Fi to A that maps si to a. For w ∈ Fi let L(w) be the principal
ideal of A generated by w(a). Then {L(w) : w ∈ Fi} is an i-system of
ideals.

The following example parallels Example 4.3.1.

Example 4.3.4. Let A, a, i and {L(w) : w ∈ Fi} be as in Example
4.3.3. Suppose that B is is a T -subalgebra of A. Then

{L(w) ∩B : w ∈ Fi}
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is an i-system of ideals in B. This will follow from Proposition 4.3.6(b).
Theorem 4.3.8 tells us that every i-system of ideal arises in just this
fashion.

Example 4.3.4 suggests the following definition.

Definition 4.3.5. We say that an element c in an extension C ≥ A
realizes an i-system S = {L (w) : w ∈ Fi} if c is of type at most i and

L (w) ⊆ {a ∈ A : a ≤ w (c)}

for each w ∈ Fi. We say that c exactly realizes S if c realizes S and
the containment is an equality for each w ∈ Fi.

Proposition 4.3.6. (a) T -morphisms preserve i-systems. That is, if
f : A → B is a T -morphism and if {L (w) : w ∈ Fi} is an i-system of
ideals of A, then {L

→

f (w) : w ∈ Fi} is an i-system of ideals of B where

L
→

f (w) ≡ {b ∈ B : ∃a ∈ A (a ∈ L (w) and f (a) ≥ b)} .

(b) If {L (w)} is an i-system of ideals of B and f : A → B is a one-
to-one T -morphism, then {L

←

f (w) : w ∈ Fi} is an i-system of ideals of
A where

L
←

f (w) ≡ {a ∈ A : f (a) ∈ L (w)} = f−1(L(w)).

Proof. (a) Clearly, each L
→

f (w) is an ideal of B. Condition (1) of Defini-
tion 4.3.2 is easily verified. For condition (2) let {wk : k ∈ K} be a finite
subset of Fi and w ∈ Fi such that

∧
K wk ≤ w. Let b ∈

⋂
K L

→

f (wk). For
each k ∈ K let ak ∈ L(wk) be such that b ≤ f(ak). Then b ≤ f (

∧
K ak).

But
∧

K ak ∈
⋂

K L(wk) ⊆ L(w). Hence b ∈ L
→

f (w).

For condition (3) let w ∈ Fi and t ∈ T . If b ∈ L
→

f (w), then for
some a ∈ L(w), b ≤ f(a). Since f is a T -morphism, bt ≤ f(at). But
at ∈ L(w)t ⊆ L(wt). Hence b ∈ L

→

f (wt).
The proof of (b) is similar to the proof of (a) but even more straight-

forward. �

We characterize i-systems in Theorem 4.3.8, for which we need a
simple lemma about naked algebras. In this lemma we consider the
partitions of a given finite set B into two parts, B1 and B2. The
symbol

⊎
stands for disjoint union, so that we refer to the partition by

writing B1

⊎
B2 = B.

Lemma 4.3.7. Let b be an element and B0 a finite subset of a naked
algebra B. Then b lies in the ideal generated by the set

{∧
B2 : ∃B1

(
B1

⊎
B2 = B0 ∧ b �

∨
B1

)}
.
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Proof. If not, then by Zorn’s Lemma there is a prime ideal J containing
the displayed set and omitting b. Put

B1 ≡ {b1 ∈ B0 : b1 ∈ J} , B2 ≡ {b2 ∈ B0 : b2 /∈ J} .

Then the primeness of J implies that
∧

B2 /∈ J , hence b ≤
∨

B1 ∈ J ,
contrary to hypothesis. �

Theorem 4.3.8. A collection S = {L (w) : w ∈ Fi} of ideals of A is
an i-system if and only if there is some element c in some extension
C ≥ A which exactly realizes S.

Proof. Suppose that C ≥ A is an extension having an element c of type
at most i in C. For every w ∈ Fi let

L (w) = {b ∈ C : a ≤ w (c)} .

Then {L(w) : w ∈ Fi} is an i-system of ideals of C as in Example 4.3.3.
Let f denote the inclusion from A into C. By Proposition 4.3.6(b),

S ≡ {L
←

f (w) : w ∈ Fi}

is an i-system of ideals of A. Note that for every w ∈ Fi,

L
←

f (w) = {a ∈ A : a ≤ w(c)}.

In other words, c exactly realizes S.
Conversely assume that an i-system {L (w) : w ∈ Fi} is given. Let B

denote the coproduct of A with Fi, with insertion maps jA and ji. We
want to define a quotient C of B with quotient map g : B → C such
that gjA is one-one and g(ji(si)) exactly realizes {L

→

jA
(w) : w ∈ Fi}.

Regarding A as a subalgebra of C via gjA, L
→

jA
(w) is just L(w), i.e.,

c ≡ g(ji(si)) is an element of an extension of A that exactly realizes
{L(w) : w ∈ Fi}.

We have to define g in such a way that for all w ∈ Fi and all a ∈ L(w),
g(jA(a)) ≤ g(ji(w)). In other words, for a and w as before we want
that

g(a) ∧ g(ji(w)) = g(jA(a) ∧ ji(w)) = ⊥.

So let J be the ideal of B generated by all elements of the form jA(a)∧
ji(w) for w ∈ Fi and a ∈ L (w). Let C ≡ B/J and let g be the quotient
map. J is closed under the actions by the third defining property of
an i-system of ideals, so that both C and g lie in BaT by Proposition
3.1.2. Finally set f = gjA and c = gji (si). Observe that, since si is of
type i in Fi, c is of type at most i in B by Proposition 2.5.5. And gji

must be the function of Theorem 3.4.1 by virtue of its uniqueness, so
that gji (w) = w (c) for all w ∈ Fi.
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We now show that L (w) = {a ∈ A : f (a) ≤ w (c)} for each w ∈ Fi.
Since for a ∈ L (w) we have

⊥ = g (jA (a) ∧ ji (w)) = f (a) ∧ gji (w) = f (a) ∧ w (c) = f (a) ∧ w (c),

it follows that f (a) ≤ w (c). Conversely, if f (a) ≤ w (c) then

⊥ = f (a) ∧ w (c) = f (a) ∧ w (c) = g (jA (a) ∧ ji (w)) ,

i.e., jA (a) ∧ ji (w) ∈ J . That means that there are finite subsets
{ak : k ∈ K} ⊆ A and {wk : k ∈ K} ⊆ Fi such that ak ∈ L (wk) for all
k ∈ K, and such that

jA (a) ∧ ji (w) ≤
∨

K

(jA (ak) ∧ ji (wk))

=
∧

K1

⊎
K2=K

(
jA

(
∨

K1

ak

)
∨ ji

(
∨

K2

wk

))
.

Now for each partition K1

⊎
K2 = K it follows from properties of the

coproduct ([1, VII 1(ii)]) that either a ≤
∨

K1
ak or w ≤

∨
K2

wk. In
the latter case we get w ≥

∧
K2

wk, from which the second defining
property of i-systems implies that

∧

K2

ak ∈
⋂

K2

L (wk) ⊆ L (w) .

Therefore a ∈ L (w) by Lemma 4.3.7.
Finally, identify each element of A with its image under f . This

identification makes C an extension of A because f must be one-to-
one. The reason that f must be one-to-one is that by taking w = ⊥
we get

f (a) = ⊥ = w (c) =⇒ a ∈ L (w) = L (⊥) = {⊥}

for any a ∈ A and hence f−1(⊥) = {⊥}. �

The particular morphism f and element c constructed in the proof
of Theorem 4.3.8 are universal with respect to their properties.

Theorem 4.3.9. Suppose S = {L (w) : w ∈ Fi} is an i-system of ideals
of A for some i ∈ I. Let C ≥ A be the extension and c the element
constructed in the proof of Theorem 4.3.8. Then for any other extension
D ≥ A having an element d realizing S there is a unique morphism
h : C → D over A taking c to d.

Proof. Let l be the morphism of Proposition 3.4.1 from Fi into D taking
si to d. The coproduct property of B applied to this map, together
with the insertion of A in D, produces a unique morphism m making
the top part of the diagram commute. We claim that m factors through
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g, i.e., that there is a morphism h such that hg = m. This is because
for any b ∈ B such that g (b) = ⊥, i.e., b ∈ J , there are finite subsets
{ak : k ∈ K} ⊆ A and {wk : k ∈ K} ⊆ Fi such that ak ∈ L (wk) for all
k ∈ K and

b ≤
∨

K

(jA (ak) ∧ ji (wk)) .

But ak ∈ L (wk) implies ak ≤ wk (d) = l (wk), hence ak ∧ l (wk) = ⊥,
with the result that mjA (ak) ∧mji (wk) = ⊥. Therefore

m (b) ≤
∨

K

m (jA (ak) ∧ ji (wk)) = ⊥.

Finally, the uniqueness of h is a consequence of the uniqueness of m
and the fact that 〈f (A) ∪ {c}〉BaT = C, where f = gjA. �

We have finally assembled the tools we need to characterize injective
T -algebras.

Theorem 4.3.10. A T -algebra A is injective if and only if for every
i ∈ I and for every i-system S there is an element of A realizing S.

Proof. Suppose A is injective, i ∈ I, and S is an i-system. Let c ∈
C ≥ A be the items constructed in the proof of Theorem 4.3.8. By the
injectivity of A there is some morphism j : C → A such that j is the
identity map on A. Set a0 ≡ j (c), and observe that a0 is of type at
most i because morphisms preserve type by Proposition 2.5.5. And a0

realizes S because

a ∈ L (w) =⇒ a ≤ w (c) =⇒ a = j (a) ≤ jw (c) = w (j (c)) = w (a0) .

Now suppose that for every i ∈ I and for every i-system S there is
an element of A realizing S. To test the injectivity of A consider a
morphism f : B → A and superalgebra C ≥ B having element c ∈ C.
It is sufficient to extend f to a morphism f̂ : 〈B, c〉BaT → A, since
a continuation of this process by transfinite induction results in an
extension of f to all of C. We use Proposition 3.7.2 to achieve the
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extension by one element as follows. First let i be the type of c, and
for each w ∈ Fi let

L (w) = {a1 ∈ A : ∃b ∈ B (b ≤ w (c) and f (b) ≥ a1)} .

Then S ≡ {L (w) : w ∈ Fi} is an i-system by Proposition 4.3.6, and is
therefore realized by some a ∈ A. We claim that this setup satisfies the
hypotheses of Proposition 3.7.2. Condition (1a) is satisfied by virtue of
the fact that a is of type at most i. To establish condition (1b) suppose
that ct = b for some t ∈ T and b ∈ B, and let sit ≡ w ∈ Fi. Then

b ≤ w (c) =⇒ f (b) ∈ L (w) =⇒ f (b) ≤ w (a) = at,

and ct = b implies f
(
b
)
≤ at in similar fashion, with the result that

f (b) = at. To verify condition (2) consider b ∈ B and finite subsets
T ′, T ′′ ⊆ T , and let w =

∧
T ′ sit

′ ∧
∧

T ′′ sit
′′. Then

b ∧ w (c) = ⊥ =⇒ b ≤ w (c) =⇒ f (b) ∈ L (w)

=⇒ f (b) ≤ w (a) =⇒ f (b) ∧ w (a) = ⊥.

This completes the proof. �

4.4. Maximal systems of ideals. We need to consider the partitions
of a given finite set T0 ⊆ T into two parts, T1 and T2. As before, we use
the symbol

⊎
for disjoint union, and refer to the partition by writing

T1

⊎
T2 = T0.

Lemma 4.4.1. Suppose c is an element of type at most i in some
extension C ≥ A, and fix w ∈ Fi and a ∈ A. If there is a finite
subset T0 ⊆ T and an element ⊥ < a0 ∈ A such that for all partitions
T1

⊎
T2 = T0 we have

a0 ∧
∨

T1

at1 ≤
∨

T2

w (c) t2,

then a � w (c). Conversely, if a � w (c) then such a subset T0 and
element a0 exist, provided that C is an essential extension of A.

Proof. If a � w (c) then a ∧ w (c) = a ∧ w (c) > ⊥. If C is an essential
extension of A, then by Proposition 3.1.7 there must be a finite subset
T0 ⊆ T and element ⊥ < a0 ∈ A such that

a0 ≤
∨

T0

(a ∧ w (c)) t0 =
∧

T1

⊎
T2=T0

(
∨

T1

at1 ∨
∨

T2

w (c) t2

)
,

where the equality holds by the distributive law. This is to say that
a0 ∧

∨
T1

at1 ≤
∨

T2
w (c) t2 for all partitions T1

⊎
T2 = T0.

On the other hand suppose that T0 ⊆ T is a finite subset and ⊥ <
a0 ∈ A an element for which every partition of T0 satisfies the inequality
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displayed in the lemma. Then a reversal of the preceding argument
leads to the conclusion that a ∧ w (c) > ⊥, i.e., a � w (c). �

Observe that i-systems are ordered by containment, i.e.,

{L (w) : w ∈ Fi} ≤ {M (w) : w ∈ Fi}

if and only if L (w) ⊆ M (w) for all w ∈ Fi. Observe that in this
case, any element (in any extension) which realizes {M (w) : w ∈ Fi}
also realizes {L (w) : w ∈ Fi}. Finally, observe also that the union of a
tower of i-systems is an i-system, so that every i-system is contained
in a maximal i-system by Zorn’s Lemma. We characterize maximal
i-systems in Theorem 4.4.2.

Theorem 4.4.2. The following conditions are equivalent for an i-
system S = {L (w) : w ∈ Fi} of ideals of A.

(1) For every a ∈ A and w ∈ Fi with a /∈ L (w) there is some finite
subset T0 ⊆ T and element ⊥ < a0 ∈ A such that

a0 ∧
∨

T1

at1 ∈ L

(
∨

T2

wt2

)

for all partitions T1

⊎
T2 = T0.

(2) Every element which realizes S in an extension of A does so
exactly.

(3) Every element which realizes S in an essential extension of A
does so exactly.

(4) Every element which realizes S in the injective hull of A does
so exactly.

(5) S is maximal among i-systems of ideals of A.

Proof. Suppose (1) holds, let c be an element realizing S in some ex-
tension C ≥ A, and consider a ∈ A such that a ≤ w (c). Then by the
first part of Lemma 4.4.1 there can be no finite T0 ⊆ T and ⊥ < a0 ∈ A
such that

a0 ∧
∨

T1

at1 ≤
∨

T2

w (c) t2

for all partitions T1

⊎
T2 = T0. Hence there can be no finite T0 ⊆ T

and ⊥ < a0 ∈ A such that

a0 ∧
∨

T1

at1 ∈ L

(
∨

T2

wt2

)
,

for all partitions T1

⊎
T2 = T0. It follows from (1) that a ∈ L (w), i.e.,

L (w) = {a ∈ A : a ≤ w (c)} ,
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meaning c exactly realizes S.
The implications from (2) to (3) and (3) to (4) are obvious. Assume

(4), and to prove (1) consider w ∈ Fi and a /∈ L (w). Let C ≥ A be
the injective hull of A. Then

SC = {{c ∈ C : c ≤ a1 for some a1 ∈ L (w)} : w ∈ Fi}

is an i-system of ideals of C by Proposition 4.3.6, and thus is realized
by an element c0 ∈ C by Theorem 4.3.10. Now c0 clearly also realizes
S, and does so exactly by (4), hence a � w (c0). From Lemma 4.4.1 we
then get a finite subset T0 ⊆ T and an element ⊥ < a0 ∈ A which, in
light of the exactness of the realization of S by c0, satisfy (1).

If S were properly smaller than another i-system S ′ then by Theorem
4.3.8 we could find an extension C ≥ A with an element c realizing S ′

exactly. But then c would realize S inexactly. This proves that (5)
follows from (2). On the other hand, if C ≥ A is any extension having
an element c which realizes S then

S ≤ S ′ ≡ {L (w (c)) : w ∈ Fi} .

Hence if S is maximal it follows that S = S ′, which is to say that c
realizes S exactly. This shows that (2) follows from (5), and completes
the proof. �

Corollary 4.4.3. Every i-system is contained in an i-system satisfying
Theorem 4.4.2.

Corollary 4.4.4. A T -algebra A is injective if and only if for every
i ∈ I and for every maximal i-system S of ideals of A there is an
element of A which realizes S exactly.

It is tempting to speculate that the injective hull of a T -algebra A
could be constructed as the algebra of maximal i-systems. Unfortu-
nately, such a construction cannot be straightforward, since i-systems
are not in one-to-one correspondence with the elements of the injective
hull. Indeed, many different elements of the injective hull can give rise
to the same maximal i-system.

Example 4.4.5. Let T be a (discrete) finite group. T acts trivially on
the trivial Boolean algebra 2. The T -algebra 2T is the injective hull of
2 in BaT:

From Lemma 4.2.1 it follows that 2T is injective. Moreover, the
embedding f : 2 → 2T is essential by Proposition 3.1.7 since 2T is the
only T -ideal of 2T apart from {⊥}.

However, if i ∈ I corresponds to the largest pointed antiflow of T ,
then the atoms of 2T all generate the same i-system of ideals of 2,
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namely {L(w) : w ∈ Fi} where L(w) = {⊥} for all w ∈ Fi \ {>} and
L(>) = 2.

4.5. Checking only large types. In this subsection we point out
that, in order to verify the condition for injectivity of Theorem 4.3.10,
we need not check all i-systems, but can confine the verification to
i-systems for the larger (finer) i’s in I.

Let us fix notation to be used throughout the rest of this subsection.
Suppose we are given i ≥ j in I, and let ρi

j : Ri → Rj be the canonical

pSpT surjection of Proposition 2.3.1, i.e., ρi
j (sit) = sjt for all t ∈ T .

Let pi
j : Fi → Fj be the T -morphism induced by ρi

j, where Fi and Fj

are the free T -algebras over Ri and Rj, respectively.
It may be helpful to describe the action of pi

j more concretely. As
we mentioned in Subsection 3.4, an element w ∈ Fi may be expressed
in the form

w =
∨

Θ

∧

S

(sits)
θ(s) ,

for S ≡ supp w and Θ ⊆ {±1}S. Therefore

pi
j (w) =

∨

Θ

∧

S

(
pi

j (si) ts
)θ(s)

=
∨

Θ

∧

S

(
ρi

j (si) ts
)θ(s)

=
∨

Θ

∧

S

(sjts)
θ(s) .

Finally, consider a j-system Sj = {Lj (w) : w ∈ Fj} of ideals on a
given T -algebra A, and let Si = {Li (w) : w ∈ Fi} be defined by the
rule Li (w) ≡ Lj

(
pi

j (w)
)

for all w ∈ Fi. Then it is easy to check that
Si is an i-system of ideals of A.

Proposition 4.5.1. Let A, Si and Sj be as above. If Sj is maximal
among j-systems, then Si is maximal among i-systems.

Proof. Consider a ∈ A and w ∈ Fi such that a /∈ Li (w) = Lj

(
pi

j (w)
)
.

Then the maximality of Sj implies the existence of a finite subset T0 ⊆
T and an element ⊥ < a0 ∈ A such that

a0 ∧
∨

T1

at1 ∈ Lj

(
∨

T2

pi
j (w)t2

)

for all partitions T1

⊎
T2 = T0. But

∨
T2

pi
j (w)t2 = pi

j

(∨
T2

wt2
)

since

pi
j commutes with the Boolean operations and the actions, hence

a0 ∧
∨

T1

t1a ∈ Li

(
∨

T2

wt2

)

for all partitions T1

⊎
T2 = T0. That is, Si is maximal as well. �
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Corollary 4.5.2. If Sj is maximal among j-systems, then any element
of A which realizes Si also realizes Sj, and does both exactly.

Proof. Suppose a0 ∈ A realizes Si. To show that a0 has type at most
j, consider actions t′, t′′ ∈ T such that sjt

′ = sjt
′′. Since Si is maximal

by Proposition 4.5.1, a0 realizes it exactly by Theorem 4.4.2. Hence

{a ∈ A : a ≤ a0t
′} = Li (sit

′) = Lj

(
pi

j (sit
′)
)

= Lj

(
ρi

j (sit
′)
)

= Lj (sjt
′) = Lj (sjt

′′) = Lj

(
ρi

j (sit
′′)
)

= Lj

(
pi

j (sit
′′)
)

= Li (sit
′′) = {a ∈ A : a ≤ a0t

′′} ,

from which it follows that a0t
′ = a0t

′′. That is, a0 has type at most j.
To demonstrate that a0 realizes Sj, consider wj ∈ Fj, and write wj

in the form

wj =
∨

Θ

∧

S

(sjts)
θ(s) ,

where S = supp wj and Θ ⊆ {±1}S. Put

wi ≡
∨

Θ

∧

S

(sits)
θ(s) ∈ Fi.

We are not claiming that wi is uniquely determined by wj, as indeed
it may vary with the choice of ts for each s ∈ S. Nevertheless it is still
true that pi

j (wi) = wj, and that

wi (a0) =
∨

Θ

∧

S

(a0ts)
θ(s) = wj (a0) .

Therefore

Lj (wj) = Lj

(
pi

j (wi)
)

= Li (wi) = {a ∈ A : a ≤ wi (a0)}

= {a ∈ A : a ≤ wj (a0)} .

That is, a0 exactly realizes Sj. �

We summarize our characterizations of injective T -algebras.

Theorem 4.5.3. The following are equivalent for a T -algebra A.

(1) A is injective.
(2) For every i ∈ I, every i-system is realized in A.
(3) For every i ∈ I, every maximal i-system is realized in A.
(4) For every j ∈ I there is some i ∈ I with i ≥ j such that every

maximal i-system is realized in A.

In particular, if T admits a finest pointed antiflow Ri, i.e., if I contains
a largest element i, then a T -algebra A is injective if and only if every
maximal i-system is realized in A.
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Recall that an ideal J of a Boolean algebra A is regular if

J = {a ∈ A : ∀b ∈ A(∀c ∈ J(b ∧ c = ⊥) ⇒ a ∧ b = ⊥)}.

The regular ideals of A correspond to regular open subsets of the Stone
space of A.

Corollary 4.5.4. If T is connected then a T -algebra A is injective if
and only if A is complete.

Proof. If T is connected, then all its continuous images are connected
and hence all its pointed antiflows are singletons. It follows that T
acts trivially on every T -algebra. Hence the characterization in the
corollary is just the well known characterization of injectives in Ba.
However, let us derive the proof from Theorem 4.5.3.

Let i be the single element of I. Fi is the free Boolean algebra
generated by si. An i-system {L(w) : w ∈ Fi} of ideals of A simply
consists of L(>) = A, L(⊥) = {⊥} and two ideals J0 = L(si) and
J1 = L(si) with the property that for all a ∈ J0 and all b ∈ J1,
a ∧ b = ⊥.

Let us call a pair (J0, J1) of ideals of A maximal if it is maximal with
respect to the property

∀a ∈ J0 ∀b ∈ J1 (a ∧ b = ⊥).

It now follows from Theorem 4.5.3 that A is injective if and only if for
every maximal pair (J0, J1) of ideals both J0 and J1 are principal.

If A is complete, then clearly every maximal pair of ideals consist of
principal ideals, the generators being the suprema of the ideals.

On the other hand, if every maximal pair of ideals consists of prin-
cipal ideals, then A must be complete. This can be seen as follows:
Let D ⊆ A. By Zorn’s Lemma there is an ideal J1 that is maximal
with the property that for all a ∈ D and all b ∈ J1, a ∧ b = ⊥. Let
J0 = {a ∈ A : ∀b ∈ J1 (a ∧ b = ⊥)}. Then (J0, J1) is a maximal pair of
ideals. Hence, J0 is generated by a single element a. It is easily checked
that a =

∨
D. It follows that A is complete. �

5. When all pointed antiflows are finite

Throughout this section we assume that all pointed antiflows Ri,
i ∈ I, are finite. This means, in particular, that orbits of elements
of T -algebras are finite. The assumption of finite pointed antiflows is
equivalent to the assumption that T̂ is compact (Remarks 2.2.1(3) and
2.4.1(2)).
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5.1. When T̂ is a compact group. In the presence of our running
hypothesis that all antiflows are finite, either the surjectivity or the
injectivity of all actions on all antiflows implies that T̂ is a compact
group (Lemma 5.1.1). In this case things are particularly simple: every
T -algebra essentially extends its stationary subalgebra As (Proposition
5.1.3); every T -algebra A satisfies

As ≤ A ≤ E,

where E is the injective hull of As and the embeddings are essential
(Proposition 5.1.5); the injective objects have a particularly simple
structure (Theorem 5.1.6).

Lemma 5.1.1. The following are equivalent for a T -algebra A.

(1) For each i ∈ I and t ∈ T , the action of ti on Ri is one-to-one.
(2) For each i ∈ I and t ∈ T , ti maps Ri onto itself.
(3) For each i ∈ I, Ti is a group.
(4) T̄ is a compact group.

(5) T̂ is a compact group.

Proof. (1) and (2) are equivalent since each ti maps the finite set Ri

to itself and hence is onto if and only if it is one-one. In particular, if
either (1) or (2) holds, then each ti is a permutation of Ri.

Now fix i ∈ I and t ∈ T and assume that ti is a permutation of
Ri. Since Ri is finite, so is its permutation group. In particular, for
some n > 1, tni is the identity on Ri. Now tn−1

i is the inverse of ti and
tn−1
i ∈ Ti since Ti is closed under composition. It follows that Ti is a

group.
If (3) holds then

∏
I Ti is a compact group because each Ti is, and

so the closed submonoid

T̄ =

{
t̄ ∈
∏

I

Ti : ∀i ≥ j
(
φi

j (t̄ (i)) = t̄ (j)
)
}

is clearly a compact group as well. And this implies in turn that T̂ = T̄ .
The implication from (5) to (1) is Remark 2.2.1(3). �

Definition 5.1.2. For a T -algebra A, the stationary subalgebra of A
is

As ≡ {a ∈ A : at = a for all t ∈ T} .

We regard As to be a T -subalgebra of A acted upon trivially by T .

Proposition 5.1.3. If T̂ is a topological group then any T -algebra is
an essential extension of its stationary subalgebra.
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Proof. Consider a T -algebra A with element a > ⊥ and let a0 =
∨

aT .
Note that

∨
aT exists since aT is finite. Each action must map aT into

itself, and again because of the finiteness of aT and since the action is
one-to-one, it must map aT onto itself. Therefore each action fixes a0,
i.e., a0 ∈ As. This makes A an essential extension of As by Proposition
3.1.7. �

Here is an example to show that the Proposition 5.1.3 need not hold,
even when both monoid and algebra are finite.

Example 5.1.4. Consider the flow X = {x1, x2, x3, x4} with actions
{1, f1, f2} defined as follows.

fx x1 x2 x3 x4

1 x1 x2 x3 x4

f1 x4 x2 x2 x4

f2 x2 x2 x4 x4

Let A be the Stone space 2X of X, and let T be {1, t1, t2}, where ti is
the dual of fi, i.e., ati = f−1

i {a} for subsets a ⊆ X. Let a1 = {x1, x2}
and a2 ≡ {x2, x3}, so that

∨
a1T = a11 ∨ a1t1 ∨ a1t2 = a1 ∨ a2 ∨ a1 = {x1, x2, x3} .

However, As = {∅, X}, and so A is not an essential extension of As.

Proposition 5.1.5. If T̂ is a topological group then any T -algebra A
satisfies

As ≤ A ≤ E,

where the embedding As ≤ E is the injective hull of As and the embed-
ding A ≤ E is the injective hull of A.

Proof. Let As ≤ E be the injective hull of As (Theorem 4.2.5). By
Proposition 5.1.3, As ≤ A is essential. By Proposition 4.2.4, As ≤ E
is the maximal essential extension of Proposition 4.2.3, and so there
is an embedding of A into E over As. It is in this sense that A is
intermediate between As and E. It follows that A ≤ E is the injective
hull of A. �

Proposition 5.1.6. Suppose that T̂ is a topological group. Then for
any complete algebra B,

E ≡
{
a ∈ BT : a is constant on ∼i classes for some i ∈ I

}

is an injective T -algebra, and every injective T -algebra has this form.
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Proof. Given the complete algebra B, we see by Theorem 3.3.4 that E
is the cofree T -algebra over B. Thus E is injective by Lemma 4.2.1.
On the other hand, suppose we are given an arbitrary injective object
A. We first claim that As is a complete algebra. For if we regard both
As and its completion (without actions) B to be T -algebras with trivial
action, then the embedding As ≤ B is a T -injection. Since As is dense
in B, the extension As ≤ B is essential by Proposition 3.1.7. If follows
that B embeds into A over As. Consider B as a subalgebra of A. Since
the action on B is trivial, B ⊆ As and hence i.e., As = B, i.e., As is
complete.

Now A is the injective hull of B = As by Proposition 5.1.3, so to
finish the proof we argue that

E ≡
{
a ∈ BT : a is constant on ∼i classes for some i ∈ I

}
,

is also the injective hull of B. Since E is the cofree T -algebra over
B of Theorem 3.3.4, it is injective by Lemma 4.2.1. Furthermore, by
regarding B once again as a T -algebra with trivial action, the injection
that maps every b ∈ B to the function in E that is constantly b is
in fact a T -injection since T acts trivially on the constant functions
in E. We identify each element of B with the corresponding constant
function, so that we have B ≤ E. All that remains is to show that this
extension is essential.

Consider an arbitrary ⊥ < a ∈ E. Then a is constant on ∼i classes
for some i ∈ I, and in particular there is at least one such class [t]i on
which b ≡ a (t′) > ⊥ for all t′ ∈ [t]i. But since T/∼i is finite, so is
Ti. Let T ′ ⊆ T be finite such that for all t ∈ T there is t′ ∈ T ′ with
t′i = ti. Since Ti acts transitively on T/∼i, we have (

∨
T ′ at′) (t) ≥ b

for all t ∈ T , i.e.,
∨

T ′ at′ dominates the function that is constantly
b. It follows from Proposition 3.1.7 that E is an essential extension of
B. �

Example 5.1.7. Let Z2 = Z/2Z denote the group with two elements,
0 and 1. Z2 carries the discrete topology. Let T ≡ ZN

2 be the product
of countably many copies of Z2 equipped with the product topology.
T is a compact zero dimensional group acting continuously on itself.
The open subgroups of the form

{t ∈ T : ∀n ≤ m (t(n) = 0)}

for m ∈ N form a neighborhood base of 1T in T . Hence T̄ ∼= T . Since
T is compact, so is T̄ and we have T̂ = T̄ ∼= T .

Let A be the algebra of clopen subsets of T . Then T acts continu-
ously on A. A is a free Boolean algebra over countably many generators
and in particular, A is countable.
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Since the action of T on itself is transitive, the only clopen subsets
of T that are fixed by every t ∈ T are ∅ and T . It follows that the
stationary subalgebra As of A is 2. We compute the injective hull of A.
Since 2 is complete, the injective hull of As is the subalgebra (2T )T of
2T consisting of all elements that are constant on the classes of suitable
relation on T (Lemma 4.2.1). Since As ≤ A is an essential extension
(Proposition 5.1.3), A embeds into (2T )T over As. Hence (2T )T is the
injective hull of A in BaT.

Every open subgroup U of T is in fact clopen since the complement
of U is a union of cosets of U and every coset of U is open. Since the
antiflows of T correspond to the open subgroups of T and since T only
has countably many clopen subsets, I is countable.

For every i ∈ I there are only finitely many ∼i classes since Ri

is finite. It follows that for each i ∈ I there are only finitely many
elements of 2T that are constant on the ∼i classes. It follows that
(2T )T is countable.

So, the injective hull of A in BaT is countable. The injective hull of
A in Ba (if we forget the action on A) is the completion of A, which is
of size 2ℵ0.

It is tempting to conjecture that the injective hull of A in BaTd is
2T . However, the extension A ≤ 2T is not essential.

This can be seen as follows: The extension 2 ≤ A is essential in
BaTd since essentiality of extensions does not depend on the topology
on T . Now consider the function f : T → 2 that is > on 1T and ⊥
everywhere else. For no finite set S ⊆ T do we have

∨
S ft = >. It

follows from Proposition 3.1.11 that 2 ≤ 2T is not essential. Hence
A ≤ 2T is not essential.

6. Projectives

6.1. Projectives in general. We now turn to projectivity in BaT.
Let us recall the definition.

Definition 6.1.1. A T -algebra A is projective if and only if for each
morphism f : A → B and each epimorphism g : C → B there is a
morphism h : A → C such that gh = f .

Recall that the T -epimorphisms are precisely the surjective morphisms
by Proposition 1.2.3. Also note that we always have the trivial projec-
tive 2 ≡{⊥,>}.

We can already state the first characterization of projectivity in
BaT. Recall that a retraction is an epimorphism g : C → A with
a right inverse, i.e., there exists a morphism h : A → C such that
gh = 1A.
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Lemma 6.1.2. The following are equivalent for a T -algebra A.

(1) A is projective.
(2) Every epimorphism onto A is a retraction.
(3) Every epimorphism onto A out of a coproduct of T -algebras of

the form Fi, i ∈ I, is a retraction.

Proof. It is clear that (1) implies (2) and that (2) implies (3). Assume
(3), and in order to prove (1) consider a given epimorphism g : C → B
and a given homomorphism f : A → B. For each a ∈ A choose ca ∈ C
such that g (ca) = f (a). Let ia ≡ type a∨type ca, let (Ra, sa) be a copy
of (Ria, sia), let Fa be a copy of Fia, the free T -algebra over (Ra, sa),
and let la : Fa → A and ka : Fa → C be the unique morphisms given
by Theorem 3.4.1 such that la (sa) = a and ka (sa) = ca. Let F be the
coproduct of the family {Fa : a ∈ A}, and let l : F → A and k : F → C
be the unique maps induced by the la’s and ka’s respectively. That is,
l (sa) = a and k (sa) = ca for all a ∈ A. Since gk and fl agree on
{sa : a ∈ A}, and since this set generates F , it follows that gk = fl.
Now apply (3) to l to get a morphism m : A → F such that lm = 1A.
Set h ≡ km. Then we have

gh = gkm = flm = f,

as desired. �

6.2. When do projectives exist? We propose to do now for projec-
tive T -algebras what we did for free T -algebras in Subsection 3.6. We
need a little notation in addition to that of Subsection 3.4. For i ≥ j in
I let pi

j : Fi → Fj be the unique T -morphism given by Theorem 3.4.1

such that pi
j (si) = sj. Note that the restriction of pi

j to the generating

set Ri ⊆ Fi is just the pSpT surjection ρi
j of Definition 2.1.2. We use

1j to designate the identity morphism on Fj.

Theorem 6.2.1. For j ∈ I, the first five conditions are equivalent and
imply the sixth. The first six conditions are equivalent if the suitable
relations on T correspond to the source stabilizers. All seven conditions
are equivalent if T is a topological group.

(1) For every i ≥ j in I there is some k ≥ i and some w ∈ Fk of
type at most j such that pk

j (w) = sj.
(2) For every i ≥ j in I there is some w ∈ Fi of type at most j

such that pi
j (w) = sj.

(3) For every i ≥ j in I there is a T -morphism h : Fj → Fi such
that pi

jh = 1j.
(4) Fj is projective.
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(5) For every T -epimorphism f : A → B and every b ∈ B of type at
most j there is some a ∈ A of type at most j such that f (a) = b.

(6) For every i ≥ j in I there is a nonempty finite subset R ⊆(
ρi

j

)−1
(sj) such that Rt = R for all t ∈ stab sj.

(7) For every i ≥ j in I,
(
ρi

j

)−1
(sj) is finite.

Proof. To show that (2) follows from (1), consider i ≥ j in I and find
k ≥ i and w ∈ Fk for which pk

j (w) = sj. Then w′ ≡ pk
i (w), which is of

type at most j by Proposition 2.5.5 and which lies in Fi, satisfies (2)
because

pi
j (w′) = pi

jp
k
i (w) = pk

j (w) = sj.

If (2) holds then Theorem 3.4.1 provides a unique T -morphism h :
Fj → Fi such that h (sj) = w. Since pi

jh agrees with 1j on sj, the
two T -morphisms must be the same by the uniqueness clause of The-
orem 3.4.1. That is, (3) holds. To prove that (3) implies (4), consider
a T -morphism f and a T -epimorphism g, choose c ∈ C such that
f (sj) = g (c), and set i ≡ j ∨ type c. Let k be the T -morphism given

Fi C

Fj B

-

-
?

6

?

k

f

h pi
j

g

by Theorem 3.4.1 such that k (si) = c, and let h be the T -morphism
whose existence is asserted in (3). Now gk and fpi

j agree on si, and
because T -morphisms out of Fi are determined by their values at si,
we conclude that gk = fpi

j. Therefore

gkh (sj) = fpi
jh (sj) = f (sj) ,

and we likewise conclude that gkh = f . This shows that Fj is projec-
tive.

To show that (4) implies (5), consider a given T -epimorphism f :
A → B and element b ∈ B of type at most j, choose a0 ∈ A such that
f (a0) = b, and set i ≡ j ∨ type a0. Let k : Fj → B and g : Fi → A
be the T -morphisms given by Theorem 3.4.1 such that k (sj) = b and
g (si) = a0. Let h : Fj → Fi be a T -morphism produced by the
projectivity of Fj such that pi

jh = 1j. Now kpi
j and fg agree at si and

are therefore identical, with the consequence that

fgh (sj) = kpi
jh (sj) = k (sj) = b.

The desired element is a ≡ gh (sj). This works because type a ≤
type sj = j by Proposition 2.5.5. Finally, to deduce (1) from (5) simply
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apply (5) to the T -epimorphism pi
j and the element sj ∈ Fj. We have

proven the first five conditions equivalent.
To show that (2) implies (6) fix i ≥ j in I and use (2) to get w ∈ Fi

of type at most j such that pi
j (w) = sj. Put

R ≡ supp w ∩
(
ρi

j

)−1
(sj) .

Now stab sj ⊆ stab w because type w ≤ j, so any t ∈ stab sj actually
permutes the elements of supp w by Proposition 3.4.3. Since t maps(
ρi

j

)−1
(sj) into itself, it follows that t also permutes R, i.e., Rt = R.

Now assume that the suitable relations on T correspond to the source
stabilizers. To show that (6) implies (2), consider i ≥ j in I, let R be

the finite subset of
(
ρi

j

)−1
(sj) such that Rt = R for all t ∈ stab sj, and

put w ≡
∨

R ∈ Fi. Then for any t ∈ stab sj we have

wt =
∨

Rt =
∨

R = w,

so that type w ≤ j by Remark 2.5.2(2). This is where we use the
assumption that the suitable relations correspond to the source stabi-
lizers. Clearly pi

j (w) = sj. This completes the proof that (6) implies
(2).

Finally, assume that T is a group. Then T acts transitively on Ri.
The actions t ∈ T that take some element of (ρi

j)
−1(sj) to another

element of (ρi
j)
−1(sj) are precisely the actions in stab(sj). On the other

hand, every action in stab(sj) maps (ρi
j)
−1(sj) into itself. It follows

that stab(sj) acts transitively on (ρi
j)
−1(sj). Hence every nonempty

set R ⊆ (ρi
j)
−1(sj) such that Rt = R for every t ∈ stab(sj) actually

equals (ρi
j)
−1(sj). This shows the equivalence of (6) and (7). �

Definition 6.2.2. We say that an element j ∈ I is almost maximal if
it satisfies the first three conditions of Theorem 6.2.1.

Remark 6.2.3. Let i be a maximal element of I.

(1) Then i is a maximum element because I is a lattice. By Remark

2.4.1(4), this happens if and only if T̂ is discrete.
(2) i is almost maximal.
(3) Any element j ∈ I is almost maximal if and only if there is

some w ∈ Fi such that pi
j (w) = sj and type w ≤ j.

Proposition 6.2.4. Suppose that the suitable relations on T corre-
spond to the source stabilizers.

(1) Any element of I above an almost maximal element is itself
almost maximal.
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(2) If I contains an almost maximal element, then every element is
dominated by an almost maximal element.

Proof. Since the suitable relations correspond to the source stabilizers,
almost maximality is characterized by (6) in Theorem 6.2.1. If i ≥ j ≥
k in I and k is almost maximal then there must be some nonempty
finite subset R of (ρi

k)
−1

(sk) such that Rt = R for all t ∈ stab sk. But

then S ≡ ρi
j (R) is a nonempty finite subset of

(
ρj

k

)−1
(sk) that satisfies

St = S for all t ∈ stab sk. This shows (1).
(2) follows from (1) and the fact that I is a lattice. �

It turns out that the type of a nontrivial element of a projective T -
algebra is almost maximal, provided that the suitable relations on T
correspond to the source stabilizers.

Theorem 6.2.5. Suppose the suitable relations on T correspond to the
source stabilizers, and that A is a projective T -algebra with element
a 6= ⊥,>. Then type a is almost maximal in I.

Proof. We verify (6) in Theorem 6.2.1 for j ≡ type a. Consider i ≥ j
in I. For each b ∈ A let (Rb, sb) be a copy of (Rk, sk), where k is
i ∨ type b, and let Fb be a copy of Fk. Let C be the coproduct of the
family {Fb : b ∈ A}, and let p : C → A be the unique T -morphism
such that p (sb) = b for all b ∈ A. Since A is projective, there is a
T -morphism h : A → C such that ph = 1A. Put c ≡ h (a). Note that
type c = j by Proposition 2.5.5. Now C is freely generated as a naked
algebra by

⋃
A Rb, and c ∈ C \ {⊥,>}, so c has nonempty support

S ⊆
⋃

A Rb. Note that S = St for any t ∈ stab sj by Proposition 3.4.3.
Let b ∈ A be such that Sb ≡ S ∩ Rb 6= ∅, and let k ≡ i ∨ type b. Since
for any t ∈ T it is true that Rbt ⊆ Rb, it follows that Sbt = Sb for all
t ∈ stab sj. Finally, put

R ≡ {sit : sbt ∈ Sb} ⊆ Si.

It follows from the fact that k ≥ i that R is finite, for Sb is finite and
for all t, t′ ∈ T we have

sbt = sbt
′ ⇐⇒ skt = skt

′ =⇒ sit = sit
′.

Now consider t ∈ stab si and r ∈ R, say r = sitr for some tr ∈ T such
that sbtr ∈ Sb. Then rt = sitrt lies in Rt; because sbtrt lies in Sbt ⊆ Sb,
this shows that sitrt ∈ R and therefore Rt ⊆ R. On the other hand,
since Sbt ⊇ Sb there is some sr ∈ Sb for which srt = sbtr, say sr = sbt

′

for some t′ ∈ T . We have

sbt
′t = srt = sbtr ⇐⇒ skt

′t = sktr =⇒ sit
′t = sitr = r.
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Now sit
′ ∈ R because sbt

′ = sr ∈ Sb, and this shows that r ∈ Rt, i.e.,
that Rt ⊇ R. This completes the proof of the theorem. �

We summarize our results.

Theorem 6.2.6. Suppose that the suitable relations on T correspond
to the source stabilizers. Then nontrivial projective T -algebras exist if
and only if I contains an almost maximal element. Furthermore, the
projective objects are precisely the retracts of coproducts of T -algebras
of the form Fi for i almost maximal in I.

Proof. If T contains the almost maximal element i then Fi is a nontriv-
ial projective T -algebra by Theorem 6.2.1. And if nontrivial projective
T -algebras exist then I contains an almost maximal element by The-
orem 6.2.5. Now on general principles, any retract of a coproduct of
projectives is projective. And if A is any projective T -algebra then the
first few sentences of the proof of Theorem 6.2.5 show that A is a re-
tract of a coproduct of T -algebras of the form Fi for i almost maximal
in I. �

For the readers who are familiar with topological groups, from The-
orem 6.2.6 we derive a nice characterization of those topological groups
T for which nontrivial projective T -algebras exist. Recall that a topo-
logical group H is totally bounded if for any nonempty open subset U
of H there is a finite set F ⊆ H such that UF = H.

Theorem 6.2.7. Let T be a topological group. Nontrivial projective
T -algebras exist if and only if T has an open subgroup H such that all
open subgroups of H have finite index in H. If the identity element
of T has a neighborhood base consisting of open subgroups, this is the
same as to say that T has an open subgroup H which is totally bounded.

Proof. Just note that i ∈ I is almost maximal if and only if every open
subgroup of stab si has finite index in stab si. �

Here is an example which shows that the hypothesis that the suitable
relations on T correspond to the source stabilizers cannot be omitted
from Theorems 6.2.5 or 6.2.6, or from Proposition 6.2.4(1). This ex-
ample also violates the implication from (7) to (2) in Theorem 6.2.1.
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Example 6.2.8. Let T be the five element monoid whose multiplica-
tion table is below.

row×column 1 t1 t2 t3 t4
1 1 t1 t2 t3 t4
t1 t1 t1 t2 t3 t4
t2 t2 t1 t2 t3 t4
t3 t3 t4 t3 t2 t1
t4 t4 t4 t3 t2 t1

Here are four suitable relations on T whose types are almost maximal.
In the right column are elements w ∈ Fi which witness the almost
maximality of each type as in Remark 6.2.3(3). (Here i designates
the top element of I, the type corresponding to the identity suitable
relation. Therefore Fi is the free algebra on the generating set T .)

suitable relation witness
{{1} , {t1} , {t2} , {t3} , {t4}} 1
{{1} , {t1, t4} , {t2, t3}} 1 ∧ t1 ∧ t4
{{1, t1, t4} , {t2, t3}} t1 ∧ t4
{{t1, t4} , {1, t2, t3}} t2 ∧ t3

For example, if w = t1 ∧ t4 then

w1 = wt1 = wt4 = w, wt2 = wt3 = t2 ∧ t3,

so type w corresponds to the third suitable relation in the table. Of the
many other types, the authors believe only those in the table are almost
maximal. In particular, the element t1∧ t−1

2 of the projective T -algebra
Fi has type corresponding to the suitable relation {{1} , {t1, t2, t3, t4}},
and this type is not almost maximal.

Example 6.2.8 raises the question of whether every nontrivial projec-
tive T -algebra contains a nontrivial element of almost maximal type,
i.e., whether Theorem 6.2.5 holds without the hypothesis that the suit-
able relations correspond to the source stabilizers. The authors are
willing to conjecture that the answer to this question is positive.

We finish with an application to an almost finite case. Suppose that
T is a topological group with only finite pointed antiflows. Then the
group action can be replaced by the action of a compact group, namely
T̄ , and all elements of I are almost maximal. Hence all T -algebras Fi,
i ∈ I, are projective. In this case there is a very easy characterization
of the finite projective T -algebras.

Theorem 6.2.9. Let T be a topological group which has only finite
pointed antiflows. Then any finite T -algebra A is projective if and only
if it has an atom that is fixed by every element of the group, i.e., if and



52 R. N. BALL, S. GESCHKE, J. N. HAGLER

only if the Stone space of A has a fixed point with respect to the induced
group action.

Proof. Let i ∈ I. As before, we consider Ri as a subset of Fi. Let
ai

0 ≡
∧

Ri
r and ai

1 ≡
∧

Ri
r. Here the infima exist since Ri is finite.

Since T is a group, it acts transitively on Ri. Hence Rit = Ri for every
t ∈ T . It follows that

ai
0t =

∧

Ri

rt =
∧

Rit

r =
∧

Ri

r = ai
0

for all t ∈ T . Similarly, ai
1t = ai

1 for all t ∈ T . It is easily checked that
ai

0 and ai
1 are atoms of Fi.

Now if B is a coproduct of any finite family {Fi : i ∈ I0}, then B
has at least two atoms that are fixed by the action, namely namely∧

I0
ai

0 and
∧

I0
ai

1. This means that the Stone space Y of B, which
can be identified with the set of atoms of B and which we regard as
a Boolean flow as in Theorem 1.2.2, also has at least two fixed points.
Now any finite projective T -algebra A is a retract of such a coproduct
B; say f : B → A is a T -surjection and h : A → B a T -injection such
that fh = 1A. Let X be the Stone space of A and f ′ : X → Y and
h′ : Y → X be the flow maps dual to f and h, so that f ′ is injective
and h′ is surjective and h′f ′ = 1X . Then any fixed point of Y is taken
to a fixed point of X by h′, so we conclude that X has at least one
fixed point.

Now suppose that A is a finite T -algebra with Stone space X having
fixed point x. Let B be the coproduct of the family {Fa : a ∈ A} where
Fa is a copy of Ftype a for each a ∈ A, and let f be the epimorphism
which takes the source sa of Fa to a for each a ∈ A. B is finite and
projective. Let Y be the Stone space of B and let f ′ : X → Y be the
injective flow map dual to f . We will be done if we can show that f
has a right inverse h : A → B, or equivalently that there is a flow map
h′ : Y → X such that h′f ′ = 1X . But since Y is finite, the continuity
of h′ is automatic. Define h′ as follows: for each y ∈ f ′ (X) let h′(y) be
the preimage of y under f ′. For every y /∈ f ′ (X) let h′(y) = x. Since
f ′ is a flow map, so is h′. Clearly h′ is as required. �

Here is an example which shows that Corollary 6.2.9 is false without
the group hypothesis.
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Example 6.2.10. Let T be the monoid of Example 6.2.8, acting on
the Boolean flows X and Y as follows.

tx x0 x1 x2

1 x0 x1 x2

t1 x0 x1 x2

t2 x0 x1 x2

t3 x0 x2 x1

t4 x0 x2 x1

ty y0 y1 y2 y3

1 y0 y1 y2 y3

t1 y0 y1 y2 y1

t2 y0 y1 y2 y2

t3 y0 y2 y1 y1

t4 y0 y2 y1 y2

Both X and Y have fixed points x0 and y0, respectively. However, the
clopen algebra of X is a T -algebra which is not projective, for the flow
map f ′ : X → Y which takes xk to yk, k = 0, 1, 2, has no left inverse.

If T is a topological group with only finite pointed antiflows we can
get a sufficient condition for a (possibly infinite) T -algebra being pro-
jective which is internal, i.e., which only involves the structure of the
T -algebra. A slight weakening of this sufficient condition turns out to
be necessary. Unfortunately those conditions are very technical, and
we do not have a complete characterization yet. That is why those
conditions are not treated here.
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