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Chapter 1

Overview

This thesis is about infinite graphs. Its main result is the extention to infinite,
locally finite graphs of a well known theorem of Fleischner about the square
of a finite graph. The n-th power Gn of a graph G is the graph on V (G) in
which two vertices are adjacent if and only if they have distance at most n
in G. Fleischner’s theorem states that

Theorem 1.1 (Fleischner [17, 18]). If G is a finite 2-connected graph, then
G2 is Hamiltonian.

Settling a conjecture of Diestel [11, 12] we will, in Chapter 7, fully extend
this fact to locally finite graphs:

Theorem 1.2 ([21]). If G is a locally finite 2-connected graph, then G2 is
Hamiltonian.

An extention of Theorem 1.1 to infinite graphs had already been proved
by Thomassen [29], for the special case of those locally finite graphs in which
the removal of any finite set of vertices leaves precisely one infinite component
behind. Fleischner’s original proof of Theorem 1.1 was long and complicated.
Using Thomassen’s method, Ř́ıha (see [32] or [12]) produced a shorter proof,
which was still quite long. Interestingly, the study of infinite graphs led once
more to a shorter proof of the same theorem: in Chapter 7 we will see a new
proof of Theorem 1.1 shorter than that of Ř́ıha, which resulted from an idea
used in the proof of Theorem 1.2.

We stated Theorem 1.2 without mentioning what it means for an infinite
graph to be Hamiltonian. In fact, this is hard to define; it is easy to visualise
an infinite path: an infinite sequence of vertices such that each of them is
connected to the next by an edge. But infinite cycles — let alone infinite
Hamilton cycles — cannot be defined that way, because an infinite sequence
cannot come back to its starting point. There is however an elegant and
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successful definition of infinite cycles. It is a concept called circle recently
invented by Diestel and Kühn (see [11] or [12]), and it has the properties
one would expect from an infinite cycle: every vertex in it has precisely two
neighbours, and it is “round” in the sense that it comes back to its starting
point. A circle is a homeomorphic image of S1, the unit circle in R2, in a
topological space |G| that consists of a locally finite graph G seen as a 1-
complex and some extra points called the ends of G, which can be thought
of as points at infinity (see Chapter 2). A Hamilton circle is, then, a circle
containing all vertices of a graph, and a locally finite graph is Hamiltonian
if it has a Hamilton circle.

Similarly to Theorem 1.2, we also extend to locally finite graphs the fact
that the third power of a connected finite graph has a Hamilton cycle:

Theorem 1.3 ([21]). If G is a connected locally finite graph, then G3 has a
Hamilton circle.

Another attempt to use the concept of Hamilton circle to generalise a
finite theorem has been made by Bruhn and Yu [8], who partly generalised
Tutte’s Theorem [30] that a finite 4-connected planar graph has a Hamilton
cycle.

The notion of circle has been coupled by another new notion, that of the
(topological) cycle space of an infinite graph, to produce a very strong tool
in infinite graph theory. The cycle space of a finite graph G is a vector space
over Z2, whose elements are those subsets of E(G) that can be obtained as
sums, with symmetric difference as addition, of edge sets of cycles of G. In
order to make this concept suitable for infinite graphs, it has to be extended
in two ways: on the one hand, we have to allow as elements edge sets of
circles in addition to edge sets of finite cycles, and on the other, we have to
allow certain sums (with symmetric difference as addition) of infinitely many
summands. The infinite sums we allow are the ones for which the family
of summands is thin, that is, no edge lies in infinitely many of its elements.
These are precisely the families of summands for which we can decide for
each edge if it lies in an odd or even number of summands. The sum of a
thin family of edge sets is, then, the set of those edges that lie in an odd
number of elements of the family (see Chapter 2 for precise definitions and
[11] for more).

There has been a number of results recently by Bruhn Diestel Kühn and
Stein that exploit the concepts of circle and topological cycle space in order to
extend well known results about finite graphs to infinite ones, as Theorem 1.2
does. Among these results are: Euler’s theorem that a graph is Eulerian if
and only if every vertex has even degree [7, 14], MacLane’s planarity criterion
[6], Tutte’s theorem that the peripheral cycles of a 3-connected finite graph
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generate its cycle space and Tutte’s planarity criterion [2], Whitney’s theorem
that a finite graph has a dual if and only if it is planar [3], Gallai’s theorem
that every finite graph has a vertex partition into two parts each inducing
an element of its cycle space [4], the Tutte/Nash-Williams packing theorem
[11], and several basic facts about the cycle space of a finite graph [11].

In Chapter 6 we will give a result of this kind. A finite cycle C in a graph
G is called geodesic if, for any two vertices x, y ∈ C, the length of at least
one of the two x-y paths on C equals the distance of x and y in G. It is easy
to prove that (see Chapter 6):

Theorem 1.4 ([23]). The cycle space of a finite graph is generated by the
circuits of its geodesic cycles.

In Chapter 6 we show that seen in the right setting, Theorem 1.4 gener-
alises to locally finite graphs.

The theory of circles and the related cycle space does not only help to
generalise well known facts about finite graphs, but also raises questions that
reach beyond finite graph theory and are interesting in their own right. In
Chapter 5 we will see such a case: stimulated by problems concerning the
cycle space of an infinite graph, where as already mentioned sums of infinitely
many edge sets are allowed, we will study the ramifications of allowing sums
of infinite, thin families of summands in vector spaces and modules in general.
The questions we will pose are whether every generating set in such a setting
contains a basis, i.e. a minimal subset generating the same space as the
original set, and whether the space generated by some set is closed under
taking infinite sums. The answers we will give are applicable in infinite
graph theory but also interesting from the algebraic point of view.

A further problem that is interesting for infinite graphs but not for fi-
nite ones was posed by Diestel and Kühn, who conjectured [16, 11] that if
G is a locally finite graph then every connected subspace of |G| is path-
connected. As discussed in Chapter 4, this problem is important for many
applications, because reducing path-connectedness to connectedness can fa-
cilitate the proof that a certain subspace of |G| is a circle, as circles are by
definition path-connected. In Chapter 4 we settle this conjecture negatively,
by constructing a counterexample:

Theorem 1.5 ([20]). There exists a locally finite graph G such that |G| has
a connected subspace which is not path-connected.

This thesis is structured as follows. Chapter 2 contains definitions and
some basic facts used more or less in the whole thesis. In Chapter 3 we
prove Theorem 1.3, and the reader is encouraged to read this proof before
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going on to the rest of the thesis, especially Chapter 7, as it exemplifies the
most important tools used later. An exception is Chapter 5, where we study
the consequences of allowing infinite sums in abstract modules, which can
be read independently. Chapter 4 discusses and proves Theorem 1.5, and
Chapter 6 Theorem 1.4. Finally, in Chapter 7 we prove Theorem 1.2.
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Chapter 2

Definitions and basic facts

2.1 Definitions

We are using the terminology of [12] for graph theoretical concepts, that of
[1] for topological concepts and that of [9] for logical ones.

Let G = (V, E) be a locally finite graph — i.e. every vertex has a finite
degree — fixed throughout this section. A 1-way infinite path is called a ray,
a 2-way infinite path is a double ray. Two rays R, L in G are equivalent if
no finite set of vertices separates them; we denote this fact by R ≈G L, or
simply by R ≈ L if G is fixed. The corresponding equivalence classes of rays
are the ends of G. We denote the set of these ends by Ω = Ω(G).

Let G bear the topology of a 1-complex1. To extend this topology to
Ω, let us define for each end ω ∈ Ω a basis of open neighbourhoods. Given
any finite set S ⊂ V , let C = C(S, ω) denote the component of G − S
that contains some (and hence a subray of every) ray in ω, and let Ω(S, ω)
denote the set of all ends of G with a ray in C(S, ω). As our basis of open
neighbourhoods of ω we now take all sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ E ′(S, ω) (2.1)

where S ranges over the finite subsets of V and E ′(S, ω) is any union of
half-edges (z, y], one for every S–C edge e = xy of G, with z an inner point
of e. For any given such ω and S, pick one of these sets and denote it by
O(S, ω). Let |G| denote the topological space of G ∪ Ω endowed with the
topology generated by the open sets of the form (2.1) together with those of
the 1-complex G.

1Every edge is homeomorphic to the real interval [0, 1], the basic open sets around an
inner point being just the open intervals on the edge. The basic open neighbourhoods of
a vertex x are the unions of half-open intervals [x, z), one from every edge [x, y] at x.
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It can be proved (see [13]) that in fact |G| is the Freudenthal compactifi-
cation [19] of the 1-complex G.

An inner point of an edge of the 1-complex G will be called an edge point.
For any vertex v ∈ V let N i(v) denote the set of vertices of G whose

distance from v is at most i (including v), and let G[v]i be the subgraph of
G induced by N i(v).

A continuous map σ from the real unit interval [0, 1] to a topological
space X is a (topological) path in X; the images under σ of 0 and 1 are its
endpoints. A homeomorphic image (in the subspace topology) of [0, 1] in a
topological space X will be called an arc in X. Any set {x} with x ∈ |G| is
also called an arc in |G|.

We now define one of the central concepts of this thesis: a (topological
cycle or) circle in |G| is a homeomorphic image of S1, the unit circle in R2,
in |G|. A Hamilton circle of G is a circle that contains every vertex of G
(and hence, also every end, as it is closed).

A subset D of E is a circuit if there is a circle C in |G| such that D =
{e ∈ E|e ⊆ C}. Call a family F = (Di)i∈I of subsets of E thin, if no edge
lies in Di for infinitely many indices i. Let the sum

∑
F of this family be

the set of all edges that lie in Di for an odd number of indices i.
We can now define a further central concept of this thesis: let the (topo-

logical) cycle space C(G) of G be the set of all sums of (thin families of)
circuits.

A normal spanning tree of G is a spanning tree T of G with a root r such
that any two adjacent vertices in G are comparable in the tree-order of T .

2.2 Basic facts

The following two lemmas are perhaps the most fundamental facts about the
cycle space of an infinite graph. Both can be found in [12, Theorem 8.5.8]. Let
G be an arbitrary connected locally finite multigraph fixed throughout this
section (these results were proved for simple graphs, but their generalisation
to multigraphs is trivial).

Lemma 2.1. Every element of C(G) is a disjoint union of circuits.

Lemma 2.2. Let F ⊆ E(G). Then F ∈ C(G) if and only if F meets every
finite cut in an even number of edges.

As already mentioned, |G| is a compactification of the 1-complex G:

Lemma 2.3 ([12, Proposition 8.5.1]). If G is locally finite and connected,
then |G| is a compact Hausdorff space.
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We will say that a topological path traverses an edge xy if it maps an
interval of [0, 1] onto xy.

Lemma 2.4 ([20]). Any topological path that connects some point p of a
basic open neighbourhood U of an end to a point q outside U must traverse
some edge xy with x ∈ U, y �∈ U , unless p or q lies in such an edge xy.

Proof. Let R be the image of such a path, and suppose it avoids all edges
between U and V (G)\U (It is easy to see that, without loss of generality, R
either traverses any given edge xy or does not meet (x, y) at all, unless p or
q lie in xy). Then both U ∩ R and (|G|\U) ∩ R are open in the subspace
topology of R, which shows that R is disconnected. But this cannot be true
since R is a continuous image of [0, 1].

The following basic topological lemma can be found in [25, p. 208].

Lemma 2.5. The image of a topological path with endpoints x, y in a Haus-
dorff space X contains an arc in X between x and y.

The union of a ray R with infinitely many disjoint finite paths having
precisely their first vertex on R is a comb; the last vertices of those paths are
the teeth of this comb, and R is its spine. The following very basic lemma
can be found in [12, 8.2.2].

Lemma 2.6. If U is an infinite set of vertices in G, then G contains a comb
with all teeth in U .

The following lemma is a standard tool in infinite graph theory.

Lemma 2.7 (König’s Infinity Lemma [27]). Let V0, V1, . . . be an infinite
sequence of disjoint non-empty finite sets, and let G be a graph on their
union. Assume that every vertex v in a set Vn with n ≥ 1 has a neighbour in
Vn−1. Then G contains a ray v0v1 · · · with vn ∈ Vn for all n.

König’s Infinity Lemma is closely related with the compactness theorem
for propositional logic, which we will also use:

Theorem 2.1 (Compactness Theorem [9]). Let K be an infinite set of propo-
sitional formulas, every finite subset of which is satisfiable. Then K is sat-
isfiable.
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2.3 Homeomorphisms between the end-space

of a graph and a subgraph

The results of this section will be used in Chapter 3 and Chapter 7.
If H is a spanning subgraph of some graph G, then there is usually no need

to distinguish between vertices of H and vertices of G. For ends however,
the matters are more complicated. In what follows, we develop some tools
that will in some cases help us work with the ends of H as if they were the
ends of G.

For any two multigraphs H ⊆ G, define the mapping πHG by

πHG : Ω(H) → Ω(G)

ω �→ ω′ ⊇ ω

Lemma 2.8. Let H, G be locally finite connected multigraphs such that H ⊆
G, V (H) = V (G), and for any two rays R, S in H, if R ≈G S then R ≈H S.
Then πHG is a homeomorphism between Ω(H) and Ω(G).

Proof. Clearly, πHG is injective. Let us show that it is surjective. For any
ω ∈ Ω(G), pick a ray R ∈ ω. Since H is connected, we can apply Lemma 2.6
to obtain a comb in H with teeth in V (R). The spine of this comb is a ray
in H , that is equivalent to R in G . Thus its end is mapped to ω by πHG.

Since H ⊆ G, it follows easily that πHG is continuous. Moreover, Ω(H)
is compact, because it is closed in |H| and |H| is compact by Lemma 2.3.
It is an elementary topological fact ([1, Theorem 3.7]) that a continuous
bijection from a compact space to a Hausdorff space is a homeomorphism,
which implies that πHG is indeed a homeomorphism between Ω(H) and Ω(G).

Lemma 2.9. Let H, G be locally finite connected multigraphs such that H ⊆
G, V (H) = V (G), and for any two rays R, S in H, if R ≈G S then R ≈H S.
Let (vi)i∈N be a sequence of vertices of V (G). Then vi converges to ω ∈ Ω(H)
in |H| if and only if vi converges to πHG(ω) in |G|.

Proof. Define a mapping π̂HG : V (H) ∪ Ω(H) → V (G) ∪ Ω(G) that maps
every end ω ∈ Ω(H) to πHG(ω), and every vertex in V (H) to itself. Easily
by Lemma 2.8, π̂HG is bijective and continuous. Moreover, V (H) ∪ Ω(H) is
closed, thus compact, so like in the proof of Lemma 2.8, π̂HG is a homeomor-
phism between V (H) ∪ Ω(H) and V (G) ∪ Ω(G), from which the assertion
easily follows.

For any two connected multigraphs G, H such that V (G) = V (H), we
will write |H| � |G| if there is a homeomorphism π : Ω(H) → Ω(G), such

8



that for any sequence (vi)i∈N of vertices of V (G), vi converges to ω ∈ Ω(H)
in |H| if and only if vi converges to π(ω) in |G|.

If H ⊆ G, and e = uv ∈ E(G) − E(H), then a detour for e (in H) is a
path in H with endvertices u, v.

Lemma 2.10. Let H ⊆ G be locally finite multigraphs such that V (H) =
V (G) and G is connected. Suppose that for each edge e ∈ E(G) − E(H), a
detour dt(e) for e has been specified. If the set {dt(e)|e ∈ E(G) − E(H)} is
thin, i.e. no edge appears in infinitely many of its elements, then |H| � |G|.

Proof. Clearly, H is connected. Pick any two rays R, S in H , such that
R ≈G S. By Lemmas 2.8 and 2.9, it suffices to show that R ≈H S.

Since R ≈G S, there is an infinite set P of disjoint R-S–paths in G. For
each P ∈ P, replace all edges e of P not in E(H) with dt(e), to obtain a
connected subgraph P ′ of H containing the endvertices of P . Let dt(P ) be
an R-S–path in P ′. The set of all these paths {dt(P )|P ∈ P} is clearly thin,
proving that R ≈H S.

9
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Chapter 3

Warming-up: The cube of a
locally finite graph is
hamiltonian

Let us start the main part of this thesis with an easy but non-trivial result
whose proof makes use of the most fundamental results and methods in the
study of |G| and C(G), and is thus appropriate for preparing the reader for
the more difficult results of Chapter 4 and especially of Chapter 7:

Theorem 3.1 ([21]). If G is a connected locally finite graph, then G3 has a
Hamilton circle.

For finite graphs this is well known. Extentions to infinite graphs had
already been made by Sekanina [28], who showed that the third power of a
connected, locally finite, 1-ended graph has a spanning ray, and by Heinrich
[26], who specified a class of non-locally-finite graphs, whose third power has
a spanning ray. With Theorem 3.1, which we will now prove, we generalise
to locally finite graphs with any number of ends.

Proof of Theorem 3.1. We will say that an edge e = uv of some graph G
crosses a subgraph H of G, if u ∈ V (H) and v /∈ V (H). An x–branch of a
tree T with root v, for some vertex x ∈ V (T ), is a component of T − x that
does not contain v; a subgraph of T is a branch, if it is an x–branch for some
x ∈ V (T ).

Let T be a normal spanning tree of G, with root v (every countable
connected graph has a normal spanning tree, see [12, Theorem 8.2.4]), and
let Ti = T [v]i.

We will prove the assertion using Theorem 2.1. To this end, define for
each edge e ∈ E(T 3) a logical variable v(e), the truth-values of which encode
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the presence or not of e, and let V be the set of these variables. For every
vertex x ∈ V (G), write a propositional formula with variables in V, express-
ing the fact that exactly two x-edges are present, and let P1 be the set of
these formulas. For every branch B of T , write a propositional formula with
variables in V expressing the fact that at most two edges that cross B are
present, and let P2 be the set of these formulas. For every finite cut F of T 3,
write a propositional formula with variables in V, expressing the fact that
an even, positive number of edges in F are present, and let P3 be the set of
these formulas. Let P = P1 ∪ P2 ∪ P3.

For every finite P ′ ⊆ P, there is an assignment of truth-values to the
elements of V, satisfying all elements of P ′: if i is large enough, then by the
following lemma, T 3

i has a Hamilton cycle, which encodes such an assignment:

Lemma 3.1. If T is a finite tree with root v and |T | ≥ 3, then T 3 has a
Hamilton cycle H, that contains a v-edge e(H) ∈ E(T ), and for every branch
B of T , H contains precisely two edges that cross B.

Proof (sketch). We will use induction on the height h of T . The assertion
is clearly true for h = 1. If h > 1, then apply the induction hypothesis on
each non-trivial v–branch, delete e(Hv) for each resulting Hamilton cycle Hv,
and use some edges of T 3 as shown in Figure 3.1, to construct the desired
Hamilton cycle H of T 3. It is easy to see that no branch of T is crossed by
more than two edges of H , if this is true for the Hamilton cycles Hv of the
v–branches.

v

Figure 3.1: Using the induction hypothesis to pick a Hamilton cycle of T . The
wavy curves represent Hamilton cycles of the v-branches supplied by the induction
hypothesis, and for each such Hamilton cycle H, e(H) is represented by a dashed
line. The thick cycle represents H.

So by Theorem 2.1, there is an assignment of truth-values to the ele-
ments of V, satisfying all elements of P. Let F be the set of edges that are
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present according to this assignment. We will prove that F is the circuit of
a Hamilton circle of T 3.

By Lemma 2.2, F ∈ C(T ), thus by Lemma 2.1, F is a disjoint union of
circuits. Let C ⊆ F be a circuit, and suppose, for contradiction, that there
is a vertex u ∈ T not incident with C. Choose an i ∈ N so that Ti meets
both u and C. If V (C) ⊆ V (Ti), then V (C) defines a finite cut, which is not
met by F , because otherwise a formula in P1 is contradicted; this, however,
contradicts a formula in P3. If V (C) �⊆ V (Ti), let B be the (non-empty) set
of branches B in T −Ti such that B∩C �= ∅, and let X = V (C)∪

⋃
B∈B V (B).

Since u /∈ X, E(X, X ′ := V (T ) − X) is a non-empty cut D, which is clearly
finite. Now for every B ∈ B, there is a formula in P2 asserting that there
are at most two edges crossing B, and since (by Lemma 2.4 and Lemma 2.2)
C already contains two such edges, F contains no X ′-B–edge. Moreover,
F contains no X ′-C–edge, because of the formulas in P1, thus D ∩ F = ∅,
contradicting a formula in P3.

Thus F is the circuit of a Hamilton circle H of T 3. Applying Lemma 2.10
on T, T 3, using a path of length at most 3 as a detour for each edge in
E(T 3) − E(T ), we obtain |T 3| � |T |, and similarly |G3| � |G|. Easily by
Lemma 2.9, |T | � |G|, thus H is also a Hamilton circle of G3.

13
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Chapter 4

Connectedness vs.
path-connectedness in |G|

4.1 Introduction

In this chapter we give an answer to the following question, where G is a
locally finite graph fixed throughout this section:

Problem 4.1 ([11]). Is every connected subspace of |G| path-connected?

Apart from being interesting as a basic topological question in its own
right, this problem is also important from the graph-theoretical point of view.
Indeed, in order to prove that a certain subspace of |G| is a circle or a topo-
logical spanning tree, one has to show that it is path-connected, but it is
often much easier to show that it is (topologically) connected. See for ex-
ample Theorem 8.5.8 in [12], which summarizes the basic properties of the
cycle space of a locally finite graph. The reduction of path-connectedness
to connectedness simplifies its proof considerably in comparison to the orig-
inal proof in [15, Theorem 5.2]. Lemma 8.5.13 in [12] is an example of how
reducing path-connectedness to connectedness can facilitate proving the ex-
istence of a topological spanning tree, which can otherwise be a tedious task
as witnessed by the proof of Theorem 5.2 in [16]. Further examples include
Exercises 65 and 70 of [12], which describe some fundamental properties of
circles and topological spanning trees, and Lemma 6.6 in Chapter 6: their
proofs become easy when the path-connectedness required is replaced with
connectedness, while without this tool they would be arduous and long.

Diestel and Kühn [16] have shown that:

Theorem 4.1. Every closed connected subspace of |G| is path-connected.

15



In Section 4.4 we give an alternative proof to Theorem 4.1. It was con-
jectured [16, 11] that the answer to Problem 4.1 should be positive also in
general. However, we shall construct a counterexample (Section 4.2):

Theorem 4.2 ([20]). There exists a locally finite graph G such that |G| has
a connected subspace which is not path-connected.

The counterexample has a complicated structure, but as we shall see
in Sections 4.3 and 4.4 every counterexample to Problem 4.1 has to be that
complicated. In particular, some restrictions on the structure of such a coun-
terexample are posed by the following result (proved in Section 4.3):

Theorem 4.3 ([20]). Given any locally finite connected graph G, a connected
subspace X of |G| is path-connected unless it satisfies the following assertions:

• X has uncountably many path-components each of which consists of
one end only;

• X has infinitely many path-components that contain a vertex; and

• every path-component of X contains an end.

The counterexample can well be read by itself, but it may look somewhat
surprising. However, the proofs of Theorems 4.3 and 4.1 will make it less
surprising with hindsight: they will show why it had to be the way it is.

4.2 Connectedness does not imply path-con-

nectedness in |G|

In this section we prove Theorem 4.2. Let G = (V, E) be a graph. A subgraph
consisting of a path xyz of order 3 and three disjoint rays starting at x, y, z
respectively will be called a trident. The path xyz is the spine of the trident,
and the rays are its spikes. The ends of G that contain the rays of the trident
will be called, with slight abuse of terminology, the ends of the trident.

We will now recursively construct an infinite locally finite graph G and
a subgraph X∗, which will be a collection of disjoint double rays of G, and
will give rise to a connected but not path-connected subspace of |G|. At the
same time we will define a sequence of trees {Ti}i<ω of auxiliary use. All
vertices of any Ti, apart from their common root r, will be tridents in G.

Start with two tridents t0, t1 with a common spine, but otherwise disjoint
(Figure 4.2). Put the three disjoint double rays formed by their spikes in X∗.
Let T0 consist of its root r and t0, t1 each joined to r.
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Figure 4.1: Three new tridents, with spikes μ, α, ν, and κ, β, λ, and o, γ, ξ

Now perform ω steps of the following type. At step i, consider separately
every trident v in G that is a leaf of Ti. Denote the spikes of v as α, β, γ
and add to G three disjoint double rays and 6 further edges as in Figure 4.1
(these 6 edges are shown in thin continuous lines) to obtain the three new
tridents with spikes μ, α, ν, and κ, β, λ, and o, γ, ξ. Add these tridents to Ti

as neighbours of v. Let Ti+1 be the tree resulting from such addition of three
new tridents at every leaf of Ti; then Ti+1 has no leaves in common with Ti.
For every leaf of Ti, add to X∗ the three double rays μeμξξ, νeνκκ and λeλoo
shown in dashed lines in Figure 4.1. (Note that the spikes α, β, γ of the old
trident each contain a spike of one of the new tridents. Thus each ray will
eventually participate in an infinite number of tridents.) Figure 4.2 shows
the graph after the first and part of the second step.

Let G be the graph obtained after ω steps, let Ω denote its set of ends,
and put T =

⋃
n∈N

Tn. The vertices of T other than r will be called the
T -tridents. We will call the countably many ends of G that contain some ray
of a T -trident the explicit ends of G. Apart from them, G has continuum
many other ends, which we will call implicit. They consist of rays that each
meets infinitely many double rays of X∗.

We will construct a connected set X ⊂ |G| that is not path-connected.
The path-components of X containing vertices, demanded by Theorem 4.3,
will be the closures of the double rays of X∗. In order to supply the singleton
ends, we will now divide the implicit ends between X and its complement in
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Figure 4.2: The first steps of the construction of G. The thick lines depict t0 and
t1.

|G|, in such a way that

neither X nor Ω\X contains a closed set of continuum many ends. (∗)

Since Ω has a countable basis (as a topological subspace of |G|), it has at
most continuum many closed subsets. So we may index those closed subsets
of Ω that contain continuum many ends as Aα, α < γ where γ is at most the
initial ordinal of the continuum.

Then perform γ steps of the following type. At step α, use the fact that
|Aα| ≥ |γ| > |α|, and that only countably many ends in Aα are explicit, to
pick two implicit ends from Aα that were not picked at any of the α earlier
steps; earmark one of these ends for inclusion in X.

Define X as the union of all double rays in X∗, all explicit ends, and
those implicit ends that have been earmarked. X clearly satisfies (∗). We
will show that X is a connected but not path-connected subspace of |G|, by
proving the following implications:

• If X is not connected, then Ω\X contains a closed set of continuum
many ends.
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• If X is path-connected, then X contains a closed set of continuum many
ends.

In both cases, the validity of condition (∗) is contradicted.
Let us prove the first implication. Suppose X is not connected; then X is

contained in the union of two open sets Or, Og of |G| which both meet X but
whose intersection does not. Colour all points in Or∩X red and all points in
Og∩X green. Note that every path-component of X, and in particular every
double ray in X∗, is monochromatic, because it is a connected subspace of
X.

If t is any T -trident with spine xyz and α one of its ends, then U(t) :=
O({x, y, z}, α) is a basic open set that does not depend on the choice of α;
note that, by virtue of the ‘6 additional edges’ of Figure 4.1, all three spikes of
t have a subray in the same component of G−{x, y, z}. Then U := {U(t)|t is
a T -trident} is a basis of the open neighbourhoods of the ends of G, because
for every end and every finite S ⊂ V (G) there is a U(t) that contains the
end and misses S.

Let us show that at least one of the T -tridents must contain vertices of
both colours. If not, then all the vertices of t0 and t1 have the same colour,
since double rays in X∗ must be monochromatic. Moreover, every T -trident
meets all its children in T , so all vertices of all T -tridents have the same
colour, which means that X∗ ∩ V is monochromatic. As U is a basis of the
open neighbourhoods of the ends, every open neighbourhood of an end meets
X∗ ∩ V , so all ends in X (as well as, clearly, all edge points in X) also bear
the colour of X∗ ∩ V , contradicting our assumption that both Or, Og meet
X.

Next, we show that if a T -trident t is two-coloured, then there are two-
coloured T -tridents r, s such that U(r), U(s) are disjoint proper subsets of
U(t) (In other words r and s are both descendants of t, but not of each
other). Let the tridents x, y, z be the children of t in T . We may assume
that the spike of t that meets y is green, while its other two spikes are red
(Figure 4.3).

Now consider the three thin double rays in Figure 4.3. If any of these is
green, then at least two of the tridents x, y, z will be two-coloured. So let
us assume that all those three double rays are red. But now y is coloured
like t (one spike green, the other two red), and we may repeat the argument
with y in the place of t. We continue recursively to find a descending ray
y0y1y2 . . . in T (with y0 = t and y1 = y) of two-coloured tridents. But the
sets U(yi) form a neighbourhood basis of the end ω of the green spike of t.
This contradicts the fact that ω ∈ Og and Og is open.

We have thus shown that T contains a subdivision B of the infinite binary
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Figure 4.3: U(t) and its subneighbourhoods.

tree all whose branch vertices are 2-coloured tridents. Let σ = x1x2 . . . be
any descending sequence of branch vertices of B. Then

⋂
i∈N

U(xi) contains a
unique end, ω(σ). As the U(xi) form a neighbourhood basis of ω(σ) and are
all 2-coloured, so σ ∈ Ω\(Or ∪ Og). Since B contains continuum many such
sequences σ, and their corresponding ends ω(σ) are clearly distinct, the set Ω′

of all these ends ω(σ) is a subset of Ω\(Or ∪Og) containing continuum many
ends. As Or ∪ Og is open, the closure of Ω′ still lies in Ω\(Or ∪ Og) ⊆ Ω\X.
This contradicts (∗), and completes our proof that X is connected.

It remains to prove that X is not path-connected. Suppose it is. Then
any two distinct implicit ends x, y ∈ X are connected by a path in X, and
by Lemma 2.5 there is also an x–y arc A in X. We show that A contains
continuum many ends, which will contradict (∗).

It is easy to confirm (by Lemma 2.4) that A must contain a vertex of
X∗. Clearly, the double ray R ∈ X∗ containing this vertex is a subarc of A.
Let A′ and A′′ denote the path-components of A\R, which are subarcs of A
preceding and following R. As before, A′ and A′′ each contain a double ray
from X∗, R′ and R′′ say. These double rays cannot share an end with R,
because by construction no end contains more than one ray of X∗, hence R′

and R′′ split A′ and A′′ in two smaller subarcs.

Repeating recursively on each subarc of the previous step, we see that A
contains a set R of infinitely many double rays, arranged like the segments of
the unit interval removed to form the Cantor set. Imitating the corresponding
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proof, we see that A contains a set C of continuum many points that are limits
of the ends of the double rays in R. But only ends can be limits of ends, so
C is a set of ends of X.

The arc A is closed because it is compact (as image of the compact space
[0, 1]) and |G| is a Hausdorff space (see [14] for a proof of this fact). The set of
ends that lie on A is also closed, because its complement in |G| consists of the
complement of A in |G| plus a set of vertex and edge points, and each of the
later has an open neighbourhood that avoids all ends. Since this set contains
C, it follows that A contains a closed subset of Ω∩X with continuum many
elements contradicting (∗).

This completes the proof that X is not path-connected and hence the
proof of Theorem 4.2.

4.3 Connectedness implies path-connectedness

almost always

In this section, X will denote an arbitrary connected subspace of |G|, where
G = (V, E) is an arbitrary locally finite connected graph. We assume that
X does not entirely lie on an edge of G, in which case it would obviously be
path-connected.

The aim of this section is to prove Theorem 4.3. To this end we will first
have to develop some intermediate results.

For x ∈ X, let c(x) denote the path-component of X that contains x.

Lemma 4.1. For every point x ∈ X\Ω there is an open neighbourhood U =
U(x) of x such that U ∩ X ⊆ c(x).

Proof. First assume that x is an inner point of the edge [u, v]. We claim that

one of the closed intervals [u, x], [x, v] lies in X as well. (4.1)

For suppose not. Then there is a point u′ ∈ [u, x) and a point v′ ∈ (x, v]
that do not belong to X. But then (u′, v′) and |G|\[u′, v′] are disjoint open
subsets of |G| that both meet X and whose union contains X, contradicting
the connectedness of X.

Thus (4.1) holds and we may assume without loss of generality that
[u, x] ⊂ X. Now if X contains an interval (x, w) ⊂ [x, v] we can set
U(x) = (u, w). Otherwise there is a point v′ ∈ (x, v) such that (x, v′)∩X = ∅,
and we can set U(x) = (u, v′). For if no such v′ exists, then there are points
of X on (x, v) arbitrarily close to x. But for every such point y we can
prove that [y, v] ⊂ X the same way we proved (4.1) ([u, y] �⊂ X because
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then we would have the previous case) and thus [x, v] ⊂ X contradicting the
assumption that X contains no interval (x, w) ⊂ [x, v].

Now assume x is a vertex. By a similar argument as above we can prove
that for every edge xv ∈ E(G) there is a point v′ ∈ (x, v) such that either
(x, v′) ⊂ X or (x, v′) ∩ X = ∅. Let S be a set that contains one such point
for each edge incident with x. Then we can set U(x) =

⋃
v′∈S[x, v′).

For an end ω ∈ X we cannot in general find a neighbourhood of ω that
meets X only in c(ω). However, we can always find one that avoids any
specified path-component other than c(ω):

Lemma 4.2. For every end ω ∈ X and every path-component c′ �= c(ω) of
X there is an open neighbourhood U = U(c′, ω) of ω such that U ∩ c′ = ∅.

In order to prove this lemma, we will suppose that there is a path-
component c′ of X and an end ω ∈ X\c′ every neighbourhood of which
meets c′. To construct a path from c′ to ω in X contradicting c′ �= c(ω), we
shall pick a sequence a0, a1, a2, . . . of vertices in c′ converging to ω, link ai

to ai+1 by a path in c′ for each i, and concatenate all these paths to a map
f : [0, 1) → c′. Adding f(1) := ω yields an a0-ω path in X as long as f is
continuous at 1. To ensure this, we have to choose our ai–ai+1 paths inside
smaller and smaller neighbourhoods Ui of ω.

Proof of Lemma 4.2. Suppose there is a path-component c′ of X and an end
ω ∈ X\c′ every open neighbourhood of which meets c′. Easily by Lemma 2.4,
c′ must contain a vertex u.

Define S0 = ∅, and for every i > 0 let Si = N i−1(u). Let Ui = O(Si, ω).
Note that S0 ⊂ S1 ⊂ S2 ⊂ . . ., and thus U0 ⊃ U1 ⊃ U2 ⊃ . . ..

Define Mi = (Si+1\Si)∩c′∩Ui, for all i ≥ 0 (Figure 4.4). Each Mi is a set
of candidates for the vertex ai mentioned above. Instead of choosing them
arbitrarily, we will make use of Lemma 2.7 to find a sequence of appropriate
ai.

Define the graph G with V (G) =
⋃

i Mi and xy ∈ E(G) if for some i,
x ∈ Mi, y ∈ Mi−1 and there is a x–y topological path in c′ ∩ Ui−1.

We need to show that G satisfies the conditions of Lemma 2.7. Since G
is locally finite, the Si are finite, and hence so are the Mi. Let us show that
they are non-empty.

For i > 0 pick any point of Ui ∩ c′ and any topological path from that
point to u. By Lemma 2.4, and since u /∈ Ui, this path traverses one of the
edges between a vertex w in Ui and a vertex outside it. By definition, Mi

contains this vertex w.
In order to see that every x ∈ Mi sends an edge to Mi−1, pick any

z ∈ Mi−1, and any topological path in c′ from x to z. Since Mi−1 is closed,
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Figure 4.4: Ui and Mi.

this path has a first point y in Mi−1. By Lemma 2.4, the subpath from x to
y lies in Ui−1, so xy is an edge of G.

We can now apply Lemma 2.7 to get an infinite path a0(= u)a1a2 . . . in G.
For each i > 0, pick a topological path fi in c′ ∩ Ui−1 from ai−1 to ai (which
exists because ai−1ai is an edge of G), let f : [0, 1) → c′ be the concatenation
of these paths, and put f(1) = ω.

We claim that f is continuous at 1 and hence a path in X, contradicting
our assumption that c′ �= c(ω). To see that this is the case, let O be any open
neighbourhood of ω. Choose a basic open neighbourhood O′ = O(S, ω) ⊆ O.
Let i be the maximum distance of an element of S from u. Then Si ⊇ S, and
Ui ⊆ O′ ⊆ O. Since for j > i the path fj lies in Uj−1 ⊆ Ui, the subpath of
f from ai to f(1) lies in Ui ⊆ O which proves the continuity of f at 1. This
completes the proof.

As a consequence of Lemmas 4.1 and 4.2 we have the following:

Lemma 4.3. The path-components of X are closed in its subspace topology.

This implies that any counterexample to Problem 4.1 must contain in-
finitely many path-components. In fact we can prove something stronger:

Lemma 4.4. Every connected but not path-connected X ⊆ |G| contains un-
countably many path-components.

Proof. Suppose c1, c2, . . . is an enumeration of the path-components of X.
We will divide X into two open sets Or, Og of |G| whose intersection does
not meet X contradicting its connectedness.

We will proceed recursively. Every path-component c will at some step be
coloured either red or green (Eventually, Or will be a union of open sets that
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contains all points that belong to red path-components, and Og similarly for
‘green’). If c is not immediately put in one of Or, Og (as part of some open
set) at the step that it gets coloured, it will be given a natural number as
handicap. This handicap will be a competitive advantage for the ends in c
against ends whose path-component has a higher handicap, and which are
also striving to get classified in Or or Og, and will help make sure that every
end in c will be classified after a finite number of steps (but if c has infinitely
many ends, it might take infinitely many steps till they all get classified).

Once we have accommodated all ends of X in either of Or, Og it will be
easy to do the same for the vertices and edge points of X.

At the beginning of step i of the recursion we will pick a finite set Si ⊂ V ,
which grows larger at each step, and consider the (finitely many) open sets
of the form O(Si, ω), for all ω ∈ Ω. We will declare live any such open set
that contains ends of X that have not yet been classified in Or or Og. Some
of these open sets might be put in Or or Og during the current step, in which
case we will switch their state to not live. Each live open set L will have a
boss, namely, the path-component of smallest handicap meeting L. Being a
boss will let a path-component influence subsequent colouring decisions for
its own ends.

Formally, we apply the following recursion. Before the first step, colour
c0 red and c1 green; this will guarantee that neither of Or, Og will be empty.
Give c0 the handicap 0, and c1 the handicap 1. Declare |G| live, and let c0

be its boss. Let u be any vertex of G.
Then for every i < ω perform the following actions (see Figures 4.5

and 4.6):

1. Declare live all the basic open sets of the form O(N i(u), ω), with
ω ∈ Ω ∩ X that lie in live open sets of the previous step (note that
O(N i(u), ω) � O(N i−1(u), ω) ).

2. Colour any still uncoloured path-component c that meets more than
one live open set with the colour of the boss of the parent open set,
i.e. the live open set of the previous step in which c lies (it must lie
in one, because if it met more than one of them it would have been
coloured in a previous step). Note that there are only finitely many
such path-components in any step, because by Lemma 2.4 each of them
must contain an edge that crosses some basic open set and there are
only finitely many such edges. Finally give the newly coloured path-
components the next free handicaps, one to each.

3. If a live basic open set does not meet any green path-components, then
colour all path-components that lie in it red, put it in Or and declare
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it not live. Proceed similarly with colours switched and Og instead of
Or.

4. For every live basic open set, let the path-component of smallest hand-
icap that meets it be its boss.

5. If ci is still uncoloured, give it the colour of the boss of the live set in
which it lies (it lies in one since it is still uncoloured) and the next free
handicap.

S1

C1

C2

C3

C4

c1

c0

u
ck

Figure 4.5: Possible colourings after step 1. Dashed lines depict red path-
components and continuous lines green ones. The path-component ck meets several
live sets, so it took the colour of c0, the boss of |G|. The basic open set C1 will be
put in Or and C2 will be put in Og; then they will be declared not live. The boss
of both C3 and C4 is c1.

We claim that after this process every end of X is put in either Or or Og.
Indeed, because of action 5, for every end e of X, c(e) gets a colour and a
handicap sometime. By Lemma 4.2 and the fact that there are only finitely
many path-components of smaller handicap, at some step j, e will lie in a live
basic open set U that avoids all path-components of smaller handicap (N i(u)
contains any finite vertex set for i large enough, if we assume, without loss
of generality, that G is connected).
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c0

c2

u

C3,1

C3,2

C4,1 C4,2

ck

cl

Figure 4.6: Possible colourings after step 2. C4,1 will be put in Or and C3,2 in Og.
The path-component c2 received the colour of c1, the boss of C4,2, and cl received
the colour of the boss of C3, again c1. The arrows show the bosses of the open
sets that are live after the completion of this step.

At this point, U only meets finitely many coloured path-components (see
comment in action 2). In the steps following step j, e’s path-component will
always be the boss of the current live open set in which e lies (action 4)
and thus no path-component that meets such a set will be coloured with the
opposite colour (action 2).

Again by Lemma 4.2, e will at some later step lie in a basic open set U ′

that avoids all path-components of the opposite colour that met U at step
j. This U ′ thus meets only the colour of e, so it will be classified in one of
Or, Og.

Thus our claim is true and we have divided X ∩ Ω into two open sets
whose intersection does not meet X. Now for each vertex or edge point of
X find a basic open set, supplied by Lemma 4.1, that avoids all other path-
components, and put it in Or if the point belongs to a red path-component,
or in Og if it belongs to a green one. Since X ⊆ Or ∪ Og, and Or ∩ Og does
indeed not meet X, the connectedness of X is contradicted.

Using the above Lemmas we can now prove Theorem 4.3:
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Proof of Theorem 4.3. Suppose X is not path-connected. Since G is locally
finite and connected, X has only countably many path-components contain-
ing vertices, so by Lemmas 4.4 and 2.4 there must be uncountably many
path-components that are singleton ends.

If c1, c2, . . . , cn are the only path-components of X that contain vertices,
then pick a singleton end ω ∈ X, and for each i an open neighbourhood Oi

of ω that avoids ci, supplied by Lemma 4.2. Let O = O(S, ω) be a basic open
neighbourhood of ω contained in

⋂
i≤n Oi (if n = 0 then let O be any basic

open neighbourhood of ω that avoids at least one end of X). Every point
of X\O has an open neighbourhood that does not meet O: for vertices and
edge points this open neighbourhood is supplied by Lemma 4.1 and for an end
e /∈ O the neighbourhood O = O(S, e) does indeed not meet O. Thus X ∩O
is open and closed in the subspace topology of X, a contradiction since X is
connected. This proves that X must have infinitely many path-components
that contain vertices.

Finally, let us show that every path-component of X contains ends. By
Lemma 4.1, a path-component containing no end is open. Since it is also
closed (Lemma 4.3), the connectedness of X is contradicted if such a path-
component exists.

4.4 Connectedness implies path-connectedness

for closed subspaces

In this section we give a proof of Theorem 4.1. As already mentioned, The-
orem 4.1 was already proved in [16]1. Because of its importance for appli-
cations, we present a simpler proof that makes use of the results of Sec-
tion 4.3. This proof could considerably facilitate the understanding of why
the counterexample in Section 4.2 has to be the way it is.

We will need some definitions and a lemma. If S is a finite subset of
V (G), we will say that two ends x, y ∈ X ∩ Ω are S-equivalent, and write
x ∼S y, if there is a sequence (x =)ω1ω2 . . . ωk(= y), called a x-y connecting
sequence (relative to S), such that for each i, either there is a double ray
in X with ends ωi, ωi+1, or ωi, ωi+1 lie in the same (topological) component
of X ∩ O(S, ωi) (in particular, O(S, ωi+1) = O(S, ωi)). We will say that a
path-component crosses a set O ⊂ |G|, if it meets both O and |G| − O.

1In fact the result in [16] is more general, as it applies not only to locally finite graphs
but also to a class of non-locally-finite ones.
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Lemma 4.5. For every finite S ⊂ V (G), every two ends x, y in X are
S-equivalent.

Proof. Suppose for contradiction that x, y are not S-equivalent. Clearly, ∼S

is an equivalence relation, so let C1 be the equivalence class of x and let
C2 = X ∩ Ω − C1.

We will split X into disjoint open sets O1, O2, with x ∈ O1 and y ∈ O2.
Let O be the (finite) set of open sets O(S, ω), ω ∈ Ω. For every Q ∈ O,
there are only finitely many path-components of X crossing Q, because S is
finite. This and the definition of ∼S implies that there are only finitely many
(topological) components of Q ∩ X meeting C1. So if Q meets both C1, C2,
then we can find non-empty disjoint open subsets Q1 = Q1(Q), Q2 = Q2(Q)
of Q∩X so that Q∩X = Q1∪Q2, C1∩Q ⊆ Q1, and no end in C2∩Q1 belongs
to a path-component of X crossing Q. If Q does not meet C1 (respectively
C2), let Q1 = ∅, Q2 = Q ∩ X (resp. Q1 = Q ∩ X, Q2 = ∅).

Let R1 (respectively R2) be the set of vertices and edge points in X−
⋃
O

lying in a path component of X that meets C1 (resp. C2). By Theorem 4.3,
every point of X − Ω is connected to an end of X by a path, so R1 ∪ R2 =
X −

⋃
O. Moreover, no path-component of X can meet both C1, C2, as a

path between two ends x, y induces an x-y connecting sequence for every S,
thus R1 ∩ R2 = ∅ (here we used the fact that a path-connected topological
space is connected).

Now let O1 =
⋃

Q∈O Q1(Q) ∪
⋃

r∈R1
U(r), where U(r) is an open neigh-

bourhood of r such that U(r)∩X ⊆ c(r), supplied by Lemma 4.1. Similarly,
let O2 =

⋃
Q∈O Q2(Q) ∪

⋃
r∈R2

U(r). By construction, O1, O2 are open, non-
empty, disjoint and O1 ∪O2 ⊇ X, contradicting the connectedness of X.

We can now proceed to our proof.

Proof of Theorem 4.1. Let x, y ∈ X∩Ω. We will construct an x-y topological
path σ in X. Since by Theorem 4.3, every path-component of X contains an
end, the assertion follows.

Pick an arbitrary vertex u ∈ V (G), and for every n ∈ N define Sn =
G[u]n. Applying Lemma 4.5 for S = S0, we obtain a x-y connecting sequence
(x = )ω0ω1 . . . ωk(= y). As a first approach to defining σ, let σ0 : [0, 1] →
X ∪ {∅} be a mapping, such that σ( i

k
) = ωi for every 0 ≤ i ≤ k, and if there

is a double ray R with ends ωi, ωi+1, then σ maps [ i
k
, i+1

k
] continuously onto

R. If there is no double ray with ends ωi, ωi+1, then σ maps ( i
k
, i+1

k
) to ∅.

Now recursively, for n = 1, 2, . . ., suppose that σn−1 has already been
defined, and define the mapping σn : [0, 1] → X ∪ {∅} as follows. For every
p ∈ [0, 1], if σn−1(p) �= ∅ then let σn(p) = σn−1(x). For every maximal
interval I = (p, q) of [0, 1] mapped to ∅, it follows by construction that
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p, q ∈ X ∩ Ω, and that p, q lie in the same (topological) component X ′ of
X ∩ O(Sn−1, p). Now apply Lemma 4.5 for S = Sn replacing X by X ′,
to obtain a p-q connecting sequence relative to Sn, where all double rays
lie in O(Sn−1, p). Then, let σn map I to double rays between ends of this
connecting sequence and to ∅ (if needed), following the pattern according to
which σ0 was defined.

Note that if σi(p) �= ∅ for some p ∈ [0, 1], then σn(p) = σi(p) holds for
every n ≥ i. Thus we can define a mapping σ′ : [0, 1] → X ∪ {∅}, by letting
σ′(p) = ∅ if σn(p) = ∅ for every n, and σ′(p) = x if σn(p) = x �= ∅ for some
n. Since any two ends in Ω are separated by some Sn, no open interval of
[0, 1] is mapped to ∅ by σ′. Moreover, for every point p such that σ′(p) = ∅,
there is a descending sequence a of open sets of the form O(Sn, ω), such
that an open interval around p is mapped to each member of a. As |G| is
compact, a has an accumulation point, and since any two ends are separated
by some Sn, a converges to an end ωp ∈ Ω. But X is closed, so ωp ∈ X.
Now define the mapping σ : [0, 1] → X, by letting σ(p) = ωp if σ′(p) = ∅ and
σ(p) = σ′(p) otherwise. By construction, σ is an x-y topological path in X,
which completes the proof.
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Chapter 5

Linear algebra with infinite
sums

5.1 Introduction

In this chapter, which is based on [5], we will answer the following questions:
given a set N of edge sets of some infinite graph, for instance a set of circuits,
does N have a basis B ⊆ N , in the sense that any edge set that is a sum of
a thin family of elements of N , can also be written as a sum of a thin family
of elements of B, and B is minimal with that property? If 〈N 〉 is the set of
all sums of thin families of elements of N , then is 〈N 〉 closed under taking
thin sums?

These problems have applications in graph theory, as we shall see, but
are also interesting from the algebraic point of view, so rather than confining
ourselves to edge sets, we will in fact let N be a set of subsets of any abstract
set M in the above questions.

An element N of P(M) can also be represented as an element Φ(N) of
ZM

2 : just let Φ(N)(m) = 1 if m ∈ N and Φ(N)(m) = 0 otherwise. With this
observation, our setting becomes reminiscent of linear algebra. We have a
“vector space” over Z2, where some sums of infinitely many summands are
allowed. In order to make our treatment more general, we will replace Z2 by
an arbitrary field or ring R.

After formally defining the concepts in use, we will show that the answer
to our first question is positive if R is a field and M is countable (Theo-
rem 5.1), but not otherwise (Theorem 5.2). The answer to our second ques-
tion is easily seen to be negative if N is not thin, that is, it contains infinitely
many elements that “meet” a certain m ∈ M . If however N is thin, then
the answer is positive if R is a field (Theorem 5.3), or if R is a finite ring
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(Theorem 5.4), but not otherwise (Theorem 5.5).
Theorems 5.1 and 5.3 can be useful tools in infinite graph theory, in

particular in the study of the topological cycle space C(G). For example, the
existence of bases (in our sense) was instrumental in [6], where MacLane’s
planarity criterion was generalised to locally finite graphs. Theorem 5.3
provides an alternative — and easier — way of proving that C(G) is closed
under taking thin sums, which was first shown in [14, Corollary 5.2]: indeed,
it suffices to apply Theorem 5.3 on the thin set N of fundamental circuits of
a normal spanning tree, which by [12, Lemma 8.5.7] and [12, Theorem 8.5.8]
generate C(G).

5.2 Bases

Let M be a set, R be a ring, and let L ⊆ RM . We call a function a : L → R
thin if for every m ∈ M , there are only finitely many N ∈ L such that
a(N)N(m) �= 0. Thin functions are precisely those functions a : L → R for
which the sum

∑
a :=

∑
N∈L a(N)N of a is well defined. For a K ∈ RM , we

call a (thin) function a : L → R a representation of K in L if K =
∑

a —
that is, K(m) =

∑
N∈L a(N)N(m) for every m ∈ M . Denote by 〈L〉 the set

of elements of RM that have a representation in L. Equivalently, 〈L〉 is the
set of sums of thin functions a : L → R. Intuitively, L is a generating set,
and 〈L〉 is the space it generates.

For a set N ⊆ RM , we call a subset B of N a basis of 〈N 〉, if 〈B〉 = 〈N 〉
and B is minimal with that property. If R is a field, then this is equivalent
to saying that 〈B〉 = 〈N 〉 and 0, the zero function in RM , has a unique
representation in B (namely the function mapping every N ∈ N to 0 ∈ R).
Thus, if B is a basis of N and R is a field, then every element of 〈N 〉 has a
unique representation in B.

Our first result states that if R is a field and M is countable, then we can
always find a basis:

Theorem 5.1 ([5]). Let M be a countable set, F be a field and let N ⊆ FM .
Then N contains a basis of 〈N 〉.

In linear algebra the analogous assertion is usually proved with Zorn’s
lemma as follows. Given a chain (Bλ)λ of linearly independent subsets of the
generating set, it is observed that

⋃
λ Bλ is still linearly independent since

any violation of linear independence is witnessed by finitely many elements,
and these would already lie in one of the Bλ. Thus, each chain has an upper
bound, which implies, by Zorn’s lemma, that there is a maximal linearly
independent set, a basis. This approach however fails in our context, as
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dependence does not need to be witnessed by only finitely many elements,
thus we cannot get the contradiction that already one of the Bλ was not
independent.

As an illustration, put F = Z2, M := Z and Bi := {Φ({j, j + 1}) :
−i ≤ j < i} for i = 1, 2, . . .. Now, while no nonempty finite subset of
B∞ :=

⋃∞
i=1 Bi is dependent, the whole set is:

∑
B∈B∞

B = 0.

Proof of Theorem 5.1. If M is a finite set the result follows from linear al-
gebra as no infinite sum is well defined, so we assume M to be infinite. Let
m1, m2, . . . be an enumeration of M , and for i = 1, 2, . . . define Ni to be
the set of those elements N ∈ N \

⋃
j<i Nj for which N(mi) �= 0. Clearly,

{Ni : i ∈ N} is a partition of N . For every i ∈ N, let Ni1, Ni2, . . . , Niλ, . . . be
a (possibly transfinite) enumeration of Ni.

Let us briefly outline the proof. For each i ∈ N we will inductively go
through the elements of Ni, and each time we encounter a Niλ that has a
representation that only uses (i.e. takes a nonzero value on) the predecessors
of Niλ in Ni (that is, the Niμ for which μ < λ) and elements of later Nj, we will
delete Niλ. Doing this for every i ensures that 0 has a unique representation
in the remaining subset of N .

We then have to check that we can still represent any element K of 〈N 〉.
This works as follows. Let a be a representation of K in N , and let i be
the least integer so that a uses some deleted elements of Ni. Each time we
deleted a Niλ, we made sure that the elements of Ni needed to represent
it would not be deleted afterwards (because they had smaller indices). We
could, of course, delete elements of Ni+1 needed to represent Niλ, but when
we do, we make sure that we have left enough elements of Ni+1 behind, as
we did with Ni, so that at the end the remaining elements of all the Nj can
represent Niλ.

Formally, perform ω steps of the following type. In step i, perform the
following transfinite recursion. Start by setting Ni0 = Ni, and then for every
ordinal λ > 0 define the set Niλ ⊆ Ni as follows (intuitively, Niλ is the
set of elements of Ni that we have not deleted so far): If N = Niλ has a
representation in

Xiλ := (
⋂
μ<λ

Niμ \ {Niμ : μ ≥ λ}) ∪
⋃
k>i

Nk

(that is, if N has a representation in
⋃

k≥i Nk that does not use any elements
of Ni that have already been deleted or have index greater that λ), then let
Niλ :=

⋂
μ<λ Niμ \ {Niλ} (this corresponds to deleting Niλ), and let aN be a

representation of N in N such that

aN(L) = 0 if L /∈ Xiλ, (5.1)
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which exists since N has a representation in Xiλ.

Otherwise, let Niλ :=
⋂

μ<λ Niμ. Having defined all Niλ, we put Bi :=⋂
λ Niλ.

We claim that B :=
⋃

i Bi is a basis of 〈N 〉. To show that 0 has a unique
representation, suppose there is a nonzero thin function b : B → F such
that

∑
C∈B b(C)C = 0. Let i ∈ N be minimal so that there is an ordinal

μ with b(Niμ) �= 0, and observe that since for all the elements B in Bi we
have B(mi) �= 0, there is a maximal ordinal λ such that b(Niλ) �= 0. Then
{N ∈ N : b(N) �= 0} ⊆ Xiλ, a contradiction to that Niλ ∈ Bi ⊆ Niλ.

Next, consider a K ∈ 〈N〉. We will show that K has a representation in B.
Let b0 be a representation of K in 〈N 〉. Inductively, define for k = 1, 2, . . .
thin functions bk : N → F as follows. (Intuitively, bk is a representation of
K using only elements of N that are left after step k of the construction of
B, that is, after we have finished deleting elements of Nk.) Let Ek = {N ∈
Nk \ Bk : bk−1(N) �= 0}. Since bk−1 is thin and since N(mk) �= 0 for all
N ∈ Ek ⊆ Nk, it follows that Ek is a finite set. Put

bk(N) = 0 for N ∈ Ek, and (5.2)

bk(N) = bk−1(N) +
∑
L∈Ek

bk−1(L)aL(N) for N /∈ Ek. (5.3)

(Note that aL is well defined for every L ∈ Ek, as Ek ⊂ Nk \ Bk.)

By induction we easily obtain that for every k ≥ 1

bk(N) = 0 if N ∈
k⋃

l=1

Nl \ B (5.4)

and

K =
∑
N∈N

bk(N)N(in particular, bk is thin). (5.5)

Indeed, for (5.4) let N = Nlλ ∈ Nl \ B with 1 ≤ l ≤ k. If bl−1(N) �= 0,
then N ∈ El and thus bl(N) = 0 by (5.2). If bl−1(N) = 0, then by (5.1) we
have aL(N) = 0 for every L ∈ El ⊆ Nl; indeed, for any such L = Nlν , if
N /∈ {Nlμ : μ ≥ ν}, then N /∈

⋂
μ<λ Nlμ, as N was deleted, i.e. N /∈ Nlλ,

so N /∈ Xlν . Thus by (5.3) bl(N) = 0 again. Since aL(N) = 0 for every
L ∈ Ei ⊆ Ni with i > l by (5.1), we obtain inductively by (5.3) that bk(N) = 0
for every k ≥ l.
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For (5.5) we have

∑
bk −

∑
bk−1 =

∑
N∈N

(bk(N)N − bk−1(N)N)

=
∑

N∈N\Ek

(bk(N)N − bk−1(N)N) +
∑
N∈Ek

(bk(N)N − bk−1(N)N) (5.6)

=
∑

N∈N\Ek

(
∑
L∈Ek

bk−1(L)aL(N)N) +
∑
N∈Ek

(0 − bk−1(N)N).

As aL(N) = 0 if N, L ∈ Ek by (5.1), we have

∑
N∈N\Ek

(
∑
L∈Ek

bk−1(L)aL(N)N) =
∑
L∈Ek

bk−1(L)
∑

N∈N\Ek

aL(N)N (5.7)

=
∑
L∈Ek

bk−1(L)
∑
N∈N

aL(N)N =
∑
L∈Ek

bk−1(L)L.

By (5.6) and (5.7) we get
∑

bk −
∑

bk−1 = 0, which proves (5.5).

For every N ∈ Nl define b∞(N) := bl(N), and note that

bk(N) = b∞(N) for N ∈ Nl and k ≥ l. (5.8)

Indeed, consider k > l and observe that, by (5.1), aL(N) = 0 for all L ∈ Ek,
so by (5.3) we get bk(N) = bk−1(N).

From (5.8) and (5.4) we easily get for N ∈ N that

if N /∈ B then b∞(N) = 0. (5.9)

We claim that

K =
∑
B∈B

b∞(B)B (in particular, b∞ is thin). (5.10)

Consider an mk ∈ M . As N(mk) = 0 for N ∈ Nl with l > k, we get
from (5.8) that b∞(N)N(mk) = bk(N)N(mk) for all N ∈ N . Thus by (5.5)
we obtain

∑
N∈N

b∞(N)N(mk) =
∑
N∈N

bk(N)N(mk) = K(mk).

Claim (5.10) now follows from (5.9). This completes the proof.
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Observe that contrary to traditional linear algebra, two bases do not need
to have the same cardinality. Indeed, putting F = Z2 and M = {m0, m1, . . .}
we see that B := {Φ({mi}) : i ≥ 0} is a countable basis of F M . On the other
hand, N := {Φ({m0} ∪ N) : N ⊆ M} clearly generates F M , and contains,
by Theorem 5.1, a basis B′. Since all thin subsetsof N are finite, B′ needs to
be uncountable to generate the uncountable set F M . Thus B and B′ are two
bases of F M that do not have the same cardinality.

We have formulated Theorem 5.1 only for countable sets M . The follow-
ing result shows that this is indeed best possible.

Theorem 5.2 ([5]). There is an uncountable set M and N ⊆ ZM
2 so that N

does not contain a basis of 〈N 〉.

Proof. In order to simplify our expressions in this proof, we want to work with
P(M) rather than ZM

2 . As Φ is a bijection between the two sets respecting
addition and thinness, we may do so. Thus we will apply expressions defined
for (sets of) elements of ZM

2 on (sets of) elements of P(M). These expressions
inherit then their meaning from our previous definitions, if we “translate”
elements of P(M) into elements of ZM

2 .
Let A, B be two disjoint sets with cardinalities |A| = ℵ0 and |B| = ℵ1.

Define G to be the graph with vertex set M := A∪B and edge set N := A×B.
As N ⊆ P(M), we may ask whether N contains a basis of 〈N 〉 (that is,
whether N ′ := {Φ(N) : N ∈ N} contains a basis of 〈N ′〉). We claim that
it does not.

Let us show that each countable subset N of M is contained in 〈N 〉.
Indeed, let n1, n2, . . . be a (possibly finite) enumeration of N , and choose for
i = 1, 2, . . . a ray Ri that starts at ni, does not meet the first i − 1 vertices
of each of R1, . . . , Ri−1 except, possibly, at ni, and contains no edge that lies
is one of R1, . . . , Ri−1. Then, the set

⋃
i∈N

E(Ri) is thin, and its sum equals
N since

∑
e∈E(Ri)

e = {ni}.

Suppose that B ⊆ N is a basis of 〈N 〉, and let H be the graph with vertex
set M and edge set B. Since M is uncountable, so is B. Therefore, one of
the vertices in the countable set A, say v, is incident with infinitely many
edges in B. Denote by C the set of those components in the graph obtained
from H by deleting v (and its incident edges) that are adjacent to v.

Observe that for each C ∈ C there is exactly one edge in H between v and
some vertex in C; denote this vertex by uC. Indeed, if there were two edges
between v and C, we would easily find a cycle in B, contradicting that ∅ has
a unique representation in B since the sum of the edges of a cycle equals ∅.

Next, suppose there are distinct C, D ∈ C each containing a ray; then, C
(respectively D) also contains a ray R (resp. S) starting at uC (resp. at uD).
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Then R∪S together with the two edges between v and {uC , uD} yields a set
of edges which sums to ∅, again a contradiction.

Pick a countably infinite number of C ∈ C none of which contains a ray,
and denote their set by C′. As N := {uC : C ∈ C′} is countable it lies in
〈N 〉, thus there is a BN ⊆ B such that

∑
e∈BN

e = N .
Suppose there is a C ∈ C′ such that an edge e ∈ BN incident with uC

lies in C. As C does not contain any cycle or any ray, we can run from e
along edges in E(C) ∩ BN to a vertex w �= uC that is only incident with
one edge in BN . This implies that w ∈

∑
e∈BN

e = N , a contradiction since
w /∈ N . However, uC must be incident with an edge from BN . Consequently,
for each C ∈ C′ the edge between v and uC lies in BN , contradicting that BN

is thin.

5.3 Closedness

Let M be a set and R a ring. In general, for a subset N of RM , 〈N 〉 does
not have to be closed under taking thin sums, even if R is a finite field. For
instance, put M = N, R = Z2 and consider N := {Φ({0, i}) : i ∈ N}.
Easily, Φ(N) ∈ 〈〈N〉〉, but Φ(N) �∈ 〈N 〉 as a representation in N can only
use finitely many of its elements. Thus, 〈N 〉 is not closed under taking thin
sums. The critical property of this example is that N contains infinitely
many elements that “meet” the element 0 of M . Let us call a set N ⊆ RM

thin if for every m ∈ M , there are only finitely many elements N of N such
that N(m) �= 0. We will show that 〈N 〉 is closed under taking thin sums if
N is thin and R is a field (Theorem 5.3) or a finite ring (Theorem 5.4). We
will use the following easy lemma.

Lemma 5.1. Let M be a set, R be a ring, and let T be a thin set of elements
of RM . If K ∈ 〈〈T 〉〉 and M ′ is a finite subset of M , then there is an element
N of 〈T 〉 such that N(m) = K(m) for every m ∈ M ′.

Proof. Let d : 〈T 〉 → F be a representation of K in 〈T 〉, which exist as
K ∈ 〈〈T 〉〉. As M ′ is finite and d is thin, the set

T ′ = {S ∈ 〈T 〉 : d(S)S(m) �= 0 for some m ∈ M ′}

is finite.
Every element S ∈ T ′ has a representation aS : T → F in T . Define

a : T → F , by

a(T ) =
∑
S∈T ′

d(S)aS(T ). (5.11)
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We claim that N :=
∑

T∈T a(T )T has the desired property. To show this,
consider an m ∈ M ′; we have to show that

∑
T∈T a(T )T (m) = K(m). Since

d is a representation of K and since d(S)S(m) = 0 for S /∈ T ′, we obtain

K(m) =
∑

S∈〈T 〉

d(S)S(m) =
∑
S∈T ′

d(S)S(m).

By the definition of aS, we have for every S ∈ T ′ that S(m) =
∑

T∈T aS(T )T (m).
Replacing S(m) in the above equation we get

K(m) =
∑
S∈T ′

d(S)
∑
T∈T

aS(T )T (m) =
∑
S∈T ′

∑
T∈T

d(S)aS(T )T (m)

=
∑
T∈T

∑
S∈T ′

d(S)aS(T )T (m) =
∑
T∈T

a(T )T (m) = N(m),

as desired, where in the last equation we used (5.11).

We can now proceed with the main results of this section.

Theorem 5.3 ([5]). Let M be a set, F be a field, and let T be a thin subset
of F M . Then 〈T 〉 is closed under taking thin sums, i.e. 〈T 〉 = 〈〈T 〉〉.

Proof. Consider a K ∈ 〈〈T 〉〉. We will reduce the problem of finding a
representation of K in T to the solution of an infinite system of equations.
To do this, we associate a variable xT with every T ∈ T , and for each m ∈ M
we define em to be the linear equation

∑
T∈T :T (m)
=0

xT T (m) = K(m)

in the variables xT . Let E = {em : m ∈ M}. By construction, if there is an
assignment a : T → F such that letting xT = a(T ) for every T ∈ T yields a
solution to every equation in E, then a is a representation of K in T . So in
what follows, our task is to find such a solution.

Let us start by claiming that every finite subset E ′ of E has a solution.
Indeed, let M ′ be the set of m ∈ M for which em ∈ E ′. By Lemma 5.1, there
is an N ∈ 〈T 〉 such that N(m) = K(m) for every m ∈ M ′, so let a′ be a
representation of N in T . Then, letting xT = a′(T ) for every T ∈ T yields a
solution of E ′.

For every T ∈ T , define dT to be the linear equation xT = 1, and put
D = {dT : T ∈ T }. Let E∗ be a maximal subset of E ∪D such that E∗ ⊇ E
and every finite subset of E∗ has a solution; to prove the existence of such
an E∗, note that if (Ei)i∈I is a chain of nested supersets of E so that every
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Ei has the property that every finite subset of Ei has a solution, then easily,
their union

⋃
i∈I Ei also has this property. Thus by Zorn’s lemma, there is a

maximal set E∗ with that property.

Next, we show that that for every T ∈ T there is a finite ET ⊆ E∗ and an
fT ∈ F such that xT = fT in every solution of ET . Suppose not. Then clearly,
dT /∈ E∗. Consider a finite subset E ′ of E∗, and note that E ′ has at least one
solution by the definition of E∗. If xT takes the same value in all solutions of
E ′, then our assumption is contradicted as we can choose ET = E ′. Thus xT

takes two distinct values x1, x2 ∈ F in two solutions of E ′. Easily, for every
f ∈ F there is a solution of E ′ where xT = f ′ := fx1 + (1 − f)x2. Letting
f = (1 − x2)(x1 − x2)

−1 we have f ′ = 1, thus there is a solution of E ′ in
which xT = 1, which means that E ′ ∪ {dT} has a solution. Therefore, as E ′

was an arbitrary finite subset of E∗, every finite subset of E∗ ∪ {dT} has a
solution, contradicting the maximality of E∗. Thus, ET and fT exist, as we
have claimed.

Finally, define a : T → F by a(T ) := fT . To see that a is a solution of E,
consider an arbitrary m ∈ M . As T is thin, Tm := {T ∈ T : T (m) �= 0} is
finite. Thus, E ′ := {em} ∪

⋃
T∈Tm

ET has, as a finite subset of E∗, a solution
b : T → F . Since for every T ∈ Tm, we have ET ⊆ E ′ it follows that
b(T ) = fT = a(T ). As b solves em we see that a solves em, too. Thus a is a
solution of E, and hence a representation of K in T .

Theorem 5.4 ([5]). Let M be a set, R be a finite ring, and let T be a thin
subset of RM . Then 〈T 〉 = 〈〈T 〉〉.

Proof. Let S be the set of ring elements of R, and consider the product space
X := ΠT S = ST of |T | copies of the finite set S endowed with the discrete
topology. By Tychonoff’s theorem, X is a compact space. Its basic open sets
have the form Ob := {a ∈ X : a|U = b}, where b is some map from a finite
set U ⊆ T to S.

Let K ∈ 〈〈T 〉〉; we will show that K ∈ 〈T 〉. For every m ∈ M , let
Am be the set of elements a ∈ X whose sum agrees with K on m; that is,∑

T∈T a(T )T (m) = K(m). As S is finite and there are only finitely many
T ∈ T with T (m) �= 0, it is easy to see that Am is closed in X. By Lemma 5.1,
for every finite M ′ ⊆ M , we have

⋂
m∈M ′ Am �= ∅. By the finite intersection

property of the sets Am, their overall intersection is non-empty, and since,
clearly, every element of

⋂
m∈M Am �= ∅ is a representation of K in T , we

obtain K ∈ 〈T 〉.

So we have proved that 〈T 〉 is closed under taking this sums if T is thin
and R is a field or a finite ring. These results are best possible, since if R
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is an infinite ring, then by the following example 〈T 〉 does not have to be
closed.

Theorem 5.5 ([5]). There is a thin T ⊆ ZN such that 〈T 〉 �= 〈〈T 〉〉.

Proof. Define N ∈ ZN by N(i) = 1 for every i ∈ N. For j = 1, 2, . . ., define
Nj ∈ ZN by Nj(j) = pj and Nj(i) = 0 for every i �= j, where pj is the j-th
prime number. Let T = {N, N1, N2, . . .}, and note that T is thin. We will
show that the function K ∈ ZN defined by K(i) = i is in 〈〈T 〉〉 but not in
〈T 〉.

Let us first show that K /∈ 〈T 〉. Suppose for contradiction, there is a
representation a : T → Z of K in 〈T 〉. If n := a(N) = 0, then since K =∑

L∈T a(L)L and Nj(1) = 0 for j > 1, we have K(1) =
∑

L∈T a(L)L(1) =
a(N1)N1(1), which cannot be the case as K(1) = 1 and N1(1) = 2. If
n > 0, then n + 1 = K(n + 1) =

∑
L∈T a(L)L(n + 1) = a(N)N(n + 1) +

a(Nn+1)Nn+1(n+1) = n+a(Nn+1)pn+1, which implies that 1 = a(Nn+1)pn+1

which cannot be the case as pn+1 > 1. Thus n < 0, but then we have
for n′ = −n that n′ = K(n′) = n + a(Nn′)pn′, which means that 2n′ ≡ 0
(mod pn′), and since pn′ > n′ we have pn′ = 2 and n = −1. This again leads
to a contradiction, as it implies that K(3) = 3 = −1 + 5a(N3).

Thus we showed that K /∈ 〈T 〉 and we need to show that K ∈ 〈〈T 〉〉. It
suffices to show that for every i ∈ N, there is an Si ∈ 〈T 〉 so that Si(i) =
1 and Si(j) = 0 for every j < i (we ignore Si(j) for j > i). Indeed, if
such Si exist, then they can represent K: we can inductively construct a
representation d of K in {Si : i ∈ N}, starting by setting d(S1) = 1, and
letting d(Si) = i −

∑
j<i d(Sj)Sj(i).

So let us prove the existence of Si. It suffices to find coefficients a(N),
a(N1), a(N2), . . . , a(Ni), such that

a(N) + a(Ni)pi = i, and (5.12)

a(N) + a(Nj)pj = 0 for every 1 ≤ j < i.

Indeed, if we have such coefficients, then we can let Si = a(N)N +∑
j≤i a(Nj)Nj. Now consider the system of congruences

x ≡ i (mod pi)

x ≡ 0 (mod p1)

x ≡ 0 (mod p2)
...

x ≡ 0 (mod pi−1)
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By the chinese remainder theorem, this system has a solution n ∈ Z for x.
Now we can let a(N) = n, and solve each equation in (5.12) for the coefficient
a(Nj) that appears in it. We thus obtain the desired coefficients a(N), a(N1),
a(N2), . . . , a(Ni). This completes the proof.
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Chapter 6

Geodesic circles

6.1 Introduction

A finite cycle C in a graph G is called geodesic if, for any two vertices x, y ∈ C,
the length of at least one of the two x-y paths on C equals the distance of x
and y in G. It is easy to prove that (see Section 6.2.1):

Proposition 6.1. The cycle space of a finite graph is generated by the circuits
of its geodesic cycles.

Although C(G) is known to be generated by the finite cycles of G, we shall
see that the finite geodesic cycles need not generate C(G)—at least not as
long as we measure path lengths the way we do for finite graphs, by counting
edges. Indeed, when G is infinite then giving every edge length 1 will result
in arc lengths that distort rather than reflect the natural geometry of |G|:
edges ‘closer to’ ends should be shorter, if only to give arcs between ends
finite lengths.

It looks, then, as though the question of whether or not Proposition 6.1
generalises might depend on how exactly we choose the edge lengths in our
graph. However, our main result is that this is not the case: we shall prove
that no matter how edge lengths are assigned, as long as the assignment
satisfies a very general minimum requirement, the geodesic circles in |G| —
which we will promptly define — will generate C(G).

To make all this more precise, let us assume that when G was built as a
1-complex, the 1-cells used were real intervals of arbitrary lengths (instead
of copies of the unit interval). Every arc in |G| is, clearly, the closure of a
disjoint union of open edges or half-edges (at most two, one at either end),
and we define its length as the (finite or infinite) sum of the lengths of these
edges and half-edges. Given two points x, y ∈ |G|, write dG(x, y), or simply
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d(x, y) if G is fixed, for the infimum of the lengths of all x-y–arcs in |G|. If
dG is a metric on |G| that induces its topology, call this 1-complex a metric
representation of G. (In Section 6.3 we shall see that every locally finite
connected graph has a metric representation.) We then call a circle C in
|G| geodesic if, for every two points x, y ∈ C, one of the two x-y–arcs in C
has length dG(x, y). The set of edges of a geodesic circle in |G| is a geodesic
circuit in G. We can now state the main result of this chapter:

Theorem 6.1 ([23]). For every metric representation of a connected locally
finite graph G, C(G) is generated by the geodesic circuits in G.

We prove Theorem 6.1 in Section 6.3, after showing that Proposition 6.1
holds finite graphs but not for infinite ones in Section 6.2. Finally, in Sec-
tion 6.4 we will discuss some further problems.

In order to keep our expressions simple in this chapter, we will, with a
slight abuse, not distinguish circles, paths and arcs from their edge sets.

6.2 Generating C(G) by geodesic cycles

6.2.1 Finite graphs

In this chapter finite graphs, like infinite ones, are considered as 1-complexes
where the 1-cells (i.e. the edges) are real intervals of arbitrary lengths. We
can thus define the length L(X) of a path or cycle X in a finite graph G by
L(X) =

∑
e∈E(X) L(e), where L(e) is the length of the edge e. A cycle C in

G is, then, L-geodesic, if for any x, y ∈ V (C) there is no x-y–path in G of
length less than that of each x-y–path on C.

The following theorem generalises Proposition 6.1.

Theorem 6.2 ([23]). For every finite graph G, every cycle C of G can be
written as a sum of L-geodesic cycles of length at most L(C).

Proof. Suppose that the assertion is false for a graph G, and let D be a cycle
in G of minimal length under all cycles C that cannot be written as a sum of
L-geodesic cycles of length at most L(C). As D is not L-geodesic, it is easy
to see that there is a D-path P that is shorter than the paths Q1, Q2 on D
between the endvertices of P . Thus D is the sum of the cycles D1 := P ∪Q1

and D2 := P ∪Q2. As D1 and D2 are shorter than D, they are each a sum of
L-geodesic cycles of length less than L(D), from which follows that D itself
is such a sum, a contradiction.

By letting all edges have length 1, Theorem 6.2 implies Proposition 6.1.
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6.2.2 Failure in infinite graphs

As already mentioned, Proposition 6.1 does not generalise to locally finite
graphs. A counterexample is given in Figure 6.1. The graph H shown there
is a subdivision of the infinite ladder. The infinite ladder is a union of two
rays Rx = x1x2 · · · and Ry = y1y2 · · · plus an edge xnyn for every n ∈ N,
called the n-th rung of the ladder. By subdividing, for every n ≥ 2, the n-th
rung into 2n edges, we obtain H . The graph H is even a counterexample
to the weaker assertion, that C(G) is generated by its quasi-geodesic circles,
that is, circles that contain a shortest path between any two of their vertices
(and thus contain at most one end). To see this, note that for every n ∈ N,
the (unique) shortest xn-yn–path contains the first rung e and has length
2n − 1. As every circle must contain at least one rung, every quasi-geodesic
circle (or geodesic cycle) contains e. On the other hand, Figure 6.2 shows
an element C of C(H) that contains infinitely many rungs. As every circle
can contain at most two rungs, we need an infinite family of quasi-geodesic
circles to generate C, but since they all have to contain e the family cannot
be thin.

The graph H is however no counterexample to Theorem 6.1 since if every
edge has length 1, then dH is not a metric of H .

e

Figure 6.1: A graph whose cycle space is not generated by its geodesic cycles.

Figure 6.2: An element of the topological cycle space (drawn thick) which is not
the sum of a thin family of geodesic cycles.
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6.3 Generating C(G) by geodesic circles

Metric representations do exist for every locally finite graph G. Just pick a
normal spanning tree T of G with root x ∈ V (G) (its existence is proved
in [12, Theorem 8.2.4]), and define the length of any edge uv ∈ E(G) as
follows. If uv ∈ E(T ) and v ∈ xTu, let L(uv) = 1

2|xTu| . If uv /∈ E(T ), let
L(uv) =

∑
e∈uTv L(e). It is easy to check that d is then indeed a metric of

|G| inducing its topology (see [10] for a proof).
In this section, let G be an arbitrary connected, locally finite graph, and

consider a fixed metric representation of G. Every edge e has thus a length
L(e), and these edge lengths induce a metric d = dG of |G| as defined in the
Introduction.

The proof of Theorem 6.1 is not easy. It does not suffice to prove that
every circle (or just every cycle) is a sum of a thin family of geodesic circles
—in fact, the proof of the latter statement turns out to be as hard as the
proof of Theorem 6.1. Although every element C of C(G) is a sum of a thin
family of circles (even of cycles, see [12, Theorem 8.5.9]), a representation of
every circle in this family as a sum of a thin family of geodesic circles will
not necessarily yield such a representation for C, as the union of infinitely
many thin families does not have to be thin.

In order to prove Theorem 6.1, we will use a sequence Ŝi of finite auxiliary
graphs whose limit is G. Given a C ∈ C(G) that we want to represent as
a sum of geodesic circles, we will for each i consider an element C|Ŝi of the
cycle space of Ŝi induced by C — in a way that will be made precise below —
and find a representation of C|Ŝi as a sum of geodesic cycles of Ŝi, provided
by Theorem 6.2. We will then use the resulting sequence of representations
and compactness to obtain a representation of C as a sum of geodesic circles.

6.3.1 Restricting paths and circles

To define the auxiliary graphs mentioned above, pick a vertex w ∈ G, and
for i ∈ N let Si = N i(w); also let S−1 = ∅. Clearly, Si is finite, and⋃

i∈N
Si = V (G). For every i ∈ N, define S̃i to be the subgraph of G with

vertex set Si+1, containing all edges of G incident with a vertex in Si. Let
Ŝi be the graph resulting from S̃i after joining each two vertices in Si+1 − Si

that lie in the same component of G−Si with an edge, called an outer edge.
For every i ∈ N, L induces a length Li(e) to each edge e of Ŝi: for every edge
e that also lies in S̃i, let Li(e) = L(e), and for every outer edge e = uv of Ŝi,
let Li(e) = d(u, v).

For any arc or circle X in |G| (respectively, for any path or cycle X in
some Ŝj, j > i), define the restriction X|Ŝi of X to Ŝi to be the union of
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E(X) ∩ Ŝi with the set of all outer edges uv of Ŝi such that X contains a
u-v–arc (resp. u-v–path) having precisely its endpoints in common with Ŝi,
unless X contains no edge of Ŝi, in which case let X|Ŝi = ∅. We defined X|Ŝi

to be an edge set, but we will, with a slight abuse, also use the same term to
denote the subgraph of Ŝi spanned by this edge set. Clearly, the restriction
of a circle is a cycle and the restriction of an arc is a path.

Note that in order to obtain X|Ŝi from X, we deleted a set of edge-disjoint
arcs or paths in X, and for each element of this set we put in X|Ŝi an outer
edge with the same endpoints. As no arc or path is shorter than an outer
edge with the same endpoints, we easily obtain:

Lemma 6.1. Let i ∈ N and let X be an arc or a circle in |G| (respectively,
a path or cycle in Ŝj with j > i). Then Li(X|Ŝi) ≤ L(X) (resp. Li(X|Ŝi) ≤
Lj(X)).

A consequence of this is the following:

Lemma 6.2. If x, y ∈ Si+1 and P is a shortest x-y–path in Ŝi with respect
to Li then Li(P ) = d(x, y).

Proof. Suppose first, that Li(P ) < d(x, y). Replacing every outer edge uv in
P by a u-v–arc of length Li(uv)+ε in |G| for a sufficiently small ε, we obtain
a topological x-y–path in |G| shorter than d(x, y). Since, by Lemma 2.5, the
image of every topological path contains an arc with the same endpoints,
this contradicts the definition of d(x, y). Next, suppose that Li(P ) > d(x, y).
In this case, there is by the definition of d(x, y) an x-y–arc Q in |G| with
L(Q) < Li(P ), and since by Lemma 6.1 Li(Q|Ŝi) ≤ L(Q), Q|Ŝi is shorter
than P contrary to our assumption. This completes the proof.

For the proof of Theorem 6.1, given a C ∈ C(G), we will construct a
family of geodesic circles in ω steps, in each of which steps we will choose
finitely many geodesic circles. To ensure that the resulting family will be
thin, we will restrict the length of these circles. The following two lemmas
will help us to do so. For every i ∈ N, let

εi = sup{d(x, y)|x, y ∈ |G| and there is an x-y–arc in |G| − G[Si−1]}.

Note that as |G| is compact, εi is finite.

Lemma 6.3. Let j ∈ N, let C be a cycle in Ŝj, and let i ∈ N be the smallest
index such that C meets Si. Then, C can be written as a sum of Lj-geodesic

cycles in Ŝj, each of which cycles has length at most 5εi with respect to Lj.
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Proof. We will say that a cycle D in Ŝj is a C-sector, if there are vertices
x, y on D such that one of the x-y–paths on D has length at most εi and the
other, called a C-part of D, is contained in C.

We claim that every C-sector D longer than 5εi can be written as a sum
of cycles shorter than D, such that every cycle in this sum is either shorter
than 5εi or a C-sector. Indeed, let Q be a C-part of D and let x, y be its
endvertices. Every edge in Q has length at most 2εi, because if e is an edge
with length greater than 2εi, then the middle-point of e has distance greater
than εi from each endvertex of e, contradicting the definition of εi. As Q is
longer than 4εi, there is a vertex z on Q whose distance, with respect to Lj,
along Q from x is larger than εi but at most 3εi. The distance of z from y
along Q is also larger than εi. By the definition of εi, there is a z-y–path P
in Ŝj with Lj(P ) ≤ εi.

Let Q1 = zQy and let Q2 be the other z-y–path in D. Clearly, L(Q2 +
P ) ≤ 5εi (where + denotes the symmetric difference), so Q2 + P can be
written as a sum of edge-disjoint cycles in Ŝj shorter than 5εi. It is easy to
see that Q1 + P can be written as a sum of C-sectors that are contained in
Q1 + P . As Q1 + P is shorter than D, each of those C-sectors is also shorter
than D.

So every C-sector longer than 5εi is a sum of shorter cycles, either C-
sectors or cycles shorter than 5εi. Thus, as C is a C-sector itself, it is a sum
of cycles not longer than 5εi. By Lemma 6.2, every cycle in this sum is a sum
of Lj-geodesic cycles in Ŝj not longer than 5εi; this completes the proof.

Lemma 6.4. Let ε > 0 be given. There is an n ∈ N, such that εi < ε holds
for every i ≥ n.

Proof. Suppose there is no such n. Thus, for every i ∈ N, there is a compo-
nent Ci of G − Si in which there are two points of distance at least ε. For
every i ∈ N, pick a vertex ci ∈ Ci. As |G| is compact (Lemma 2.3), and no
vertex can be an accumulation point in |G|, there is an end ω in the closure
of the set {c0, c1, . . . } in |G|.

As U := {x ∈ |G|
∣∣dL(x, ω) < 1

2
ε} is open in |G|, it has to contain C(Si, ω)

for some i. Furthermore, there is a vertex cj ∈ C(Si, ω) with j ≥ i, because ω
lies in the closure of {c0, c1, . . . }. As Sj ⊃ Si, the component Cj of G− Sj is
contained in C(Si, ω) and thus in U . But any two points in U have distance
less than ε, contradicting the choice of Cj.

This implies in particular that:

Corollary 1. Let ε > 0 be given. There is an n ∈ N such that for every
i ≥ n, every outer edge of Ŝi is shorter than ε.
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6.3.2 Limits of paths and cycles

In this section we develop some tools that will help us obtain geodesic circles
as limits of sequences of geodesic cycles in the Ŝi.

A chain of paths (respectively cycles) is a sequence Xj, Xj+1, . . . of paths

(resp. cycles), such that every Xi with i ≥ j is the restriction of Xi+1 to Ŝi.

Definition 6.1. The limit of a chain Xj , Xj+1, . . . of paths or cycles, is the
closure in |G| of the set

X̃ :=
⋃

j≤i<ω

(
Xi ∩ S̃i

)
.

Unfortunately, the limit of a chain of cycles does not have to be a circle,
as shown in Figure 6.3. However, we are able to prove the following lemma.

S0
S1

S2X0
X1

X2

X

Figure 6.3: A chain X0,X1, . . . of cycles (drawn thick), whose limit X is no circle
(but the disjoint union of two circles).

Lemma 6.5. The limit of a chain of cycles is a continuous image of S1.
The limit of a chain of paths is a continuous image of the real unit interval
[0, 1].

Proof. Let X0, X1, . . . be a chain of cycles (proceed analogously for a chain
Xj , Xj+1, . . . ) and let X be its limit. We define the desired map σ : S1 → X
with the help of homeomorphisms σi : S1 → Xi for every i ∈ N. Start
with some homeomorphism σ0 : S1 → X0. Now let i ≥ 1 and suppose
that σi−1 : S1 → Xi−1 has already been defined. We change σi−1 to σi by
mapping the preimage of any outer edge in Xi−1 to the corresponding path
in Xi. While we do this, we make sure that the preimage of every outer edge
in Xi is not longer than 1

i
.

Now for every x ∈ S1, define σ(x) as follows. If there is an n ∈ N such
that σi(x) = σn(x) for every i ≥ n, then define σ(x) = σn(x). Otherwise,
σi(x) lies on an outer edge uivi for every i ∈ N. By construction, there is
exactly one end ω in the closure of {u0, v0, u1, v1, . . . } in |G|, and we put
σ(x) := ω.
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It is straightforward to check that σ : S1 → X is continuous, and that
X̃ ⊆ σ(S1). As σ(S1) is a continuous image of the compact space S1 in the
Hausdorff space |G|, it is closed in |G|, thus σ(S1) = X.

For a chain X0, X1, . . . of paths, the construction is slightly different:
As the endpoints of the paths Xi may change while i increases, we let σi :
[0, 1] → X map a short interval [0, δi] to the first vertex of Xi, and the
interval [1 − δi, 1] to the last vertex of Xi, where δi is a sequence of real
numbers converging to zero. Except for this difference, the construction of a
continuous map σ : [0, 1] → X imitates that of the previous case.

Recall that a circle is geodesic, if for every two points x, y ∈ C, one of
the two x-y–arcs in C has length d(x, y). Equivalently, a circle C is geodesic
if it contains no shortcut, that is, an arc in |G| with endpoints x, y ∈ C ∩ V̂
and length less than both x-y–arcs in C.

It may seem more natural if a shortcut of C is a C-arc, that is, an arc
that meets C only at its endpoints. The following lemma will allow us to
only consider such shortcuts.

Lemma 6.6. Every shortcut of a circle C in |G| contains a C-arc which is
also a shortcut of C.

Proof. Let P be a shortcut of C with endpoints x, y. As C is closed, every
point in P \ C is contained in a C-arc in P . Suppose no C-arc in P is a
shortcut of C. We can find a family (Wi)i∈N of countably many internally
disjoint arcs in P , such that for every i, Wi is either a C-arc or an arc
contained in C, and every edge in P lies in some Wi (there may, however,
exist ends in P that are not contained in any arc Wi). For every i, let xi, yi

be the endpoints of Wi and pick a xi-yi–arc Ki as follows. If Wi is contained
in C, let Ki = Wi. Otherwise, Wi is a C-arc and we let Ki be the shortest
xi-yi–arc on C. Note that since Wi is no shortcut of C, Ki is at most as long
as Wi.

Let K be the union of all the arcs Ki. Clearly, the closure K of K in |G|
is contained in C, contains x and y, and is at most as long as P . It is easy
to see that K is a connected topological space; indeed, if not, then there are
distinct edges e, f on C, so that both components of C − {e, f} meet K,
which cannot be the case by the construction of K. By Theorem 4.1, K is
also arc-connected, and so it contains an x-y–arc that is at most as long as
P , contradicting the fact that P is a shortcut of C.

Thus, P contains a C-arc which is also a shortcut of C.

By the following lemma, the restriction of any geodesic circle is also
geodesic.
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Lemma 6.7. Let i > j and let C be a geodesic circle in |G| (respectively,
an Li-geodesic cycle in Ŝi). Then Cj := C|Ŝj is an Lj-geodesic cycle in Ŝj,
unless Cj = ∅.

Proof. Suppose for contradiction, that Cj has a shortcut P between the ver-
tices x, y. Clearly, x, y lie in C, so let Q1, Q2 be the two x-y–arcs (resp.
x-y–paths) in C. We claim that L(Qk) > d(x, y) (resp. Li(Qk) > d(x, y))
for k = 1, 2. Indeed, as P is a shortcut of Cj, and Qk|Ŝj is a subpath of

Cj with endvertices x, y for k = 1, 2, we have Lj(Qk|Ŝj) > Lj(P ). More-

over, by Lemma 6.1 we have L(Qk) ≥ Lj(Qk|Ŝj) (resp. Li(Qk) ≥ Lj(Qk|Ŝj)),
and by Lemma 6.2 Lj(P ) ≥ d(x, y), so our claim is proved. But then, by
the definition of d(x, y) (resp. by Lemma 6.2), there is an x-y–arc Q in |G|
such that L(Q) < L(Qk) (resp. an x-y–path Q in Ŝi such that d(x, y) =
Li(Q) < Li(Qk)) for k = 1, 2, contradicting the fact that C is geodesic (resp.
Li-geodesic).

As already mentioned, the limit of a chain of cycles does not have to be
a circle. Fortunately, the limit of a chain of geodesic cycles is always a circle,
and in fact a geodesic one:

Lemma 6.8. If C is the limit of a chain C0, C1, . . . of cycles, such that Ci

is Li-geodesic in Ŝi, then C is a geodesic circle.

Proof. Define the map σ as in the proof of Lemma 6.5 (with Ci instead of
Xi). We claim that σ is injective.

Indeed, as only ends can have more than one preimage under σ, suppose,
for contradiction, that ω is an end with two preimages. These preimages
subdivide S1 into two components P1, P2. Choose ε ∈ R+ smaller than the
lengths of σ(P1) and σ(P2). By Corollary 1, there is a j such that every outer
edge of Ŝj is shorter than ε. On the other hand, for a sufficiently large i ≥ j,

the restrictions of σ(P1) and σ(P2) to Ŝi are also longer than ε. Thus, the
distance along Ci between the first and the last vertex of σ(P1)|Ŝi is larger
than ε. As those vertices lie in the same component of G − Si (namely, in
C(Si, ω)), there is an outer edge of Ŝi between them. This edge is shorter
than ε and thus a shortcut of Ci, contradicting the fact that Ci is Li-geodesic.

Thus, σ is injective. As any bijective, continuous map between a compact
space and a Hausdorff space is a homeomorphism, C is a circle.

Suppose, for contradiction, there is a shortcut P of C between points
x, y ∈ C ∩ V̂ . Choose ε > 0 such that P is shorter by at least 3ε than both
x-y–arcs on C. Then, there is an i such that the restrictions Q1, Q2 of the
x-y–arcs on C to Ŝi are longer by at least 2ε than Pi := P |Ŝi (Q1, Q2 lie in
Ci by the definition of σ, but note that they may have different endpoints).

51



By Corollary 1, we may again assume that every outer edge of Ŝi is shorter
than ε. If x does not lie in Ŝi, then the first vertices of Pi and Q1 lie in
the component of G − Si that contains x (or one of its rays if x is an end).
The same is true for y and the last vertices of Pi and Q1. Thus, we may
extend Pi to a path P ′

i with the same endpoints as Q1, by adding to it at
most two outer edges of Ŝi. But P ′

i is then shorter than both Q1 and Q2, in
contradiction to the fact that Ci is Li-geodesic. Thus there is no shortcut to
C, and therefore it is geodesic.

6.3.3 Proof of the generating theorem

Before we are able to prove Theorem 6.1, we need one last lemma.

Lemma 6.9. Let C be a circle in |G| and let i ∈ N be minimal such that
C meets Si. Then, there exists a finite family F , each element of which is
a geodesic circle in |G| of length at most 5εi, and such that

∑
F coincides

with C in S̃i, that is, (
∑

F) ∩ S̃i = C ∩ S̃i.

Proof. For every j ≥ i, choose, among all families H of Lj-geodesic cycles

in Ŝj , the ones that are minimal with the following properties, and let Vj be
their set:

• no cycle in H is longer than 5εi with respect to Lj , and

•
∑

H coincides with C in S̃i.

By Lemma 6.3, the sets Vj are not empty. As no family in Vj contains a cycle

twice, and Ŝj has only finitely many cycles, every Vj is finite.
Furthermore, for every j ≥ i and every C ∈ Vj+1, restricting every cycle

in C to Ŝj yields, by Lemma 6.7, a family C− of Lj-geodesic cycles. Moreover,
C− lies in Vj : by Lemma 6.1, no element of C− is longer than 5εi, and the sum

of C− coincides with C in Ŝi, as the performed restrictions do not affect the
edges in S̃i. In addition, C− is minimal with respect to the above properties
as C is.

Now construct an auxiliary graph with vertex set
⋃

j≥i Vj , where for every
j > i, every element C of Vj is incident with C−. Applying Lemma 2.7 to
this graph, we obtain an infinite sequence Ci, Ci+1, . . . such that for every
j ≥ i, Cj ∈ Vj and Cj = C−

j+1. Therefore, for every cycle D ∈ Ci, there is
a chain (D =)Di, Di+1, . . . of cycles such that Dj ∈ Cj for every j ≥ i. By
Lemma 6.8, the limit XD of this chain is a geodesic circle, and XD is not
longer than 5εi, because in that case some Dj would also be longer than 5εi.
Thus, the family F resulting from Ci after replacing each D ∈ Ci with XD

has the desired properties.
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Proof of Theorem 6.1. If (Fi)i∈I is a family of families, then let the family⋃
i∈I Fi be the disjoint union of the families Fi.
Let C be an element of C(G). For i = 0, 1, . . . , we define finite families

Γi of geodesic circles that satisfy the following condition:

Ci := C +
∑⋃

j≤i

Γj does not contain edges of S̃i (6.1)

where + denotes the symmetric difference.
By Lemma 2.1, there is a family C of edge-disjoint circles whose sum

equals C. Applying Lemma 6.9 to every circle in C that meets S0 (there are
only finitely many), yields a finite family Γ0 of geodesic circles that satisfies
condition (6.1).

Now recursively, for i = 0, 1, . . ., suppose that Γ0, . . . , Γi are already de-
fined finite families of geodesic circles satisfying condition (6.1), and write
Ci as a sum of a family C of edge-disjoint circles, supplied by Lemma 2.1.
Note that only finitely many members of C meet Si+1, and they all avoid Si

as Ci does. Therefore, for every member D of C that meets Si+1, Lemma 6.9
yields a finite family FD of geodesic circles of length at most 5εi+1 such that
(
∑

FD) ∩ S̃i+1 = D ∩ S̃i+1. Let Γi+1 =
⋃

D∈C

D∩Si+1 
=∅
FD. By the definition of

Ci and Γi+1, we have

Ci+1 = C +
∑ ⋃

j≤i+1

Γj = C +
∑ ⋃

j≤i

Γj +
∑

Γi+1 = Ci +
∑

Γi+1.

By the definition of Γi+1, condition (6.1) is satisfied by Ci+1 as it is satisfied
by Ci. Finally, let

Γ :=
⋃
i<ω

Γi.

Our aim is to prove that
∑

Γ = C, so let us first show that Γ is thin.
We claim that for every edge e ∈ E(G), there is an i ∈ N, such that for

every j ≥ i no circle in Γj contains e. Indeed, there is an i ∈ N, such that εj

is smaller than 1
5
L(e) for every j ≥ i. Thus, by the definition of the families

Γj, for every j ≥ i, every circle in Γj is shorter than L(e), and therefore too
short to contain e. This proves our claim, which, as every Γi is finite, implies
that Γ is thin.

Thus,
∑

Γ is well defined; it remains to show that it equals C. To this
end, let e be any edge of G. By (6.1) and the claim above, there is an i, such
that e is contained neither in Ci nor in a circle in

⋃
j>i Γi. Thus, we have

e /∈ Ci +
∑ ⋃

j>i

Γj = C +
∑

Γ.
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As this holds for every edge e, we deduce that C +
∑

Γ = ∅, so C is the sum
of the family Γ of geodesic circles.

6.4 Further problems

It is known that the finite circles (i.e. those containing only finitely many
edges) of a locally finite graph G generate C(G) (see [12, Corollary 8.5.9]).
In the light of this result and Theorem 6.1, it is natural to pose the following
question:

Problem 6.1 ([23]). Let G be a locally finite graph, and consider a metric
representation of G. Do the finite geodesic circles generate C(G)?

The answer to Problem 6.1 is negative: Figure 6.4 shows a graph with a
metric representation where no geodesic circle is finite.

In the Introduction we did not define dG(x, y) as the length of a shortest
x-y–arc, because we could not guarantee that such an arc exists. But does
it? The following result asserts that it does.

Proposition 6.2 ([23]). For any two distinct points x, y ∈ V̂ , there exists
an x-y–arc in |G| of length d(x, y).

Proof. Let P = P0, P1, . . . be a sequence of x-y–arcs in |G| such that (L(Pj))j∈N

converges to d(x, y). Choose a j ∈ N such that every arc in P meets Sj . Such
a j always exists; if for example x, y ∈ Ω, then pick j so that Sj separates
every ray in x from every ray in y.

As Ŝj is finite, there is a path Xj in Ŝj and a subsequence Pj of P such

that Xj is the restriction of any arc in Pj to Ŝj . Similarly, for every i > j,

we can recursively find a path Xi in Ŝi and a subsequence Pi of Pi−1 such
that Xi is the restriction of any arc in Pi to Ŝi.

By construction, Xj, Xj+1, . . . is a chain of paths. The limit X of this
chain contains x and y as it is closed, and L(X) ≤ d(x, y); for if L(X) >
d(x, y), then there is an i such that L(Xi∩ S̃i) > d(x, y), and as L(Xk∩ S̃k) >
L(Xi ∩ S̃i) for k > i, this contradicts the fact that (L(Pj))j∈N converges to
d(x, y). By Lemma 6.5, X is the image of a topological path and thus, by
Lemma 2.5, contains an x-y–arc P . Since P is at most as long as X, it has
length d(x, y) (thus as L(X) ≤ d(x, y), we have P = X.)

Our next problem raises the question of whether it is possible, given
x, y ∈ V (G), to approximate d(x, y) by finite x-y–paths:
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Problem 6.2 ([23]). Let G be a locally finite graph, and consider a metric
representation of G. Given x, y ∈ V (G) and ε ∈ R+, is it always possible to
find a finite x-y–path P such that L(P ) − d(x, y) < ε?

Surprisingly, the answer to this problem is also negative. The graph of
Figure 6.4 with the indicated metric representation is again a counterexam-
ple.
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Figure 6.4: A 1-ended graph G with a metric representation. Every geodesic circle
is easily seen to contain infinitely many edges. Moreover, every (graph-theoretical)
x-y–path has length at least 4, although d(x, y) = 2.

Theorems 6.2 and 6.1 could be applied in order to prove that the cycle
space of a graph is generated by certain subsets of its, by choosing an appro-
priate assignment of edge lengths, as indicated by our next Problem. Call a
cycle in a finite graph peripheral, if it is induced and non-separating.

Problem 6.3. If G is a 3-connected finite graph, is there an assignment of
lengths L to the edges of G, such that every L-geodesic cycle is peripheral?

I was not able to give an answer to this problem. A positive answer
would imply, by Theorem 6.2, a classic theorem of Tutte [31], asserting that
the peripheral cycles of a 3-connected finite graph generate its cycle space.
Problem 6.3 can also be posed for infinite graphs, using the infinite counter-
parts of the concepts involved1.

1Tutte’s theorem has already been extended to locally finite graphs by Bruhn [2]
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Chapter 7

Hamilton circles in squares of
locally finite graphs

7.1 Introduction

We begin this chapter with a short proof of Fleischner’s Theorem (Theo-
rem 1.1) in a slightly stronger form (Section 7.2.2). Modifying this proof,
we obtain a proof of a similar result of Fleischner [18], stating that the to-
tal graph of a connected, bridgeless finite graph contains a Hamilton cycle
(Section 7.2.3). Then, we generalise Theorem 1.1 to locally finite graphs
(Section 7.3). Such a generalisation has already been made by Thomassen,
but only for locally finite graphs with one end:

Theorem 7.1 (Thomassen [29]). If G is a 2-connected locally finite 1-ended
graph, then G2 contains a spanning double ray.

Note that in a 1-ended graph, a double ray together with the end of the
graph is a circle, thus Thomassen proved the existence of a Hamilton circle.
Settling a conjecture of Diestel [11, 12], we will extend Fleischner’s Theorem
(and Thomassen’s) to locally finite graphs with any number of ends:

Theorem 7.2 ([21]). If G is a locally finite 2-connected graph, then G2 has
a Hamilton circle.

As an intermediate step, we obtain a result which may be of independent
interest. An Euler tour of G is a continuous map σ : S1 → |G| that traverses
every edge of G exactly once. An Euler tour is end-faithful if it visits each
end of G exactly once. We will prove that:

Theorem 7.3 ([21]). If a locally finite multigraph has an Euler tour, then it
also has an end-faithful Euler tour.
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As discussed in Section 7.5, Theorem 7.3 could help generalise other suf-
ficient conditions for the existence of a Hamilton circle.

7.2 Finite graphs

7.2.1 Definitions

A trail in a multigraph is a walk that does not traverse any edge more than
once. A pass of a trail J through some vertex x, is a subtrail of J of the
form uexfv (where e and f are edges). If P = uexfv is a pass of the trail
J , then lifting P in J is the operation of replacing P by the trail ugv where
g is a u-v edge if u �= v, or by the trivial trail u if u = v (in fact, the latter
case will not occur), to obtain a new trail.

A double edge is a pair of parallel edges, and a multipath is a multigraph
obtained from a path by replacing some of its edges by double edges. If
C ⊆ G are multigraphs, then a C-trail in G is either a path having precisely
its endvertices (but no edge) in common with C, or a cycle having precisely
one vertex in common with C. A vertex y on some cycle C is called C-bound
if all neighbours of y lie on C.

7.2.2 Proof of Fleischner’s theorem

We will use the following Lemma of Ř́ıha [32, 12]. For the convenience of the
reader I’m including its proof.

Lemma 7.1. If G is a 2-connected finite graph and x ∈ V (G), then there is
a cycle C ⊆ G that contains x as well as a C-bound vertex y �= x.

Proof. As G is 2-connected, it contains a cycle C ′ that contains x. If C ′ is a
Hamilton cycle there is nothing more to show, so let D be a component of
G−C ′. Assume that C ′ and D are chosen so that |D| is minimal. Easily, C ′

contains a path P ′ between two distinct neighbours u, v of D whose interior
P̊ ′ does not contain x and has no neighbour in D. Replacing P ′ in C ′ by
a u-v–path through D, we obtain a cycle C that contains x and a vertex
y ∈ D. By the minimality of |D| and the choice of P ′, y has no neighbour in
G − C, so C satisfies the assertion of the lemma.

We will prove Theorem 1.1 in the following stronger form, which is similar
to an assertion proved by Ř́ıha [32]. This proof is published in [22].

Theorem 7.4. If G is a 2-connected finite graph and x ∈ V (G), then G2

has a Hamilton cycle both x-edges of which lie in E(G).
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Proof. We perform induction on |G|. For |G| = 3 the assertion is trivial. For
|G| > 3, let C be a cycle as provided by Lemma 7.1. Our first aim is to
define, for every component D of G − C, a set of C-trails in G2 + E ′, where
E ′ will be a set of additional edges parallel to edges of G. Every vertex of D
will lie in exactly one such trail, and every edge of an element of such a trail
that is incident with a vertex of C will lie in E(G) or in E ′.

If D consists of a single vertex u, we pick any C-trail in G containing u,
and let ED be the set of its two edges. If |D| > 1, let D̃ be the (2-connected)
graph obtained from G by contracting G − D to a vertex x̃. Applying the
induction hypothesis to D̃, we obtain a Hamilton cycle H̃ of D̃2 whose edges
at x̃ lie in E(D̃). Write Ẽ for the set of those edges of H̃ that are not edges
of G2. Replacing these by edges of G or new edges e′ ∈ E ′, we shall turn
E(H̃) into the edge set of a union of C-trails. Consider an edge uv ∈ Ẽ, with
u ∈ D. Then either v = x̃, or u, v have distance at most 2 in D̃ but not in G,
and are hence neighbours of x̃ in D̃. In either case, G contains a u–C edge.
Let ED be obtained from E(H̃)\ Ẽ by adding at every vertex u ∈ D as many
u–C edges as u has incident edges in Ẽ; if u has two incident edges in Ẽ but
sends only one edge e to C, we add both e and a new edge e′ parallel to e.
Then every vertex of D has the same degree (two) in (V (G), ED) as in H̃ , so
ED is the edge set of a union of C-trails. Let G′ := (V (G), E(C) ∪

⋃
D ED)

be the union of C and all those trails, for all components D together.
Let y be a C-bound vertex of C and pick a vertex z and edges f1, f2, g1, g2

of C, so that C = xg1z . . . f1yf2 . . . g2x. We will add parallel edges to some
edges of C−g1, to turn G′ into an eulerian multigraph G� — i.e. a connected
multigraph in which every vertex has even degree (and which therefore has
an Euler tour [12]). Every vertex in G′−C already has degree 2. In order to
obtain even degrees at the vertices in C, consider the vertices of C in reverse
order, starting with x and ending with z. Let u be the vertex currently
considered, and let v be the vertex to be considered next. Add a new edge
parallel to uv if and only if u has odd degree in the multigraph obtained
from G′ so far. When finally u = z is considered, every other vertex has even
degree, so by the “hand-shaking lemma” z must have even degree too and
no edge parallel to g1 will be added. Let C� = G�[V (C)].

If g2 now has a parallel edge g′
2, then delete both g2, g

′
2. If g2 has no

parallel edge in G�, and f2 has a parallel edge f ′
2, then delete both f2 and f ′

2.
Let G 
� be the resulting (eulerian) multigraph. If g2 has been deleted, then let
P3 be the multipath C�−{g2, g

′
2}. If not, let P1 be the maximal multipath in

C� with endvertices x, y containing g1, and let P2 be the multipath containing
all edges in E(C� ∩ G 
�) − E(P1).

Then, for every i such that Pi has been defined, do the following. Write
Pi = xi

0x
i
1 . . . xi

li
with xi

0 = x, and ei
j or just ej for the xi

j−1–x
i
j edge of Pi
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Figure 7.1: Replacing ej and e′j+1 by a new edge fj.

in E(C). Its parallel edge, if it exists, will again be denoted by e′j (when
i is fixed). Now for j = 1, . . . , li − 1, if e′j+1 is defined, replace ej and
e′j+1 by a new edge fj joining xj−1 to xj+1; we say that fj represents the
trail xj−1ejxje

′
j+1xj+1 (see Figure 7.1). Note that every such replacement

leaves the current multigraph connected, and it preserves the parity of all
degrees. Hence, the multigraph G� finally obtained by all these replacements
is eulerian, so pick an Euler tour J of G�. Transform J into an Euler tour
J ′ of G 
� by replacing every edge in E(J) −E(G 
�) by the trail it represents.

Our plan is to perform some lifts in J ′ to transform it into a Hamilton
cycle. To this end, we will now mark some passes for later lifting. Start by
marking all passes of J ′ through x except for one arbitrarily chosen pass. We
want to mark some more passes, so that for any vertex v ∈ V (C) − x the
following assertion is true:

if v = xi
j then all passes of J ′ through v are marked, except for

the pass containing ei
j .

(7.1)

This is easy to satisfy for v �= y, as there is only one pair i, j so that v = xi
j

in that case. A difficulty can only arise if v = y = x1
l1

= x2
l2
, in case both P1

and P2 contain y. By the definition of the Pi this case only materialises if
there are no edges g′

2, f
′
2 in G�, and as y is C-bound, it has degree at most 3

and hence degree 2 in G� in that case. But then, there is only one pass of J ′

through v, which consists of e1
l1
, e2

l2
, and leaving it unmarked satisfies (7.1).

So we assume that (7.1) holds, and now we claim that

for every edge e = uv in J ′, at most one of the two passes of J ′

that contain e was marked, and moreover if u = x, then the pass
of J ′ through v containing e was not marked.

(7.2)

This is clear for edges in E(G 
�) − E(C�), so pick an e ∈ Pi. If e = ej for
some j, then by (7.1) the pass of J ′ through xi

j containing e has not been
marked; in particular, if e is incident with x = xi

0, then j = 1 and the pass
of J ′ through xi

1 containing e has not been marked. If e = e′j , then e is not
incident with x by the construction of G 
�, and an edge fj−1 was defined to
represent the trail xj−2ej−1xj−1e

′
jxj . Since J contained fj−1, this trail is a

pass in J ′. This pass is unmarked by (7.1), because it is a pass through xj−1

containing ej−1.
So we proved our claim, which implies that no two marked passes share

an edge. Thus we can now lift each marked pass of J ′ to an edge of G2, to
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obtain a new closed trail H ′ in G2 + E ′ (in particular, H ′ is connected seen
as a graph). Every vertex of G is traversed precisely once by H ′, since by
(7.1) we marked, and eventually lifted, for each vertex v of G all passes of
J ′ through v except precisely one pass. (This is trivially true for a vertex u
in G − C, as there is only one pass of J ′ through u and this pass was not
marked.) In particular, H ′ cannot contain any pair of parallel edges, so we
can replace every edge e′ in H ′ that is parallel to an edge e of G by e to
obtain a Hamilton cycle H of G2. Since by the second part of (7.2) no edge
incident with x was lifted at its other end, both x-edges of H lie in G as
desired.

7.2.3 Total graphs

The subdivision graph G÷ of a multigraph G is the bipartite graph with
partition classes V (G), E(G) where x ∈ V (G) and e ∈ E(G) are joined with
an edge if x is incident with e in G. The total graph T (G) of G is the graph
on V (G) ∪ E(G) where two vertices are adjacent if the respective objects in
G are adjacent or incident; equivalently, T (G) is the square of G÷.

If C ⊆ G, then a C-cluster in G is either the union of a component D
of G−C with all C-D edges, or an edge that has both endvertices in C but
does not lie in E(C).

We will say that an edge uv of T (G) bridges a vertex x ∈ V (G) if u, v are
x-edges of G.

By slightly modifying the proof in Section 7.2.2 we obtain a new proof of
the following result of Fleischner [17, 18].

Theorem 7.5 ([17, 18]). If G is a connected, bridgeless finite multigraph and
x ∈ V (G), then T (G) has a Hamilton cycle H such that:

(i) both x-edges of H lie in G÷ and

(ii) H contains no pair of incident edges e, f such that either both e, f
bridge x or e bridges x and f is incident with x.

Proof. We perform induction on |G|. For |G| = 2 the assertion is trivial. For
|G| > 2, let C be a cycle in G containing x. Our first aim is to define, for
every C-cluster D of G−C, a set of C-trails in T (G). Every vertex of T (D)
not in C will lie in exactly one of these trails, and every edge of such a trail
that is incident with a vertex of C will lie in E(G÷).

If D is an edge e, then e÷ is a C-trail with the desired properties. Let
ED be the edgeset of e÷. If D contains precisely one vertex u not in C, let
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d1, d2, . . . , dk be an enumeration of the u-edges of G; since G is bridgeless, we
have k ≥ 2. Let p, q be the endpoints of d1, dk in C, and define the C-trail P
in T (G) by P := pd1d2 . . . dk−1udkq. Note that the only edges of P incident
with C are pd1 and dkq, and they lie in G÷ as desired. Let ED be the edgeset
of P .

If D contains at least two vertices not in C, let D̃ be the multigraph
obtained from D by identifying all vertices in C ∩ D into a vertex x̃, and
consider the following two cases.

If D̃ is not bridgeless then, clearly, it contains a bridge b that is incident
with x̃; let u be the other vertex of b. Let d1, d2, . . . , dk be an enumeration of
the u-C edges in G; since G is bridgeless, we have k ≥ 2. Clearly, D̂ := D̃− x̃
is bridgeless, so applying the induction hypothesis to D̂ yields a Hamilton
cycle H =: uwH ′w′u of T (D̂) in which both u-edges uw, uw′ lie in D̂÷,
thus also in G÷. We can now explicitly define a C-trail in T (G) containing
all vertices of T (D) by P := pd1d2 . . . dk−1wH ′w′udkq, where p, q are the
endvertices of d1, dk in C. Note that as uw ∈ E(G÷), dk−1w is an edge of
T (G); moreover pd1, dkp ∈ E(G÷). Let ED be the edgeset of P .

Finally if D̃ is bridgeless, then applying the induction hypothesis to D̃,
we obtain a Hamilton cycle H̃ of T (D̃) whose edges at x̃ lie in D̃÷. Write Ẽ
for the set of those edges of H̃ that are not edges of T (G). Replacing these
by edges of G÷, we shall turn E(H̃) into the edge set of a union of C-trails.
Consider an edge uv ∈ Ẽ, with u �= x̃; then, either v = x̃ or u, v are x̃-edges
in D̃. In the first case, uv ∈ E(D̃÷) by (i), thus u is an edge of D incident
with C, and there is a u–C edge e(u) in G÷. In the second case, as u is an
x̃-edge in D̃ there is again a u–C edge e(u) in G÷. By (ii), each vertex u of
T (D̃)− x̃ is incident with at most one edge in Ẽ. Thus, if ED is the edgeset
obtained from E(H̃) \ Ẽ by adding at every vertex u �= x̃ that is incident
with Ẽ the edge e(u), then every vertex in T (D) − C has the same degree
(two) in (V (T (G)), ED) as in H̃ , so ED is the edge set of a union of C-trails,
and any edge of such a C-trail incident with C lies in G÷.

Subdividing all edges of C and attaching to it all C-trails defined above,
we obtain the (simple) graph

G′ :=
(
V (T (G)), E(C÷) ∪

⋃
D

ED

)
.

Let y, z be the neighbours of x in C÷ ⊆ G′, and define the edges g1 := xy
and g2 := xz. We will add parallel edges to some edges of C÷ − g1, to turn
G′ into an eulerian multigraph G�. Every vertex in G′ − C÷ already has
degree 2. In order to obtain even degrees at the vertices in C÷, consider the
vertices of C÷ in its cyclic order, starting with x and ending with y. Let u
be the vertex currently considered, and let v be the vertex to be considered

62



next. Add a new edge parallel to uv if and only if u has odd degree in the
multigraph obtained from G′ so far. When finally u = y is considered, every
other vertex has even degree, so by the “hand-shaking lemma” y must have
even degree too and no edge parallel to g1 will be added. Let G� be the
eulerian multigraph obtained so far, and let C� = G�[V (C÷)].

If g2 has now a parallel edge g′
2, then delete both g2, g

′
2. Let G 
� be the

resulting (eulerian) multigraph. If g2 has been deleted, then let P be the
multipath C� − {g2, g

′
2}. If not, let P be the multipath C� − g1. Write

P = x0x1 . . . x�i
with x0 = x, and ej for the xj−1–xj edge of P in E(C÷). Its

parallel edge, if it exists, will again be denoted by e′j.

Our plan is to find and Euler tour J ′ of G 
� that can be transformed into a
Hamilton cycle of T (G). In order to endow J ′ more easily with the required
properties, we shall not define it directly. Instead, we shall derive J ′ from an
Euler tour J of a related multigraph G�, which we define next.

For j = 1, . . . , li−1, if e′j+1 exists, then replace ej and e′j+1 by a new edge fj

joining xj−1 to xj+1; we say that fj represents the trail xj−1ejxje
′
j+1xj+1 (see

Figure 7.1). Note that every such replacement leaves the current multigraph
connected, and it preserves the parity of all degrees. Hence, the multigraph
G� obtained from G 
� by all these replacements is eulerian. So pick an Euler
tour J of G�, and transform J into an Euler tour J ′ of G 
� by replacing every
edge in E(J) − E(G 
�) by the trail it represents.

Our next aim is to perform some lifts in J ′ to transform it into a Hamilton
cycle of T (G). To this end, for every j ≥ 1, mark all passes of J ′ through xj

that do not contain ej . Also mark all passes of J ′ through x except for one
pass (chosen arbitrarily).

We now claim that

for every edge e = uv in J ′, at most one of the two passes of J ′

that contain e was marked, and moreover if u = x, then the pass
of J ′ through v containing e is unmarked.

(7.3)

This is clear for edges in E(G 
�) − E(C�), so pick an e ∈ E(C�). If e /∈ P ,
then e = xy, and as dG÷(y) = 2, there is only one pass of J ′ through y which,
then, is unmarked, and contains e, so (7.3) holds for e. If e ∈ P , then e = ej

or e = e′j for some j. If e = ej , then the pass of J ′ through xj containing e
has not been marked; in particular, if e is incident with x = x0, then j = 1
and the pass of J ′ through x1 containing e has not been marked. If e = e′j ,
then e is not incident with x, and an edge fj−1 was defined to represent the
trail xj−2ej−1xj−1e

′
jxj . Since J contained fj−1, this trail is a pass in J ′. This

pass is unmarked, because it is a pass through xj−1 containing ej−1. This
completes the proof of (7.3).
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Since all edges of G 
� at vertices of C÷ lie in G÷, all marked passes lift
to edges of T (G). As different marked passes never share an edge by (7.3),
lifting them all at once turns J ′ into a closed trail H ′ in T (G). Every vertex
of T (G) is traversed precisely once by H ′, since we marked, and eventually
lifted, for each vertex v of T (G) all passes of J ′ through v except precisely
one pass. (This is trivially true for a vertex u in T (G)−C÷, as there is only
one pass of J ′ through u and this pass was not marked.) In particular, H ′

cannot contain any pair of parallel edges, so we can replace every edge e′ in
H ′ that is parallel to an edge e of G÷ by e to obtain a Hamilton cycle H of
T (G). By the second part of (7.3), an edge of G 
� incident with x can only be
lifted at x, thus (i) holds. To see that (ii) holds too, note that if e = uv is an
edge in H that bridges x, then e resulted from lifting a pass L = udxd′v of
J ′. If in addition f is an edge in H incident with u such that f bridges x or
f = ux, then this yields a pass of J ′ that shares no edges with L and contains
an edge parallel to d. But x was not incident with any pair of parallel edges
in G 
�, a contradiction that proves (ii).

7.3 Infinite graphs

7.3.1 Definitions

Let G = (V, E) be a locally finite multigraph fixed throughout this section.

An x-edge is an edge incident with the vertex x.

A shortcut at a vertex x is the operation of replacing two edges ux, xv,
where u �= v, with a u-v–edge; the new edge shortcuts the edges ux, xv.

If H ⊆ G, then contracting H in G is the operation of replacing H in G
with a new vertex z, and making z incident with all vertices of G−H sending
an edge to H . If G′ is the graph resulting from G after contracting H to z,
and R ⊆ G′, then dcz(R) is the subgraph of G resulting from R, after deleting
z, in case z ∈ V (R), and replacing each edge xz ∈ E(R) with an arbitrarily
chosen x-H–edge; you can think of dcz(R) as the result of decontracting z in
R.

If C ⊆ G, denote by Ĉ the union of C with all edges incident with C in
G, including their endpoints. If G ⊇ H and C is a component of G − H ,
then Ĉ is called an H-bridge in G. Its feet are the vertices in V (Ĉ)− V (C).

A multiedge is the set of (parallel) edges between two fixed vertices of a
multigraph. A double edge is a multiedge containing precisely two edges; a
single edge is a multiedge containing precisely one edge. A simple multigraph
is a multigraph all multiedges of which are either double or single edges.
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If P is a path, e ∈ E(P ) and x ∈ V (P ), then xPe is the shortest subpath
of P connecting x to an endvertex of e.

A trail in a multigraph is a walk in which no edge appears more than
once.

An Euler tour of G is a continuous map σ : S1 → |G| such that every
inner point of an edge of G is the image of exactly one point of S1 (thus,
every edge is traversed exactly once, and in a “straight” manner). Call G
eulerian, if it has an Euler tour. An end-faithful map σ : S1 → |G| is a map
such that every end in Ω(G) has exactly one preimage under σ.

The following lemma comes from [14, Theorem 7.2]. It has been proved
for simple graphs only, but it is easily generalised to multigraphs.

Lemma 7.2. The following three assertions are equivalent:

• G is eulerian;

• E(G) ∈ C(G);

• Every finite cut of G is even.

7.3.2 Outline of the proof of Theorem 7.2

Before giving an outline of the proof of Theorem 7.2, let me compare it with
the proof of Theorem 7.1 and the proof of Fleischner’s theorem by Ř́ıha
[32, 12], which is shorter than its original proof. The descriptions that follow
are approximate, omitting much information not needed for the comparison.
Ř́ıha [32] proves Theorem 7.6 by induction; he finds a special cycle C, and
then applies the induction hypothesis to every component of G−C, to obtain
a set of C–paths in G2, called basic paths, so that each vertex of G − C
lies in exactly one of the paths. Basic paths have the property that their
endedges are original edges of G; let us call these endedges bonds. This
property makes it possible, to recursively merge pairs of incident basic paths
into longer basic paths, by shortcutting incident bonds, and he repeats this
operation as often as possible without disconnecting the graph. Then, some
edges of C are replaced by double edges, so that the resulting multigraph
is eulerian. Finally, it is shown that every Euler tour J of this multigraph
can be transformed to a Hamilton circle of G2, by replacing some subtrails
of length two of J , with edges of G2 with the same endvertices; we call this
process the hamiltonisation of J .

Thomassen follows a similar plan in his proof of Theorem 7.1 (which
appeared before Ř́ıha’s proof). The cycle C is replaced by a ray R, such that
all components of G − R are finite, and Theorem 7.6 is applied on each of
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them, to give a set of R–paths in G2 with the same properties as the basic
paths in Ř́ıha’s proof. Then, some edges of R are duplicated, so that the
resulting multigraph is eulerian. Next, some double edges are deleted, which
splits R in finite paths, but does not disconnect the graph; let us call these
paths segments. Again, some bonds are shortcutted, and it is then shown
that every Euler tour J of this multigraph can be hamiltonised. Rather than
doing the hamiltonisation on the whole graph simultaneously, it is shown
that no matter how the restriction of an Euler tour J , to some segment and
its neighbouring edges looks like, it is possible to locally modify J there,
using edges of G2, so that it traverses each vertex of the segment exactly
once. An example is shown in Figure 7.2.

Figure 7.2: An example of a local hamiltonisation. In the upper figure, the
restriction of the Euler tour on the segment (horizontal path) is indicated; it
consists of three paths. In the figure beneath, these trails have been transformed
into disjoint paths in the square of the graph, that span all vertices (dashed lines).

Trying to imitate these proofs for arbitrary locally finite graphs, we face
three major problems. The first one regards Euler tours. In the sketched
proofs, an Euler tour was transformed to a Hamilton circle, by performing
“leaps” over one vertex, using an edge of G2. Doing so for an arbitrary Euler
tour of a locally finite graph, we cannot avoid running through some end
more than once. But a Hamilton circle must, by definition, traverse each
end exactly once, thus if we want to gain one from an Euler tour using this
method, the Euler tour itself should be end-faithful. So we have to ask,
which eulerian graphs admit an end-faithful Euler tour. The answer is given
by Theorem 7.3: all of them.

The second problem is, what the analogue of R or C should be. In a
graph with many ends there is no ray that leaves only finite components
behind like the one used by Thomassen. Instead, we will use a complicated
structure looking like a spanning tree of G containing two rays to each end,
which spans the whole graph. Again, we will make the graph eulerian by
duplicating edges, and we will split into finite segments. Like in Thomassen’s
proof, we want to make sure that we can change the chosen Euler tour locally
on each segment W , so that it traverses each vertex exactly once. But in
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order to be able to perform shortcuts with edges incident with W , as we
did in Figure 7.2, we need an analogue of bonds: original edges of G, not
affected by shortcuts performed while treating other segments. Indeed, we
will make sure that the first edge of each segment W will not be shortcutted
while treating W , so that other segments intersecting with W could shortcut
it.

The third, and most serious problem, is that if we perform too many
shortcuts we run the risk of changing the end topology of the graph. This
problem appears even in the case of 1-ended graphs. Suppose, for example,
that after performing the first steps of Thomassen’s proof on some graph G
having only one end ω, to find the ray R and the basic paths, we get the
graph shown in Figure 7.3. If we shortcut every pair of incident bonds in
this graph, we will end up with a 2-ended graph G′, because the basic paths
will merge into a ray non-equivalent with R. We can still continue with the
plan of finding an Euler tour and transforming it to a Hamilton circle H of
G′, but H will not be a Hamilton circle of G: it will traverse ω twice.

...

R

Figure 7.3: Performing all shortcuts between bonds would create a new end.

Thomassen overcomes this difficulty by avoiding some shortcuts, at the
cost of making the hamiltonisation of the Euler tour more difficult. See for
example Figure 7.4, where vertex x is incident with two double edges on R,
and two bonds. A possible restriction of an Euler tour on this segment is
given, and the reader will confirm that it can only be locally hamiltonised in
the way shown. Having two vertices like x on one segment can be fatal, as
shown in Figure 7.5, where the Euler tour cannot be hamiltonised at all. But
even one vertex like x on a segment is enough to cause problems; as already
mentioned, we would like to hamiltonise each segment, so that its first edge
is not shortcutted. This, however, is not possible in Figure 7.4. So on the
one hand we should avoid shortcuts because they are dangerous for the end
topology, and on the other we need them in order to get rid of vertices like
x. An equilibrium is needed, which I could not find.

There is however an elegant solution to the problem, and it is achieved
by imposing constraints on the Euler tour. These constraints specify trails
of length 2 which the Euler tour must traverse. Technically, this is done
by constructing an auxiliary graph, where each such trail has been replaced
with an edge with the same endpoints. This auxiliary graph is eulerian if the
original one is, and choosing an Euler tour of the auxiliary graph, and then
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x

x

Figure 7.4: A difficult case: the lower figure shows the only possible hamiltonisa-
tion of the trails shown in the upper figure.

Figure 7.5: A case where no hamiltonisation is possible.

replacing the added edges with the trails they replaced, we obtain an Euler
tour of the original graph, that indeed traverses the wanted trails. This is
exemplified by Figure 7.6, which shows the auxiliary graph corresponding to
the graph of Figure 7.5. Note that the problematic Euler tour of Figure 7.5
could not result from an Euler tour of the graph in Figure 7.6. It is this idea
of imposing such constraints on the Euler tour that led to the short proof of
Fleischner’s theorem presented in Section 7.2.2.

Figure 7.6: Applying constraints for an Euler tour of the graph of Figure 7.5. The
dashed lines are edges of the original graph not in the auxiliary graph, while the
continuous curved lines are edges of the auxiliary graph not in the original one.

The proof of Theorem 7.2 is structured as follows. We start by construct-
ing the “scaffolding”, that is, the analogue of R in Thomassen’s proof, in
Section 7.4.2. It consists of a set of ladder-like structures like the one shown
in Figure 7.7 called rope-ladders, that are irregularly attached on each other,
and a set of finite structures called ear decompositions that are attached on
the rope-ladders. Unlike R, this scaffolding spans all vertices of our graph.

Next, we turn this scaffolding into an eulerian multigraph G 
� by replacing
some edges with double edges. Doing this is not as straightforward as in the
finite case, and it will require its own section, Section 7.4.3. In Section 7.4.4,
we will split G 
� in segments, called larvae, as follows. We consider each Π
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Figure 7.7: A rope-ladder. The horizontal paths are equivalent rays; usually their
first vertices do not coincide as they do here.

shaped subpath P of a rope-ladder like the thick path in Figure 7.7, called
a pi, consisting of the two subpaths of the horizontal rays between two con-
secutive “rungs”, and the rung on their right, and consider three cases. If
one of the endedges of P became a double edge in G 
� — we have made sure
that at most one did — we delete it, and consider the rest of P (or rather,
the multigraph that replaced P in G 
�) as a larva. If not, then we look at
a special vertex in P carefully chosen while constructing the scaffolding, de-
noted by yi

j and called an articulation point, and if one of the multiedges of
P incident with the articulation point is double, we delete it, and consider
the two remaining subpaths of P as larvae. If both multiedges incident with
the articulation point are single, we consider the two maximal subpaths of P
ending at the articulation point as larvae (Figure 7.8). The first pi of each
rope-ladder, however, does not follow these rules, which is the reason for the
anomaly regarding y0

0 in Figure 7.7 (the articulation point corresponding to
the first pi lies in the second one, which contains two articulation points,
while each subsequent pi contains one articulation point). An ear decompo-
sition is treated in a similar way. In all cases, we make sure that the first
multiedge of every larva is a single edge.

......

yi

k
yi

k+1

Figure 7.8: Splitting the graph into larvae. Every arrow indicates a larva.

Having divided the whole graph into larvae, we impose the aforemen-
tioned constraints on the Euler tour (in the same section). These constraints
are so effective, that no shortcuts like the ones in the proofs of Ř́ıha and
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Thomassen are needed, with the exception of the articulation points. The
reason we need shortcuts there is the following. It is no problem if two larvae
W, W ′ intersect at the vertex where W ′ starts, since the hamiltonisation of
the neighbourhood of W ′ will be done in such a way that its first edge is not
affected, and then W will be able to shortcut this edge; if larvae intersect
otherwise however, there could be a conflict between their hamiltonisations.
As shown in Figure 7.8, it could happen that two larvae intersect at their
last vertex, which is, in that case, an articulation point. In order to avoid a
conflict, we make sure that if two larvae end at an articulation point y, then
y has degree 2; if this is the case, then any Euler tour will traverse y only
once, and therefore no conflict will arise during the hamiltonisation. Artic-
ulation points already existed in Ř́ıha’s proof: there, C contains a vertex
with the property that it sends no edge to the rest of the graph, and this
vertex had a similar function. In infinite graphs however, it is not possible to
pick articulation points without unwanted neighbours, but instead we will,
in Section 7.4.5, perform shortcuts at the articulation points, to rid them of
unwanted incident edges.

After doing all these changes, we are left with an auxiliary graph on V (G),
where we will, in Section 7.4.6, pick the end-faithful Euler tour. Then, based
on the fact that the Euler tour complies with the constraints we imposed on
it, and that the auxiliary graph bears the same end topology as the original
one, we will show in Section 7.4.6 that it is possible to hamiltonise it to
obtain a Hamilton circle of G2.

Summing up, the proof of Theorem 7.2 consists of the following steps:

(i) construct the scaffolding;

(ii) make it eulerian;

(iii) split it into larvae;

(iv) impose constraints on the Euler tour;

(v) clean up the articulation points;

(vi) pick an Euler tour and hamiltonise it.

7.3.3 Some preliminaries

End-devouring rays

The following lemmas are needed for the construction of the scaffolding.
The graphs in Lemma 10 need not be locally finite, but the reader will lose
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nothing by assuming that they are. Our definition of Ω(G) for arbitrary
graphs remains that of Section 2.1.

If G is a graph and ω ∈ Ω(G), we will say that a set K of ω-rays devours
the end ω, if every ω-ray in G meets an element of K. An end devoured by
some countable set of its rays will be called countable.

Lemma 7.3. For every graph G and every countable end ω ∈ Ω(G), if G
has a set K of k ∈ N disjoint ω-rays, then it also has a set K ′ of k disjoint
ω-rays that devours ω. Moreover, K ′ can be chosen so that its rays have the
same starting vertices as the rays in K.

Proof. We will perform induction on k. For k = 1 this is easy; the de-
sired ray can for example be obtained by imitating the construction of nor-
mal spanning trees in [12, Theorem 8.2.4]. For the inductive step, let K =
{R0, R1, . . . , Rk−1} be a set of disjoint ω-rays in G. We want to apply the
induction hypothesis to G−R0, but we have to bear in mind that some of the
Ri might not be equivalent to one another after deleting R0. So let S ⊂ V
be a finite set, so that any two tails of elements of K that lie in the same
component of G−R0 −S are equivalent. Applying the induction hypothesis
to all components of G − R0 − S that contain a tail of some Ri, we obtain
a new set of rays R′

1, R
′
2, . . . , R

′
k−1 so that any ray equivalent to some Ri in

G−R0 −S meets some R′
j , and for each j, R′

j starts at the first vertex of Rj

not in S. We can now prolong each R′
j using the subpath of Rj that lies in S,

to achieve that R′
j and Rj start at the same vertex (without loss of generality,

each Rj leaves S only once, because otherwise we can add an initial subpath
of Rj to S). Moreover, let R′

0 be a ray in G−{R′
1, R

′
2, . . . , R

′
k−1} meeting all

rays equivalent with R0 in that graph and starting at the first vertex of R0.
We claim that K ′ = {R′

0, R
′
1, . . . , R

′
k−1} meets every ω-ray in G.

Indeed, suppose that S ∈ ω, S∩
⋃

K ′ = ∅, and let P be a set of infinitely
many disjoint S-R0–paths in G. Now either infinitely many of these paths
avoid {R′

1, R
′
2, . . . , R

′
k−1}, or infinitely many meet the same R′

i before meeting
R0. In the first case, S is equivalent with R0 in G −

⋃
{R′

1, R
′
2, . . . , R

′
k−1},

and thus meets R′
0, whereas in the second case, S is equivalent with some

R′
i in G − R0 − S and thus meets some R′

j , a contradiction that proves the
claim.

Lemma 7.4. If G is locally finite, ω ∈ Ω, and K is a set of rays devouring
ω in G, then every component of G − K sends finitely many edges to K.

Proof. If such a component sends infinitely many edges to K, then by Lemma 2.6
it contains a comb whose spine is equivalent with the rays in K, contradicting
the fact that K meets every ω-ray.
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End-faithful topological Euler tours

In this section we prove Theorem 7.3:

Proof of Theorem 7.3. By Lemma 7.2, every finite cut of G is even. Then
G has a finite cycle C, because otherwise, every edge would form a cut. Let
σ0 : S1 → C be a continuous function, that maps a closed interval of S1 to
each vertex and edge of C (think of the edges as containing their endvertices).

We will now inductively, in ω steps, define an end-faithful topological
Euler tour σ of G. After each step i, we will have defined a finite set of edges
Fi, and a continuous surjection σi : S1 → F̄i, where F̄i is the subspace of
|G| consisting of all edges in Fi and their incident vertices. In addition, we
will have chosen a set of vertices Si incident with Fi, and for each v ∈ Si a
closed interval Iv of S1 mapped to v by σi (These intervals will be used in
subsequent steps to accommodate the rest of the graph). Then, at step i+1,
we will pick a suitable set of finite cycles from E(G)− Fi, put them in Fi to
obtain Fi+1, and modify σi to σi+1. We might also add some vertices to Si

to obtain Si+1.

Formally, let F0 = E(C), S0 = ∅ and σ0 as defined above. Let e1, e2, . . .
be an enumeration of the edges of G. Then, perform ω steps of the following
type (skip 0). At step i, let for a moment Si = Si−1 and consider the
components of G− Fi−1. For each of them, say D, there is, by construction,
at most one vertex v ∈ Si incident with D. If there is none, just pick any
vertex v incident with both D and Fi−1, put it in Si and let Iv be any of the
closed intervals of S1 mapped to v by σi−1. Furthermore, pick a finite cycle
CD in D incident with v. Try to choose CD so that it contains ej , where
j = minek∈E(D) k, and if it is not possible, choose CD so that the distance
between ej and CD is smaller than the distance between ej and Fi−1. Then,
to define σi, map Iv continuously to CD, mapping an initial and a final closed
subinterval of Iv to v, and a closed subinterval of Iv to each vertex and edge
of CD, and let all these subintervals have equal length. Redefine Iv to be one
of those subintervals that were mapped to v.

We claim that the images σi(x) of each point x ∈ S1 converge to a point
in |G|. Indeed, since |G| is compact, it suffices to show that (σi(x))i∈N cannot
contain two subsequences converging to different points. It is easy to check
that if (σi(x))i∈N contains a subsequence converging to a vertex or an inner
point of an edge, then (σi(x))i∈N also converges to that point. So suppose it
contains two subsequences converging to two ends ω, ω′, and find a finite edge
set F separating those ends. Note that F ⊂ Fi for i large enough, so denote
by D, D′ the components of G−Fi that contain rays of ω, ω′ respectively. But
if x is mapped on a point p by σi+1, then for all steps succeeding i+1, x will
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be mapped on a point belonging to the component of G − Fi that contains
p. Thus (σi(x))i∈N cannot meet both D, D′ for n > i, a contradiction that
proves the claim.

So we may define

σ : S1 → |G|,

x �→ lim
n→∞

σn(x)

In order to prove that σ is continuous, we have to show that the preimage
of any basic open set of |G| is open. This is obvious for basic open sets of
vertices and inner points of edges. For every ω ∈ Ω, the sequence of basic
open sets of ω that arise after deleting Fi, i ∈ N, is converging, so it suffices
to consider the basic open sets of that form, and it is easy to see that their
preimages are indeed open.

Thus σ is continuous, and by the way we chose the CD, it traverses each
edge exactly once, which makes it an Euler tour.

We now claim that every end ω ∈ Ω has at most one preimage under σ.
Since at every step i, there is only one vertex v in Si meeting the component
of G − Fi that contains rays of ω, Iv is the only interval of S1 in which ω
could be accommodated. Since Iv gets subdivided after every step, the claim
is true, and thus σ is end-faithful.

7.4 Proof of Theorem 7.2

7.4.1 A stronger assertion

A shorter proof of Fleischner’s theorem was given by Ř́ıha [32], who in fact
proved a slightly stronger assertion:

Theorem 7.6. Let G be a finite 2-connected graph, let y∗ ∈ V (G) and let
e∗ = y∗x∗ ∈ E(G). Then, G2 has a Hamilton cycle H that contains e∗ and a
y∗-edge e′ ∈ E(G) with e′ �= e∗.

Rather than Theorem 1.1, we will generalise this stronger assertion:

Theorem 7.7 ([21]). Let G be an infinite 2-connected locally finite graph,
let y∗ ∈ V (G) and let e∗ = y∗x∗ ∈ E(G). Then, G2 has a Hamilton circle H
that contains e∗ and a y∗-edge e′ ∈ E(G) with e′ �= e∗.
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7.4.2 Constructing the scaffolding

In this section we construct the “scaffolding” G	 mentioned in Section 7.3.2.
The scaffolding will be made of two ingredients: rope-ladders and ear decom-
positions. Let us give the definition of the latter and some motivation.

An ear decomposition of a finite H–bridge B in G, where H ⊆ G, is a
subgraph of B spanning V (B−H), that consists of a sequence C1, C2, . . . , Cn

of paths called ears, Ci having the distinct endvertices pi, qi, so that

• C1 is an H-path, i.e. C1 ∩ H = {p1, q1};

• Ci ∩ (H ∪
⋃

j<i Cj) = {pi, qi} for every i;

• Ci is not an H-path for i > 1, and

• for every i, Ci contains a vertex y(Ci) �= pi, qi all of whose neighbours
in G lie in H ∪

⋃
j≤i Cj (thus |Ci| ≥ 2).

The endedges of Ci are its bonds, and y(Ci) is its articulation point.
An ear decomposition is what we get from the special cycle C in the proof
of Ř́ıha (see Section 7.3.2) if we try to make a constructive proof out of
Ř́ıha’s inductive one. To see this, recall that in that proof, after choosing
C we applied the induction hypothesis to every component D of G − C. To
be more precise, the induction hypothesis is in fact not applied to D, but
to an auxiliary graph D̃ resulting from G after deleting all components of
G − C other than D and contracting C to a vertex z. If we wish to have a
constructive proof, we can start the procedure again, with D̃ instead of G:
we can choose a special cycle C ′ � z in D̃, as we chose C in G, and so on.
Now if we decontract z, C ′ will look like an arc of an ear decomposition.

The special cycle C in Ř́ıha’s proof contained a special vertex, and artic-
ulation points play the role of that vertex.

The role of the ear decompositions in our proof will be to take care of
finite pieces of G that are not in any rope-ladder. The following lemma is
similar to a lemma of Ř́ıha [32].

Lemma 7.5. If G ⊇ H is a 2-connected graph, B is a finite H–bridge, and
x is a foot of B, then B has an ear decomposition such that x lies in C1.

Proof. Pick an H-path C starting at x, and let D be a component of B −
(C ∪ H); if there is no such component, then we can let C1 = C, pick any
inner vertex of C1 as y(C1), and choose C1 as an ear decomposition of B.
Suppose that C, D have been chosen so that |V (D)| is minimal. Clearly, D
has at least one neighbour u on C − H . If it has more than one, then let P
be a subpath of C −H whose endvertices u, v are neighbours of D, such that
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no inner vertex of P is a neighbour of D, and let C1 be the path resulting
from C after replacing P with a v-u–path with all inner vertices in D. If u
is the only neighbour of D on C − H , then let v be a neighbour of D in H ,
and replace one of the subpaths of C connecting u to H , with a v-u–path
with all inner vertices in D (having at least one inner vertex), so that the
resulting path C1 meets x.

In both cases, C1 contains a vertex y ∈ D, and we can let y(C1) = y,
because if y had a neighbour in B − (C1 ∪ H), it would lie in a component
D′ � D of B − (C1 ∪ H), contradicting the choice of C, D.

Now for i = 2, 3, . . ., suppose that C1, C2, . . . , Ci−1 have already been
defined and satisfy the conditions imposed by the definition of an ear decom-
position on its ears. If there is a vertex u of B − H they do not contain, let
H ′ = H ∪

⋃
j<i Cj, and repeat the above procedure for the H ′–bridge B′ that

contains u, but this time letting a foot of B′ in H ′ − H play the role of x
(this makes sure that Ci is not an H–path), to define the path Ci. If there is
no such vertex u, then C1, C2, . . . , Ci−1 is the wanted ear decomposition.

Let us now turn our attention to rope-ladders. Rope-ladders are in a way
similar to ear decompositions; Their pis (see Figure 7.7) play a similar role as
the ears af an ear decomposition, although there are important differences.
For example, we cannot guarantee that all neighbours in G of any articulation
point lie in its pi, but instead we will, as explained in Section 7.3.2, perform
shortcuts so as to rid articulation points of unwanted neighbours. In order
to be able to perform these shortcuts without changing the end topology, we
have to pick articulation points far enough from each other. But this will be
an easy task, because we can choose the pis to be arbitrarily long.

By a result of Halin [24, Theorem], if G is a locally finite 2-connected
graph, then there are for any v ∈ V (G) and any ω ∈ Ω(G), two independent
ω-rays starting at v. If x, y ∈ V (G), then by applying this result on ω and an
imaginary vertex joined to both x, y with an edge, we obtain the following:

Lemma 7.6. In a locally finite 2-connected graph G, there are for any x, y ∈
V (G) and any ω ∈ Ω(G), two disjoint ω-rays starting at x, y respectively.

Let ω be any end of G. By Lemma 7.6, there are two disjoint ω-rays
starting at x∗ and y∗ (recall that x∗, y∗ are the special vertices in the assertion
of Theorem 7.7), and by Lemma 7.3 there are rays R0, L starting at y∗, x∗

respectively, that devour ω. Let L0 = y∗x∗L, and let r0
0, l

0
0 = y∗. Choose a

sequence (y0
j )j∈N of vertices of R0, and a sequence (P 0

j )j∈N of pairwise disjoint
R0-L0 paths, P 0

j having the endpoints r0
j+1, l

0
j+1, so that y0

0 is the first vertex
on R0 after r0

1, and for each j > 0 the following conditions are satisfied (see
Figure 7.7):
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• y0
j lies on ẙ0

j−1R
0;

• r0
j+1 lies in ẙ0

j R
0ẙ0

j+1, and l0j+1 lies in l̊0jL
0;

• Every (R0 ∪ L0)–bridge that has y0
j−1 as a foot, has all other feet on

r̊0
j−1R

0r̊0
j+1 ∪ l̊0j−1L

0̊l0j+1 − y0
0

(The last condition makes sure that the articulation points are “far” from
each other.) All these conditions are easy to satisfy, if we choose the y0

j and P 0
j

in the order P 0
0 , y0

1, P
0
1 , y0

2, P
0
2 , . . .: recall that by Lemma 7.4 every (R0∪L0)–

bridge has only finitely many feet, so each time we want to choose a new y0
j

or P 0
j , we just have to go far enough along R0 and L0.

Let RL0 be the subgraph of G consisting of RL0
− := R0∪L0∪{P 0

j |j ∈ N}
and the ears of a fixed ear decomposition of every finite RL0

−–bridge, which

exists by Lemma 7.5. Let R̊L0 = RL0 − y∗ and let G	
0 = RL0.

The construction of G	
0 was the first step in an infinite procedure the

aim of which is to define G	. Each step i of this procedure will be similar
to the construction of G	

0: we will choose rays Ri, Li in G − G	
i−1, and add

them together with some Ri-Li–paths and some ear decompositions to G	
i−1

to obtain G	
i. The endpoints of Ri, Li will be distinct vertices of G	

i−1.
Formally, let (xi)i∈N be an enumeration of V := V (G), and perform ω

steps of the following type, skipping step 0. At step i, let Ci be the component
of G−G	

i−1 containing xj , where j is the smallest index so that xj /∈ G	
i−1; if

no such j exists, then stop the procedure and set G	 = G	
i−1. If the path Qj

has not been defined yet, then let it be any xj-R̊Ll–path in Ĉi, where l is the
greatest index for which such a path exists. Let v = v(i) be the last vertex
of Qj not in G	

i−1, and w = w(i) the vertex after v on Qj (thus w ∈ G	
i−1).

Intuitively, we want to have xj in G	
i, but this might be impossible if

xj is “far” from G	
i−1, in which case we just try to make sure that G	

i is

closer to xj than G	
i−1 was. In order to make “closer” precise, we define the

path Qj, and in each subsequent step we eat up part of Qj till we reach its
endpoint xj ; later we will formally prove that this does work. The condition

that Qj meet G	
i−1 at R̊Ll is needed in order to guarantee that G	 has the

same end topology as G. To see why this condition should help retain the
topology, it is useful to compare with the construction of a normal spanning
tree. Recall that as seen in Chapter 3, a normal spanning tree of a locally
finite graph G has the same end topology as G. A normal spanning tree can
be constructed by starting with the root and no edges, and stepwise attaching
new vertices to the already constructed tree, but each new vertex has to be
attached as high as possible on the existing tree (see [12]). The constuction
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of G	 imitates this, in the sense that rope-ladders are stepwise attached on
each other, and the aforementioned condition on Qj expresses the fact that
new rope-ladders should be attached “as high as possible”.

We claim that:

Claim 7.1. There are disjoint rays Ri ≈ Li in Ĉi, starting at w, G	
i−1 re-

spectively, that devour some end of G, so that either v ∈ Ri ∪Li or v lies in
a finite component of Ci − Ri ∪ Li.

Proof. Contracting G−Ci to one vertex z, we obtain a 2-connected graph, in
which we can apply Lemma 7.6 and Lemma 7.3 to get disjoint rays R′ ≈ L′,
starting at v and z respectively, that devour some end of Ci (Ci is infinite
because at the end of each step i we add all finite components to G	

i). By
Lemma 7.4, Ci has finitely many feet, thus R′, L′ also devour some end of
G. If L∗ := dcz(L

′) does not start at w, then Ri := wvR′, Li := L∗ satisfy
the conditions of the claim. If L∗ does start at w , then let P be a G	

i−1-
(R′ ∪L∗)–path in G−w. If the endpoint u of P lies on L∗ (respectively R′),
then let R = wvR′, L = PuL∗ (respectively R = PuR′, L = L∗). In the first
case (if u ∈ L∗), v ∈ R ∪ L holds so we can choose Ri = R, Li = L.

In the second case, we can suppose that R′, L′, P have been chosen so
that the path W := wvR′u is minimal. Now if v lies in R or in a finite
component of Ci − R ∪ L we can again choose Ri = R, Li = L. Otherwise,
we may contract G	

i−1 ∪R∪L to a vertex z′, and as above, find disjoint rays
R′′ ≈ L′′, starting at v and z′ respectively, that devour some end of G. We
distinguish two cases:

If L∗∗ := dcz′(L
′′) meets W , let r (respectively l) be the last vertex of

R′′ (L∗∗) on W (note that r �= u). Now if r ∈ lWu, let Ri = RuWrR′′ and
Li = wWlL∗∗, whereas if l ∈ rWu, let Ri = RuWlL∗∗ and Li = wWrR′′.
Depending on whether l = w or not, Ri, Li either contradict the minimality
of W , or contain v and thus satisfy all conditions of the Claim.

If L∗∗ does not meet W , then there are three subcases. In the first subcase,
L∗∗ starts at L. Then, let v′ be the last vertex on W meeting R′′, and choose
Li = LL∗∗, Ri = RuWv′R′′. In the second subcase, L∗∗ starts at R, and we
can choose Li = RL∗∗, Ri = wvR′′, and in the third subcase, L∗∗ starts at
G	

i−1, and we can choose Li = L∗∗, Ri = wvR′′. Depending on whether v = v′

or not, Ri, Li either contain v and thus satisfy all conditions of the Claim,
or contradict the minimality of W .

With Ri =: ri
0R

i, Li =: li0L
i having been chosen as in the Claim, pick a

sequence (yi
j)j∈N of vertices of Ri, and a sequence (P i

j )j∈N of pairwise disjoint
Ri-Li paths in Ci, P i

j having the endpoints ri
j+1, l

i
j+1, so that yi

0 is the first
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vertex on Ri after the endpoint of P i
0, and for each j > 0 the following

conditions are satisfied:

• yi
j lies on ẙi

j−1R
i;

• ri
j+1 lies in ẙi

jR
iẙi

j+1, and lij+1 lies in l̊ijL
i;

• Every (G	
i−1∪Ri∪Li)–bridge in G that has yi

j−1 as a foot, has all other

feet on r̊i
j−1R

ir̊i
j+1 ∪ l̊ij−1L

i̊lij+1 − yi
0

Such a choice is possible because, by Lemma 7.4 every (G	
i−1 ∪ Ri ∪ Li)–

bridge in G has finitely many feet, and there are only finitely many (G	
i−1 ∪

Ri ∪ Li)–bridges in G with feet on both G	
i−1 and Ri ∪ Li (again, we choose

the yi
j and P i

j in the order P i
0, y

i
1, P

i
1, y

i
2, P

i
2, . . .).

Let RLi be the graph consisting of RLi
− := Ri ∪Li ∪ {P i

j |j ∈ N} and the
ears of a fixed ear decomposition of every finite RLi

−–bridge in G. We call

RLi a rope-ladder (RL0 is also a rope-ladder). Let R̊Li = RLi − {ri
0, l

i
0}.

Recall that one of Ri, Li contains an edge incident with w. Call this edge
the anchor of RLi, unless w = yk

j for some j, k, in which case let the other

edge of Ri ∪Li incident with G	
i−1 be the anchor of RLi (by the choice of the

articulation points, it cannot be the case that both these edges are incident
with some articulation point). Note that by the choice of Qj and of the yi

j,
the anchor of RLi is incident with RLl, where l is the highest index so that
Ci has a foot on RLl. We will say that RLi is anchored on RLl. Call the
edge e∗ = y∗x∗ the anchor of RL0.

Define the relation ≺ between rope-ladders, so that R ≺ R′ if R′ is
anchored on R, and let � be the reflexive transitive closure of ≺. Clearly, �
is a partial order.

For every i ≥ 0, j ≥ 1, call the cycle in RLi
− containing P i

j , P
i
j−1 a window

of RLi, and denote it by W i
j . Moreover, let Πi

0 denote the path ri
0R

iP i
0L

ili0,
and for any j ≥ 1, let Πi

j = W i
j − Πi

j−1. For every i, j ∈ N, call Πi
j a pi,

let y(Πi
j) = yi

j, and call yi
j an articulation point. The bonds of a pi are its

endedges. The bonds of W i
j are the bonds of Πi

j and the bonds of RLi are the
bonds of Πi

0 (that is, its endedges). Call the edges of RL0
− incident with y∗

the bonds of RL0. Recall that ears also have bonds and articulation points.
The following assertion is true by construction:

Observation 1. If RLi sends a bond to R̊Lj, then RLj � RLi.

For suppose that RLi sends a bond to R̊Lj but RLj �� RLi. Since RLj

must have been constructed before RLi, we have j < i, and thus RLi �� RLj.
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Let k be the greatest index such that RLk � RLi and RLk � RLj (this
is well-defined as RL0 � RLi, RLj). Clearly, RLk �= RLi, RLj . Now if
RLi, RLj lie in the same RLk-bridge C in G, then by the choice of the paths
Qj , R � RLi, RLj holds, where R is the first rope-ladder constructed in C,
and R contradicts the choice of RLk. Thus RLi, RLj lie in distinct RLk-
bridges, contradicting the fact that RLi sends a bond to R̊Lj .

Similarly, we can prove that:

Observation 2. If an ear decomposition sends edges to R̊Li and R̊Lj then
either RLj � RLi or RLi � RLj.

For every i, let the anchor of Πi
0 be the anchor of RLi. For every Πi

j with
j > 0, pick one of its bonds and call it its anchor. For any ear of an ear
decomposition, pick one of its bonds that is not incident with any yi

j and call
it its anchor.

Define the relation ≺ between pis and ears (we are using, with a slight
abuse, the same symbol for two relations) so that Π ≺ Π′ if either Π = Πi

j

and Π′ = Πi
j+1 for some i, j, or Π′ = Πi

0 and RLi sends a bond to an inner
vertex of Π for some i, or Π′ is an ear and it sends a bond to an inner vertex
of Π (y∗ is an inner vertex of Π0

0). Let � be the reflexive transitive closure
of ≺. Clearly, � is a partial order.

Define G	
i as the union of G	

i−1 with RLi and an ear decomposition of

every finite (G	
i−1 ∪ RLi)–bridge.

We can now define G	 :=
⋃

i∈N
G	

i. In the rest of the paper we will be
working with this graph instead of G , but in order to be able to do so we
have to show that it does not differ from G too much.

Let us prove that V (G	) = V . By the choice of Ri, Li, either v(i) ∈ Ri∪Li

or v(i) lies in a finite component of Ci − Ri ∪ Li. In both cases, v(i) ∈ G	
i.

Thus, at most |Qj| steps after the path Qj is defined, xj will lie in G	
i, which

implies that V (G	) = V .
Our next aim is to prove that |G	| � |G|, and we will do so using

Lemma 2.9. Suppose there are rays Q, T in G	 such that Q �≈G� T but
Q ≈G T . They could not belong to the end of Ri for any i, because then
they would have to meet RLi infinitely often, and thus, clearly, be equiva-
lent in G	. Thus there is a j so that G	

j separates a tail of Q from a tail of

T in G	 (just choose j large enough so that G	
j contains some finite Q-T–

separator). We will show that this is not possible. Indeed, since Q ≈G T ,
there is a component C of G − G	

j containing tails of both Q, T . Clearly, Q
has some vertex in C that lies on some RLi

−, and the same holds for T . So
pick k, l ∈ N so that q ∈ V (Q) ∩ C ∩ RLk

− and t ∈ V (T ) ∩ C ∩ RLl
−. If R

is the first rope-ladder constructed in C, then by the choice of the paths Qi,
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R � L holds for any rope-ladder L meeting C, in particular R � RLk, RLl.
Thus, we can find a t-R̊–path P1 in G	 that uses only vertices of rope-ladders
RLi such that R � RLi � RLl, and a q-R̊–path P2 in G	, that uses only
vertices of rope-ladders RLi such that R � RLi � RLk. But P1, P2 and R̊
lie in C, contradicting the fact that G	

j separates Q from T in G	.

Thus no such rays Q, T exist and by Lemma 2.9, |G| � |G	|.

7.4.3 Making the graph eulerian

The next step is to replace some edges of G	 with double edges, in order
to turn it into an eulerian simple multigraph G�, but so that no anchor is
replaced with a double edge. Rather than constructing the simple multigraph
explicitly, we will show its existence using Theorem 2.1. In order to meet its
condition, we will show that:

Claim 7.2. For every i ∈ N there is an eulerian simple multigraph G
�
i on

V , so that any two vertices are neighbours in G
�
i if and only if they are

neighbours in G	, and furthermore no anchor that lies in G	[y∗]i — that is,
the subgraph of G	 induced by the vertices of distance at most i from y∗ — is

replaced with a double edge in G
�
i .

Proof. If C is a cycle of length at least 3 in the simple multigraph G, then
switching C is the operation of replacing in G each single edge of C with
a double edge, and each double edge containing an edge of C with a single
edge. Note that switching a cycle in a simple multigraph does not affect
vertex degrees.

In order to prove the Claim, begin by doubling all edges of G	. Then,
for every ear decomposition C1, C2, . . . , Ck meeting G	[y∗]i, recursively, for
j = k, k − 1, . . . , 0, if the anchor of Cj is now a double edge, find a cycle
containing Cj and avoiding

⋃
i>j Ci and all other ear decompositions in G	,

and switch this cycle. After doing so for all ear decompositions, recursively
for j = l, l − 1, . . . , 1, where l is the greatest index such that the anchor
of RLl lies in G	[y∗]i, if the anchor of RLj is a double edge, switch a cycle
comprising Πj

0 and a path in G	
j−1 that has the same endvertices as Πj

0 and
contains no edge of an ear decomposition (for j = 0 switch Π0

0). After the
end of this recursion, switch every window whose anchor is a double edge
and lies in G	[y∗]i.

Let G
�
i be the resulting simple multigraph. Note that G

�
i resulted from

a simple multigraph where all multiedges are double, after switching a finite
set of cycles. Since switching a cycle does not affect the parity of a finite

cut, G
�
i is eulerian by Lemma 7.2. Obviously, G

�
i satisfies all conditions of

the Claim.
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In order to apply Theorem 2.1, define for every edge e ∈ G	 a logical
variable v(e), the truth-values of which encode the two possible multiplicities
of e, and let V be the set of these variables. For every finite cut F of G	,
write a propositional formula with variables in V, expressing the fact that
the sum of the multiplicities of the edges in F is even. Moreover, for every
anchor e in G	, write a propositional formula with the only variable v(e),
expressing the fact that e is not replaced with a double edge.

By Theorem 2.1 and the Claim, there is an assignment of truth-values to
the elements of V satisfying all these propositional formulas. This assignment
encodes an assignment of multiplicities to the edges of G	, which defines a
simple multigraph G� which is eulerian (by Lemma 7.2), and in which all
anchors of G	 form single edges.

Let G 
� be the simple multigraph resulting from G� after deleting each
double edge that has the same endvertices as a bond in G	. Trivially, |G�| �

|G	| holds, and we claim that furthermore |G 
�| � |G�|. In order to prove
this assertion, we will specify a thin set of detours for the deleted edges and
apply Lemma 2.10.

If e = pq is a deleted bond of a rope-ladder RLi, let j = min({k <
i|e ∩ V (RLk) �= ∅}), and suppose that p lies in RLj and q in R̊Li. We claim
that there is a p-q–path dt(e) in G 
� that satisfies the following conditions:

(i) all vertices of dt(e) lie in rope-ladders R such that RLj � R � RLi;

(ii) dt(e) avoids all pis of RLj below the first one that sends an edge to the
component C of G	 − G	

j that contains R̊Li.

To prove this, note that as each pi lost at most one bond and no other
edges, R̊Ll ∩ G 
� is connected for every l, and so if RLl is anchored on RLk,
then for any vertex r in R̊Ll there is an r-R̊Lk–path in RLl ∩ G 
� that uses
the anchor of RLl. As RLj � RLi by Observation 1, we can use this fact
recursively to obtain a q-RLj–path P in G 
� ∩ G	

i all of whose vertices lie in
rope-ladders R such that RLj � R � RLi, and thus avoids the pis of RLj

below the first one that sends an edge to C. Since p lies in a pi that sends an
edge to C (namely, pq), and each pi lost at most one bond, we can prolong
P by a path in RLj ∩ G 
� to obtain the desired path dt(e).

If e is a deleted bond of an ear of an ear decomposition D, let i be the
greatest index such that R̊Li meets D and let j be the least index such
that R̊Lj meets D. Then, Observation 2 yields RLj � RLi, and we can,
by a similar argument as in the previous case, find a p-q–path dt(e) in G 
�

all vertices of which lie in D and in rope-ladders R such that RLj � R �
RLi and which avoids the pis of RLj below the first one that meets the
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(G	
j−1 ∪RLj

−)-bridge in G	 that contains D. Finally, if e is a deleted bond of
a window W , then let dt(e) = W − e.

We claim that the set {dt(e)|e ∈ E(G�) −E(G 
�)} is thin. To prove this,
it suffices to show that for any fixed edge f , there are only finitely many
rope-ladders and ear decompositions that can contribute a dt(e) containing
f . This is clear if f lies in an ear decomposition D, as a detour dt(e) can only
go through f in that case if e ∈ D (see (i)), so suppose that f ∈ Πl

m for some
l, m. Let us start by showing that there are finitely many rope-ladders that
contribute a dt(e) containing f . By (i) there are two kinds of rope-ladders R
that have a deleted bond e such that dt(e) containins f : the ones for which
e meets R̊Ll (i.e. the rope-ladder containing f), and the ones for which e
meets some rope-ladder L � RLl, L �= RLl. By (ii), the rope-ladders of the
first kind belong to components of G	 − G	

l that send an edge to some Πl
k

with k ≤ m. Since the graph is locally finite, there are only finitely many
such components, and by Lemma 7.4 each of them sends finitely many edges
to RLl. As these edges are the only candidates for e, there are only finitely
many rope-ladders of the first kind. Let R be a rope-ladder of the second
kind, let e be its deleted bond, and let RLk be the rope-ladder on which RLl

is anchored (RLl �= RL0 by the definition of the second kind). Then by (i),
R̊ and R̊Ll lie in the same component C of G	 − G	

k, and as e has to be one

of the edges between C and G	
k, which again by Lemma 7.4 are only finitely

many, there are only finitely many rope-ladders of the second kind that can
contribute a dt(e) containing f .

It remains to show that there are finitely many ear decompositions that
contribute a dt(e) containing f . To see this, note that any such ear decom-
position D must lie in a (G	

l−1 ∪ RLl
−)-bridge in G	 that has feet in both

G	
l−1 ∪

⋃
k≤m Πi

k and RLl
− by the definition of dt(e), and by the construction

of G	 there are only finitely many such bridges; indeed, any such bridge lies
in the G	

l−1-bridge in G in which RLl lies, and this bridge has finitely many

feet on G	
l−1 by Lemma 7.4. Again, every (G	

l−1 ∪ RLl
−)-bridge in G	 sends

finitely many edges to (G	
l−1 ∪RLl

−) by Lemma 7.4, and as D must send an

edge to G	
l−1∪

⋃
k≤m Πl

k by the definition of dt(e), there are finitely many ear
decompositions that contribute a dt(e) containing f .

This proves our claim that the set {dt(e)|e ∈ E(G�) − E(G 
�)} is thin,
which by Lemma 2.10 implies that |G 
�| � |G�| � |G	|.

7.4.4 Splitting into finite multigraphs

While constructing G	 we defined many useful terms like pis, windows, rope-
ladders, etc. that were subgraphs of G	. We want to use those names and
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symbols for G 
� as well, but these symbols now do not denote the original
graphs, but the simple multigraphs in G 
� that replaced them. Thus, when
referring to G 
�, we will use Πi

j to denote the subgraph of G 
� spanned by
the multiedges whose endvertices were joined by an edge of Πi

j in G	, a bond
(respectively anchor) is a multiedge whose endvertices where joined by a
bond (resp. anchor) in G	, and so on. Moreover, xy denotes the multiedge
with endvertices x, y.

According to our plan, as stated in Section 7.3.2, we want to split the
graph in larvae; let us introduce them formally. A larva is a pair (s, P ), where
P is a multipath — i.e. a simple multigraph obtain from a path after replacing
some of its edges with double edges — in G 
�, s is one of its endvertices,
called its mouth, and the multiedge of P incident with s is a single edge.
For every larva W = (s, P ), we label the vertices of P with xi = xi(W ), so
that P = x0(= s)x1x2 . . . xn. Moreover, let ei = ei(W ) denote the multiedge
xi−1xi, and if ei is a double edge denote its edges by e−i , e∩i , otherwise let e−i
be its only edge. Let P (W ) = P . Whenever we use an expression assuming
a direction on P or W , we consider x0 to be its first vertex and xn its last.
In order to simplify the notation, we will also write sPy instead of (s, sPy).

Recall that we want to impose some constraints on the Euler tour that
is supposed to produce a Hamilton circle of G. This is done separately for
each larva following the pattern of Figure 7.6: metamorphosing the larva
W =: (s, P ), is the operation of replacing, in P and in G 
�, the edges e∩i+1, e

−
i ,

for every i such that ei+1 is a double edge, by an xi−1xi+1 edge fi, called a
representing edge (representing edges already existed in our proof of Fleis-
chner’s theorem, and they had the same function there). Note that e∩i+1, e

−
i , fi

form a triangle. The caterpillar of W is the graph X resulting from P after
metamorphosing W . Note that X is connected. Each time we metamorphose
a larva, we will assume that for each deleted edge e, a detour dt(e) for e is
specified in X.

If P has length at least 2 and the last multiedge ek of P is a single edge,
then completely metamorphosing W is the operation of metamorphosing W ,
and then replacing e−k , e−k−1 with an xk−2xk edge fk−1, also called a represent-
ing edge. If W is completely metamorphosed, then its pseudo-mouth is its
last vertex. The double caterpillar of W is the graph X resulting from P af-
ter completely metamorphosing W . A double caterpillar has a big advantage
in comparison to a caterpillar: the additional constraint (on the Euler tour),
allows it to be hamiltonised so that its last edge, as well as its first, is not
shortcutted, and so its pseudo-mouth is allowed to meet other larvae (even
if it is not an articulation point). This advantage however, comes at a high
price: a double caterpillar is a disconnected graph, with two components.
For this reason, each time we completely metamorphose a larva W to obtain
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X, we will specify some detour dt(X) for X, that is, an X-path connecting
the two components of X (note that the last two vertices of P (W ) lie in dis-
tinct components of X, and in fact dt(X) will always be a path connecting
those vertices). We assume that also for each edge e deleted while completely
metamorphosing W to get X, a detour dt(e) for e is specified in X ∪ dt(X).

We now divide the graph in larvae, and either metamorphose or com-
pletely metamorphose each of them. (According to the sketch of the proof
in Section 7.3.2, we first split the graph into larvae and then impose the
constrains on the Euler tour, but in fact these two steps will be performed
simultaneously, the constrains being imposed by metamorphosing or com-
pletely metamorphosing the larvae.) Formally, we will specify a set of edge-
disjoint larvae W so that G 
� =

⋃
W∈W P (W ), and the following conditions

are satisfied:

Condition 1. If W, W ′ ∈ W, then W, W ′ are edge-disjoint, and if v is a
vertex lying in both W and W ′ then one of the following is the case:

• v is the mouth of W or W ′;

• v is the pseudo-mouth of W or W ′; or

• v is an articulation point, both W, W ′ end at v, and the last multiedges
of both W, W ′ are single (none of W, W ′ will be completely metamor-
phosed in this case).

Condition 2. For every v ∈ V − y∗, there is an element W (v) of W con-
taining v, so that v is neither the mouth nor the pseudo-mouth of W (v) (by
Condition 1, there is at most one W ∈ W with this property, unless v is an
articulation point).

We will construct a simple multigraph G� on V by performing operations
of the following kinds on G 
�:

• replacing two edges e, f with an edge forming a triangle with e, f ;

• switching a window;

• adding a double edge from G� − G 
�;

• deleting a double edge.

Note that metamorphosing or completely metamorphosing a larva is a set
of operations of the first kind. Each time we delete an edge, we will specify
a detour in G�, so as to be able to use Lemma 2.10 to prove that we did not
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change the end topology. The fact that we only use the above operations
will imply that the graph remains eulerian after all changes.

Define W to be the set of larvae that we will metamorphose or completely
metamorphose in what follows. For any pi or ear Π, denote by a(Π) the
endvertex of Π incident with its anchor, and by b(Π) the other endvertex of
Π (a(Π0

0) = b(Π0
0) = y∗).

In Section 7.3.2, and in particular in Figure 7.8, the rules according to
which we split the graph in larvae were roughly given. The idea behind these
rules, is to keep the graph induced by V (R̊Li

−) connected for every i, so as
to guarantee that the end topology remains the same. If however, we apply
those rules to Πi

0, then we could disconnect part of it from the rest of RLi
−.

To avoid this, we will treat pis of the form Πi
0 differently.

So we will construct G� in two phases, in the first of which we will take
care of the pis of the form Πi

0, and in the second of the rest of the graph. At
any point of the construction it will be an easy check — left to the reader
— that Condition 1 holds for all larvae defined up to that point. Moreover,
each pi or ear Π will be considered at some point, and then every vertex in
Π−{a(Π), b(Π)} will be put in some larva in W without being its mouth or
its pseudo-mouth. As a(Π), b(Π) lie in some other pi or ear as well, this is
enough to guarantee that Condition 2 will be satisfied.

For the first phase, perform ω steps of the following kind. In step i, if Πi
0

has already been handled, that is, divided in larvae, in some previous step,
or if one of its bonds is not present in G 
�, go to the next step. Otherwise, if
zw was a bond of Πi

1 such that there is no z-w–edge in G 
�, then add a z-w
double edge. We consider two cases.

In the first case, called Case I, both multiedges e = ri
1y, e′ incident with

y := yi
0 on Πi

1 are single or both are double edges. If they are both double,
then switch W i

1. No matter if we switched W i
1 or not, metamorphose the

larvae (ri
1, e) (this is a trivial larva) and li0Π

i
0l

i
1Π

i
1y (see Figure 7.9). If the

multiedge d = li1l
′ of P i

0 incident with li1 is double, delete d and metamorphose
the larva ri

0Π
i
0l

′; pick a detour dt(d) for d in the three resulting caterpillars.
If d is single, and there is a double edge f on P i

0, delete f and metamor-
phose the larvae li1P

i
0f and ri

0Π
i
0f ; pick a detour dt(f) in the four resulting

caterpillars. If there is no double edge on P i
0, let r′ be the neighbour of ri

1 on
P i

0, metamorphose the larva li1P
i
0r

′ and completely metamorphose the larva
ri
0Π

i
0r

′ (see Figure 7.10); a detour for the double caterpillar can be found in
the resulting caterpillars. It is easy to confirm that the following is true:

Observation 3. No detour specified in Case I meets any pi Π �= Πi
0 for

which Π � Πi
0 holds.

Observation 3 and other observations of this kind that will follow will
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help prove that the set of detours that will be defined in this section is thin.

P i
0

li
0

ri
0

li
1

Πi
0

d
l′

e e′
y
i
0
=

y

Πi
1

ir
1

Figure 7.9: Splitting into larvae: Case I, and d is double. The dashed lines
indicate larvae, and arrows show away from the mouth.
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Figure 7.10: Splitting into larvae: Case I, and no double edge on P i
0. The line

with arrows at both ends indicates a larva that will be completely metamorphosed.

In the second case, called Case II, one of e, e′ is single and the other is
double. We want to choose and metamorphose some larvae, that will give
rise to an R̊Li

−–path Ai in G� with one endpoint at y, which will help us
delete an edge in RLi

− without putting the end topology at risk; Ai will help
by being part of a detour for the deleted edge.

Since y has even degree in G 
�, there is at least one single bond (other
than e) incident with y. Pick such a bond b, so that the pi or ear Π0 of which
b is a bond is minimal with respect to �. Note that the anchor of Π0 cannot
be b, since y is an articulation point. Let Π1 be the pi or ear that contains
a(Π0) as an inner vertex. Metamorphose the larva (a(Π0), Π0), and let A0

be a y-a(Π0)–path in the resulting caterpillar (A0 will be an initial subpath
of Ai). If Π1 lies in RLi

−, then we can choose Ai = A0, which is indeed an

R̊Li
−–path in that case. If not, then we will go on recursively, trying in each

step j to extend the already chosen initial subpath Aj−1 of Ai, by attaching
a path in V (Πj), where Πj contains the endpoint of Aj−1, to reach a pi or
ear Πj+1 � Πj . As we shall see, we will, sooner or later, land on RLi

−.

86



Formally, for j = 1, 2, . . . perform a step of the following kind. Suppose
that Πj , Aj−1 have been defined. If a bond b of Πj is not present in G 
�, that
is, there is no edge in G 
� between the endvertices of b, then metamorphose
the larva a(Πj)Πjb, and let Aj be the concatenation of Aj−1 with an Aj−1-
a(Πj)–path in the resulting caterpillar — as we shall see, Πj could not have
been handled while constructing an Ak for some k < i. Let Πj+1 be the pi
or ear that contains a(Πj) as an inner vertex (note that a(Πj) �= y, since
no anchors are sent to an articulation point). If both bonds of Πj are single
edges, then there are two cases.

In the case that y(Πj) is incident with a double edge f on Πj , delete f
and metamorphose the larvae a(Πj)Πjf and b(Πj)Πjf . Let W be the one of
these larvae meeting Aj−1, and let Aj be the concatenation of Aj−1 with a
path in the caterpillar of W connecting Aj−1 to the mouth s of W (note that
y �= b(Πj), because otherwise we would have chosen Πj rather than Π0). Let
Πj+1 be the pi or ear containing s as an inner vertex (thus Πj+1 � Πj). A
detour for f will be specified later.

In the case that y(Πj) is incident with no double edge on Πj , metamor-
phose the larvae a(Πj)Πjy(Πj) and b(Πj)Πjy(Πj). Let Aj be the concatena-
tion of Aj−1 with an Aj−1-a(Πj)–path in the resulting caterpillars. Let Πj+1

be the pi or ear that contains a(Πj) as an inner vertex.
In all cases, if Πj+1 lies in RLi

− we stop the recursion and let Ai = Aj ,

which is by construction an R̊Li
−–path with precisely one endpoint at y. We

call it the apophysis of RLi. If Πj+1 does not lie in RLi
−, we proceed with the

next step. Clearly Πj+1 � Π0, and furthermore Πi
0 � Πj+1, because otherwise

the G	
i–bridge in which Π0 lies meets both yi

0 and G	
i−1, contradicting the

choice of yi
0. Since there are only finitely many pis or ears Π with Πi

0 � Π �
Π0, the procedure will stop after k ∈ ω steps, with Πk+1 lying in RLi

−.
With a similar argument, we see that as promised above, Πj could not

have been handled while constructing an Ak for some k < i. For if Ak uses
Πj , then as Ak has to reach Πk

0 or Πk
1 � Πi

0, it has to go through Πi
0 (recall

that Πj lies in a (G	
i−1∪RLi

−)-bridge that meets y = yi
0, and thus has all feet

in Πi
0 ∪ Πi

1). But then, Πi
0 would have been handled before beginning with

the construction of Ai, and we would have proceeded to step i + 1 without
ever trying to construct Ai. In particular, Ai, Ak are disjoint if i �= k.

The following observation will be useful in Section 7.4.5 where we will
“clean up” the articulation points.

Observation 4. If Ai contains an edge f incident with an articulation point
yk

l �= y, then either f lies in RLk or it represents two edges that lie in RLk.

Indeed, if Observation 4 is false, then pick the least j such that Aj contains
an edge f contradicting it. Since by construction all edges added to Aj in
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step j either lie in Πj or represent edges of Πj , f is the last edge of Aj and its
incident vertex in Πj+1 is an articulation point yk

l . But then, Aj yields a path
(after replacing representing edges with the edges they represent) in G	 that
lies in a (G	

k−1 ∪ RLk
−)-bridge and connects yk

l to RLi � RLk, contradicting
the choice of yk

l .

We now divide Case II into three subcases, depending on where the end-
point y′ �= y of Ai lies. In all cases, our aim is to split Πi

0 ∪ Πi
1 in a set

of larvae Wi, so that (in addition to Conditions 1 and 2) the following two
conditions are satisfied (note that these conditions are also satisfied in Case
I; Condition 4 is even satisfied by pis used by some apophysis):

Condition 3. The union of Ai with the graph induced by V (Πi
1∪Πi

0−b(Πi
0))

after metamorphosing all larvae in Wi is connected.

Condition 4. ri
2, l

i
2 lie in the same larva in W.

First we consider the case y′ ∈ Πi
1 − ri

1 (Figure 7.11). If e is double, then
switch W i

1. Now e is single and e′ double; delete e′. Then metamorphose the
trivial larva (ri

1, e), and the larva li0Π
i
0l

i
1Π

i
1e

′. Pick a detour dt(e′) for e′ in
the union of Ai with the resulting caterpillar. Handle Πi

0 like in Case I: if the
multiedge d = li1l

′ of P i
0 incident with li1 is double, delete it and metamorphose

the larva ri
0Π

i
0l

′; pick a detour dt(d) for d in the resulting caterpillars and
Ai. If d is single, and there is a double edge f on P i

0 (Figure 7.11), delete f
and metamorphose the larva li1P

i
0f and the larva ri

0Π
i
0f ; pick a detour dt(f)

in the resulting caterpillars and Ai. If there is no double edge on P i
0, let r′

be the neighbour of ri
1 on P i

0, metamorphose the larva li1P
i
0r

′ and completely
metamorphose the larva ri

0Π
i
0r

′; a detour for the resulting double caterpillar
can again be found in the resulting caterpillars and Ai.

P i
0

li
0

ri
0

li
1

Πi
0

d

e e′
y

Πi
1f

y′

Ai

ir
1

Figure 7.11: Splitting into larvae: Case II, y′ ∈ Πi
1 − ri

1, and there is a double
edge f on P i

0.
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In the case that y′ ∈ l̊i0Π
i
0 l̊

i
1, switch W i

1 if needed, so that e is single and e′

double; delete e′. Then metamorphose the trivial larva (ri
1, e), and the larva

ri
0Π

i
0l

i
1Π

i
1e

′ (Figure 7.12). Pick a detour dt(e′) for e′ in the union of Ai with
the resulting caterpillars. Then, if the first multiedge h = li1l

′′ of li1Π
i
0y

′ is
double, delete it and metamorphose the larva li0Π

i
0l

′′; pick a detour dt(h) for
h in the resulting caterpillars and Ai. If h is single, and there is a double edge
f on li1Π

i
0y

′, delete it and metamorphose the larva li1Π
i
0f and the larva li0Π

i
0f ;

pick a detour dt(f) in the resulting caterpillars and Ai. If there is no double
edge on li1Π

i
0y

′, let z be the neighbour of y′ on li1Π
i
0y

′, metamorphose the
larva li1Π

i
0z and completely metamorphose the larva li0Π

i
0z (Figure 7.12); a

detour for the resulting double caterpillar can again be found in the resulting
caterpillars and Ai.
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Figure 7.12: Splitting into larvae: Case II, y′ ∈ li0Π
i
0 l̊

i
1, and no double edge on

li1Π
i
0y

′.

Finally, if y′ ∈ r̊i
0Π

i
0 l̊

i
1, switch W i

1 if needed, so that e is double and e′

single; delete e. Metamorphose the larva li0Π
i
0l

i
1Π

i
1y. If the multiedge d = li1l

′

of P i
0 incident with li1 is double, delete it and metamorphose the larva ri

0Π
i
0l

′;
pick a detour dt(d) for d in the resulting caterpillars and Ai. If d is single,
and there is a double edge f on li1Π

i
0y

′, delete it and metamorphose the larva
li1P

i
0f and the larva ri

0Π
i
0f ; pick a detour dt(f) in the resulting caterpillars

and Ai. If there is no double edge on li1Π
i
0y

′, let w be the neighbour of y′

on li1Π
i
0y

′, metamorphose the larva li1P
i
0w and completely metamorphose the

larva ri
0Π

i
0w; a detour for the latter larva can again be found in the resulting

caterpillars and Ai. A detour dt(e) for e can always be found in the resulting
caterpillars and Ai.

It is easy to confirm that the following is true:

Observation 5. No detour specified in Case II meets any pi Π �= Πi
0 for

which Π � Πi
0 holds.

Now is the time to specify a detour dt(d) for each edge d we deleted
during the construction of Ai. It will suffice to construct paths D1, D2 each
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connecting an endpoint of d to RLi
− ∪Ai. Then, since D1, D2 can only meet

RLi
− in Πi

0 or Πi
1 by the construction of RLi, we can, by Condition 3, find a

path D with vertices in V (Πi
0 ∪Πi

1 ∪Ai) connecting the endpoints of D1, D2,
and set dt(d) = D1 ∪ D ∪ D2.

Deleting d separated the pi or ear on which it lies in two subpaths Q1, Q2,
which have already been metamorphosed, and one of them, say Q1, meets
Ai, so we can choose D1 to be a d-Ai–path in the corresponding caterpillar.
In order to choose D2, we imitate the procedure we used to construct Ai:
we split the pi or ear on which Q2 lands in one or two larvae, unless it has
already been handled (that is, split in larvae), making the same distinction
of cases as we did for Πj while constructing Ai, and prolong our current path
by a path in the new caterpillars that brings us a bit closer to RLi

− (or Ai).
We repeat until we meet RLi

− ∪ Ai.
While constructing dt(d), we might delete other double edges. But then,

we just repeat the procedure recursively to find detours for them as well.
Since, easily, any deleted edge lies in a pi or ear Π for which Πi

0 � Π � Π0

holds, this will happen only finitely often. Moreover, the following is true:

Observation 6. If a detour for an edge deleted while constructing Ai meets
some pi or arc Π, then Πi

0 � Π � Π0 holds (Π0 was defined while constructing
Ai).

The first phase is now completed, and we proceed to the second. Let
(πi)i∈N be an enumeration of the pis that were not handled above, so that
i ≤ j if πi � πj . For i = 1, 2, . . ., if a bond b of Π := πi is not present in G 
�,
metamorphose the larva a(Π)Πb. If not and both multiedges on Π incident
with y := y(Π) are single, metamorphose the larvae a(Π)Πy and b(Π)Πy.
Otherwise, delete a double edge f incident with y, and metamorphose the
larvae a(Π)Πf and b(Π)Πf . Note that in this case, Π = Πk

l for some k and
l > 0, and Πk

l−1 has already been handled. By Condition 4 and by the way
the pis in this phase are handled, a(Π) and b(Π) lie in the same larva W of
Πk

l−1. Pick a detour dt(f) for f in the union of the caterpillar of W with the
caterpillars of the larvae of Π. Clearly, the following is true:

Observation 7. dt(f) does not meet any pi Π �= Πk
l−1 for which Π � Πk

l−1

holds.

Having handled all pis, we go on to the ear decompositions. For every ear
decomposition D with ears C1, C2, . . . , Ck, recursively for i = k, k − 1, . . . , 1,
if Ci has not been handled yet (while constructing some apophysis), then
we want to split Ci into larvae, so that we can move from any vertex of
Ci towards some RLn

−, without using an edge incident with some yj
l ; more

90



precisely, we will split Ci into larvae, metamorphose them, and perhaps make
some shortcuts, so that after all changes have been made to Ci, the following
condition is satisfied:

Condition 5. For every x ∈ V (Ci), there is a path that connects x to some
pi or ear Π � Ci, Π �= Ci, and contains no edge incident with some yj

l .

We consider two cases. For the first case, if Ci ∩ G 
� does not meet
any yj

l , then we treat it similarly with a pi in (πi)i∈N: if a bond b of Ci is
not present in G 
�, we metamorphose the larva a(Ci)Cib. If not and both
multiedges on Ci incident with y := y(Ci) are single, we metamorphose the
larvae a(Ci)Ciy and b(Ci)Ciy. Otherwise, we delete a double edge f incident
with y, and metamorphose the larvae a(Ci)Cif and b(Ci)Cif ; a detour for f
will be specified later. Clearly, Condition 5 is now satisfied.

In the second case, when Ci ∩ G 
� meets yj
l for some j, l, note that both

bonds of Ci must be present in G 
�, as by definition the anchor of Ci does
not meet yj

l . Now if both multiedges on Ci incident with y := y(Ci) are
single, metamorphose the larvae a(Ci)Ciy and b(Ci)Ciy. Otherwise, as the
bonds of Ci are single edges, and y is incident with a double edge, there is
in a(Ci)Ciy a vertex incident with a single as well as a double edge in Ci; let
u be the first vertex in a(Ci)Ciy with that property. All vertices have even
degree in the current simple multigraph; indeed, we started with the eulerian
simple multigraph G 
�, and the operations we have been performing (see list
after Condition 2) preserve the parities of the vertex degrees. Thus u has an
odd number of edges in some RLj

− ∪
⋃

n≤i Cn–bridge B in the current simple
multigraph; clearly, all vertices of B lie in

⋃
n>i Cn, so B is finite. Again since

all vertices have even degree, in particular those in B, by the “hand-shaking”
lemma B has at least one foot v �= u in RLj

− ∪
⋃

n≤i Cn; let P be a u-v–path
in B. We consider three subcases:

If v /∈ Ci, then there is no double edge in a(Ci)Ciu by the choice of u, so
let u′ be the neighbour of u on a(Ci)Ciu, metamorphose the larva a(Ci)Ciu

′

and completely metamorphose the larva yj
l Ciu

′. We claim that Condition 5
is now satisfied for Ci. Indeed, V (Ci) is divided in a caterpillar X and a
double caterpillar Y , and if x ∈ V (Ci) − {a(Ci), b(Ci)} lies in X, then there
is an x-a(Ci)–path in X, whereas if x lies in Y , then by the construction of
a double caterpillar, either there is an x-u–path in Y avoiding yj

l , which can
be extended by P to an x-v–path, or there is an x-u′–path in Y avoiding yj

l ,
which can be extended by a u′-a(Ci)–path in X to an x-a(Ci)–path.

If v ∈ Ci, and there is no double edge in vCiu, then u ∈ yj
l Civ. Let u′ be

the neighbour of u on vCiu, completely metamorphose the larva yj
l Ciu

′ and
metamorphose the larva a(Ci)Ciu

′ (even if u′ = v). By a similar argument
as in the previous subcase, we see that again Condition 5 is satisfied.
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If v ∈ Ci, and there is a double edge f in vCiu, delete f and metamorphose
the larvae W1 := a(Ci)Cif and W2 := yj

l Cif . To see that Condition 5 is
satisfied, note that if x is a vertex in W2, then there is in the caterpillar of
W2 a path connecting x to P that avoids yj

l , and there is in the caterpillar
of W1 a path connecting the endpoint of P to a(Ci).

In the last subcase, if in addition v = yj
l then let X be the caterpillar

containing v, and shortcut the edges of P ,X incident with yj
l ; call the new

edge a shortcutting edge. Note that this change does not affect the satisfaction
of Condition 5 by the ears in

⋃
n>i Cn; neither does it affect any apophysis by

Observation 4. Moreover, we claim that the shortcutted edges did not lie in
any detour. Indeed, there are two kinds of vulnerable detours: those defined
while constructing Aj , and those defined while handling the ears of D. For
the former, note that by the choice of Π0 in the construction of Aj, we have
Π0 � Ci because Ci is a candidate for Π0, and by Observation 6 no detour of
the first kind was affected. For the latter, note that we have not yet specified
any detours for deleted edges in D, apart from those automatically specified
when metamorphosing a larva. But if yj

l lies in a larva W = (s, P ) in D,
then it is easy to check that yj

l = s by construction, and since s has degree
1 in P and in the caterpillar of W , no such detour goes through yj

l . This
completes the proof of the claim.

We need to specify detours for the edges of D that we deleted and for the
double caterpillars. For every deleted edge e (respectively double caterpillar
X), pick paths P1, P2 in the new graph, each connecting a different endvertex
of e (a vertex of a different component of X) to V − V (

⋃
D), which exist by

Condition 5. Let Π be the lowest pi with respect to � that
⋃

D sends a bond
to, and let Π′ be a pi for which Π′ ≺ Π holds (unless Π = Π0

0, in which case
let Π′ = Π). By Condition 3 and the way we handled the pis in the second
phase, a path P3 connecting the endpoints of P1, P2 can be chosen, that does
not meet any pi lower than Π′ with respect to �. Let dt(e) (respectively
dt(X)) be the path P1 ∪ P2 ∪ P3.

This completes the second phase. Denote the resulting simple multigraph
by G�. Let G1 := (V, E(G�)∪E(G 
�)). Easily, by Lemma 2.10, |G1| � |G 
�|.
The set {dt(e)|e ∈ E(G1)−E(G�)} is thin (if e ∈ E(G1)−E(G�) is one of the
parallel edges belonging to a double edge e′, then take dt(e) to equal dt(e′)
if only the latter has been defined), since each time we chose some dt(e) we
specified a pi Π0, such that no Π′ � Π0 could meet dt(e) (see Observations 3
and 5 to 7 and the relevant remark in the previous paragraph), and no pi
can have been specified as Π0 infinitely often. Thus, again by Lemma 2.10,
|G�| � |G1| � |G 
�|.

By Condition 4 and by the way that the pis in the second phase were
handled, we obtain:
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Observation 8. V (Ai ∪ RLi − b(Πi
0)) induces a connected subgraph of G�

for every i.

(Where we assume that Ai is the empty graph if it has not been defined.)

7.4.5 Cleaning up the articulation points

Keeping to our plan, we now rid the articulation points of unwanted edges.
For every i, j ∈ N, let F be the set of edges incident with yi

j that have an
endvertex outside V (RLi ∪ Ai). By the construction of G	 and G�, every
element of F is or represents a bond, and as double bonds were deleted while
constructing G 
�, there is no pair of parallel edges in F . Now let f1, f2, . . . fk

be an enumeration of F , and for l = 1, 2, . . . , �k
2
�, shortcut f2l−1 with f2l.

Call the new edges shortcutting edges (recall that we have already defined
another kind of shortcutting edges in Section 7.4.4). We are left with a simple
multigraph Gy, where each yi

j is incident with at most one edge not in Ri;
indeed, even if Ai exists, |F | is even in that case because of parity reasons.

Nothing needs to be done at articulation points of ears, because they
do not have any unwanted edges by construction. Again, we claim that we
didn’t change the end topology.

Let G2 := (V, E(G�) ∪ E(Gy)). Applying Lemma 2.10 to G2, G
�, using

as a detour dt(e) for each edge e in E(G2) − E(G�) the two edges of G�

shortcutted to give e, we prove that |G2| � |G�|.
We want to specify a detour for each deleted edge and apply Lemma 2.10.

For each edge e = uv ∈ E(G2)−E(Gy), either e is a bond, or it represents a
bond of Π, where Π is either a Πl

0 for some l, or an ear. Let yi
j be the artic-

ulation point where e was shortcutted, and suppose that u = yi
j. Note that

by Observation 4 (Section 7.4.4) no edge of an apophysis was shortcutted.
In the case that Π = Πl

0 for some l, we have RLi � RLl by Observation 1,
thus there is a finite sequence of rope-ladders R1, R2, . . . , Rk such that RLi =
Rk ≺ Rk−1 ≺ . . . ≺ R1 = RLl. Let P0 be the trivial path v. For j =
1, 2, . . . , k− 1, there is by Observation 8 a path Pj in G� connecting the last
vertex of Pj−1 (which lies in Rj) to the anchor aj of Rj (which lies in Rj+1)

such that all vertices of Pj other than aj lie in R̊j and its apophysis. Let
P = P0∪P1∪. . .∪Pk. We claim that P , which was defined as a path in G�, is
also a path in Gy. Thus we need to prove that no edge of P was shortcutted.
We only shortcutted edges that meet two rope-ladders, and any such edge
in P either lies in an apophysis, and is thus not shortcutted as mentioned
above, or is or represents an anchor, in which case it meets no articulation
point by the definition of anchor. This proves our claim that P is a path in
Gy; let a be its endvertex in RLi.
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As a is a foot of a G	
i-bridge in G that also has the articulation point

yi
j as a foot, a lies in Πi

j ∪ Πi
j+1 by the construction of G	. Thus, by the

construction of G�, there is an a-u–path Q in G� containing only vertices of
Πi

j−1Π
i
j, Π

i
j+1 and Ai and, easily, Q is also a path in Gy. Thus we may choose

dt(e) := P ∪ Q as a detour for e. Call P the P -part of dt(e) and call Q the
Q-part of dt(e).

In the case that Π is an ear, by recursively applying Condition 5, we obtain
a v-RLi

−–path containing no edge incident with a yj
l . As in the first case, we

can augment this path by a path containing only vertices of Πi
j−1, Π

i
j, Π

i
j+1

and Ai to obtain a detour dt(e).

We claim that the set {dt(e)|e ∈ E(G2) − E(Gy)} is thin. We have to
show that for any edge f there are only finitely many edges e such that dt(e)
contains f . It is not hard to see that there can only be finitely many such
e that are or represent bonds of ear decompositions. If there are infinitely
many such e that are or represent bonds of rope-ladders, then either there
are infinitely many e such that the P -part of dt(e) contains f , or infinitely
many e such that the Q-part of dt(e) contains f . Again, it is not hard to
see that the latter cannot be the case. To see that the former cannot be the
case either, note that if the P -part of dt(e) contains f , then e is incident
with a vertex that lies in a pi that is lower with respect to � than the pi
containing both vertices of f . Clearly, there are only finitely many such pis,
and as each of them contains finitely many vertices of finite degree, there
can only be finitely many such e. This completes the proof that the set
{dt(e)|e ∈ E(G2)−E(Gy)} is thin, thus by Lemma 2.10, |Gy| � |G2| � |G�|.

We further claim that Gy is eulerian. Let G3 = (V, E(G�) ∪ E(Gy)).
Easily, by Lemma 2.10, |G3| � |G�|, and since |Gy| � |G�| � |G 
�| � |G�|, we
have |Gy| � |G3|. We know that G� is eulerian, thus, by Lemma 7.2 and the
definition of the cycle space, E(G�) is the sum of a thin family F of circuits in
G�. Since |G�| � |G3| and |G�| ⊆ |G3|, every element of F is also a circuit in
G3. Now let T := E(Gy)�E(G�), where � denotes the symmetric difference.
Clearly, T can be expressed as the sum of a thin set of finite cycles, since
in order to get Gy from G�we performed a number of operations, each of
which consisted in either replacing a path of length 2 with an edge forming a
triangle with the path, or deleting a double edge, or switching a window (see
the list of allowed operations after Condition 2), and no edge participated in
more than two such operations. But then, E(Gy) = T�E(G�) holds, which
means that E(Gy) is the sum of the thin family F ∪ T of circuits in G3, thus
an element of the cycle space of G3. By Lemma 2.1, E(Gy) is a set of disjoint
circuits in G3, and since |Gy| � |G3|, these circuits are also circuits in Gy,
proving that Gy is eulerian.
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7.4.6 The hamiltonisation

By Theorem 7.3 we obtain an end-faithful Euler tour σ of Gy. Replace every
shortcutting edge in σ by the two edges it shortcuts; formally, this is done by
modifying σ on the interval of S1 mapped to the shortcutting edge, so that
this interval is mapped continuously and bijectively to the two shortcutted
edges. Then, replace every representing edge in the resulting mapping by
the two edges it represents, to obtain a mapping σ′ : S1 → G��, where G��

is the simple multigraph resulting from G� after doubling all single edges; σ′

is clearly end-faithful.

A pass (of σ′) through some vertex x, is a trail uexe′v traversed by σ′.
Lifting a pass P = uexe′v is the operation of replacing P in σ′ with a u-v–
edge if u �= v (formally, this is done by modifying σ′ on the interval of S1

mapped to P , so that this interval is mapped continuously and bijectively to
the u-v–edge), or replacing P in σ′ with the trivial trail u if u = v. As e, e′

are edges of G��, uv is an edge of G2 in the first case. Our plan is to perform
some lifts so as to transform σ′ into a Hamilton circle of G2, so we will first
mark some passes for later lifting, then show that no two passes share an
edge, and thus we can do lift them all at once without creating any edge not
in G2.

For every x ∈ V − {y∗}, let i be the index of x in P (W (x)), and mark
all passes of σ′ through x that do not contain e−i (W (x)). Moreover, mark all
passes of σ′ through y∗ that do not contain e∗ (recall that e∗, the special edge
in the assertion of Theorem 7.7, is an anchor, thus it has not been deleted).
We claim that for every edge e traversed by σ′, at most one of the two passes
that contain e was marked, which implies that no two passes share an edge.

In order to prove this claim, suppose that e is an edge with endvertices
x, v and that the (unique) pass through x containing e has been marked. If
x = y∗, then easily e = e1(W ), where W = W (v), thus the pass through
v = x1(W ) containing e has not been marked. If x �= y∗, then let W = W (x)
and suppose that x = xi(W ). Again we will show that the pass through v
containing e has not been marked.

If e lies in P (W ), then e �= e−i because the pass through x containing e
has been marked. Moreover, e �= e∩i+1, because if e∩i+1 exists, then e−i , e∩i+1

had been represented in G�, and thus e∩i+1 lies in the pass through x = xi

that contains e−i . If e = e∩i , then by the same argument, it lies in the pass
through xi−1 that contains e−i−1, which, according to our rules for marking,
has not been marked. If e = e−i+1, again the pass through xi+1 that contains
e cannot be marked, unless xi+1 is the pseudo-mouth of W ; but if xi+1 = v
is the pseudo-mouth of W , then e, e−i where represented in G�, so they both
lie in the pass of σ′ through x = xi. But, according to our marking rules,
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this pass cannot have been marked, contradicting our assumption.
If e does not lie in P (W ), let W ′ be the larva in W in which e lies (it

must lie in one). If x is the mouth of W ′, then v = x1(W
′), W (v) = W ′

and e = e−1 (W ′), thus the pass through v containing e has not been marked.
If x is the pseudo-mouth of W ′, then x = xk(W

′), where k = |P (W ′)|,
v = xk−1(W

′) and e = e−k (W ′). But e−k (W ′), e−k−1(W
′) where represented in

G�, so they both lie in the pass through v, which, according to our marking
rules, was not marked. The only case left, by Condition 1, is that x is an
articulation point and it is the last vertex of both W, W ′. In this case, both
e, ei(W ) are single edges by the construction of G�, and they are the only
edges incident with x in Gy by the construction of Gy. But then, they both lie
in the pass through x, contradicting the fact that this pass has been marked.

Thus our claim is proved, and so we can lift all marked passes at once
without creating any edge not in G2. This transforms σ′ to a mapping
τ : S1 → |G2|. It is not hard to see that no pass of σ′ through some vertex
v �= y∗ containing an edge incident with y∗ could have been marked (see the
beginning of the proof of our claim), and hence τ(S1) contains e∗, and the
other edge in τ(S1) incident with y∗ is also in E(G).

By Lemma 2.10 we easily have |G2| � |G|, and as |G| � |G	| and, trivially,
|G	| � |G��|, it follows that τ is continuous and end-faithful. Since for any
vertex v ∈ V , all passes through v but for precisely one pass were marked and
eventually lifted, τ traverses each vertex in V exactly once. In particular, τ
does not contain any pair of parallel edges, and we can therefore replace each
edge in τ that is parallel to an edge e in G with e, to obtain a Hamilton circle
of G2. This completes the proof of Theorem 7.7, which implies Theorem 7.2.

The fact that the square of a 2-connected finite graph G is Hamiltonian
connected ([32]), also generalises to locally finite graphs:

Corollary 2. The square of a 2-connected locally finite graph G is Hamilto-
nian connected, that is, for each pair of vertices x, y of G, there is a homeo-
morphic image in |G2| of the unit interval with endpoints x, y.

Proof. Add a new vertex y∗ to G, join it to x, y with edges and apply Theo-
rem 7.7.

7.5 Final remarks

In this chapter we generalised Fleischner’s Theorem to locally finite graphs.
What about generalising other sufficient conditions for the existence of a
Hamilton cycle? In general, as in our case, it is a hard task, and it is not
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clear why it should be possible. See for example [8], where Tutte’s Theorem
[30], that a finite 4-connected planar graph has a Hamilton cycle, is partly
generalised. However, if instead of a Hamilton circle, we demand the exis-
tence of a closed topological path that traverses each vertex exactly once, but
may traverse ends more than once, the task becomes much easier. Usually,
one only has to apply the sufficient condition for finite graphs on a sequence
of growing finite subgraphs of a given infinite graph G and use compactness,
to obtain such a topological path in |G|. The difficult problem is how to
guarantee injectivity at the ends. Here we used Theorem 7.3 to overcome
this difficulty. A general approach suggests itself: try to reduce the existence
of a Hamilton cycle in a finite graph, to the existence of some suitable Euler
tour in some auxiliary graph, and then try to generalise the proof to the
infinite case using Theorem 7.3.

The following easy corollary of Theorem 7.3 is perhaps an argument in
favour of this approach:

Corollary 3. If G is a locally finite eulerian graph, then its line graph L(G)
has a Hamilton circle.

Proof. If R is a ray in G, then E(R) is the vertex set of a ray l(R) in L(G).
It is easy to confirm that the map

π : Ω(G) → Ω(L(G))

ω �→ ω′ � l(R), R ∈ ω

is well defined, and it is a bijection.
Now let σ be an end-faithful Euler tour of G, that maps a closed interval

on each vertex of G. Let σ′ : S1 → |L(G)| be a mapping defined as follows:

• σ′ maps the preimage under σ of each edge e ∈ E(G) to e ∈ V (L(G));

• for each interval I of S1 mapped by σ to a trail xeye′w, σ′ maps the
subinterval I ′ of I mapped to y, continuously and bijectively to the
edge ee′ ∈ E(L(G));

• σ′ maps the preimage under σ of each end ω ∈ Ω(G) to π(ω).

Then “contract” in σ′ each interval mapped to a vertex to a single point,
to obtain the mapping τ : S1 → |L(G)|. Since, in locally finite graphs,
every finite vertex set is incident with finitely many edges, and every finite
edge set is covered by a finite vertex set, Ω(G) and Ω(L(G)) have the same
topology. Thus τ is continuous and injective, and since S1 is compact and
|L(G)| Hausdorff, a homeomorphism. Clearly, it traverses each vertex of
|L(G)| exactly once.
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Using the finite version of Corollary 3, Zhan [33] proved that every finite
7-connected line graph is hamiltonian. In view of Corollary 3, a generalisation
to locally finite graphs looks plausible:

Conjecture 7.1. Every locally finite 7-connected line graph has a Hamilton
circle.
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