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Jonathan Michael Fisher

Doctor of Philosophy

Graduate Department of Mathematics
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2014

In this thesis we study the topology and geometry of hyperkähler quotients, as well

as some related non-compact Kähler quotients, from the point of view of Hamiltonian

group actions. The main technical tool we employ is Morse theory with moment maps.

We prove a  Lojasiewicz inequality which permits the use of Morse theory in the non-

compact setting. We use this to deduce Kirwan surjectivity for an interesting class of

non-compact quotients, and obtain a new proof of hyperkähler Kirwan surjectivity for

hypertoric varieties. We then turn our attention to quiver varieties, obtaining an explicit

inductive procedure to compute the Betti numbers of the fixed-point sets of the natural

S1-action on these varieties. To study the kernel of the Kirwan map, we adapt the Jeffrey-

Kirwan residue formula to our setting. The residue formula may be used to compute

intersection pairings on certain compact subvarieties, and in good cases these provide a

complete description of the kernel of the hyperkähler Kirwan map. We illustrate this

technique with several detailed examples. Finally, we investigate the Poisson geometry

of a certain family of Nakajima varieties. We construct an explicit Lagrangian fibration

on these varieties by embedding them into Hitchin systems. This construction provides

an interesting class of toy models of Hitchin systems for which the hyperkähler metric

may be computed explicitly.
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Chapter 1

Introduction

1.1 Hyperkähler Quotients

A hyperkähler manifold is a Riemannian manifold (M, g) together with a triple (I, J,K)

of parallel skew endomorphisms of TM which satisfy the quaternion relations

I2 = J2 = K2 = IJK = −1. (1.1)

From these we obtain a triple (ωI , ωJ , ωK) of Kähler forms, with ωI(u, v) := g(Iu, v),

etc. If a Lie group G acts on M preserving this structure, we call it Hamiltonian if it

is Hamiltonian with respect to each of these symplectic forms, i.e. if there is a triple of

moment maps µHK = (µI , µJ , µK) : M → g∗⊗R3. One may then define the hyperkähler

quotient M///
α

G to be

M///
α

G := µ−1
HK(α)/G. (1.2)

It is straightforward to check that the complex 2-form ωC := ωJ +
√
−1ωK , is a holo-

morphic symplectic form, i.e. a closed non-degenerate (2,0)-form. Hence, a hyperkähler

quotient may alternatively be thought of as a holomorphic symplectic quotient. This leads

to the natural question: which techniques from Hamiltonian group actions generalize to

the setting of holomorphic Hamiltonian group actions? There are several fundamental

obstacles which prevent an easy answer to this question: (i) there is no hyperkähler

Darboux theorem, since the Riemann tensor is a local invariant; (ii) most interesting

examples are non-compact; and (iii) the complex moment maps that we consider are

never proper.

In this thesis, we focus on the special case M = T ∗Cn with its Euclidean metric. This

1



Chapter 1. Introduction 2

may be identified with the flat quaternionic vector space Hn via the complex structures

I(x, y) = (ix, iy), J(x, y) = (−ȳ, x̄), K(x, y) = (−iȳ, ix̄). (1.3)

For any G ⊆ Sp(n,H) the natural linear G-action on M is Hamiltonian, and we may take

the hyperkähler quotient Mα := M///
α

G. Although T ∗Cn is not interesting topologically,

the hyperkähler varieties Mα constructed in this way turn out to be very interesting, both

topologically and geometrically. This class of hyperkähler quotients includes hypertoric

varieties and Nakajima quiver varieties. In all the examples that we will consider, we

will in fact take G ⊂ U(n) ⊂ Sp(n,H). In this case, there is a natural inclusion from

the symplectic quotient Xα := Cn//
α

G into the hyperkähler quotient M(α,0). Following

Proudfoot [Pro04], we call M(α,0) the hyperkähler analogue of Xα.

There is a canonical map H∗(BG) → H∗(Mα), called the hyperkähler Kirwan map.

There is an analogous map for symplectic quotients which is well-known to be surjective

in many cases. Three fundamental problems which serve as motivation for the work in

this thesis are the following: (i) to determine whether the hyperkähler Kirwan map is

surjective; (ii) to determine an effective method to compute the image of the hyperkähler

Kirwan map; and (iii) to determine an effective method to compute the Betti numbers

of Mα. We will address all three problems. Unfortunately, we do not obtain a complete

solution to the first problem. However, solutions to the second and third problems

provide an indirect way to prove or disprove Kirwan surjectivity in particular cases. The

techniques we develop in this thesis provide a toolkit for producing many new examples

satisfying hyperkähler Kirwan surjectivity. In addition, several techniques we develop

may be applied to a larger class of non-compact quotients, not only to those arising from

the hyperkähler quotient construction.

1.2 Motivation from Quantum Field Theory

Many of the constructions and examples considered in this thesis were motivated either

directly from or by analogy with quantum field theory. The hyperkähler quotient con-

struction itself has its origins in quantum field theory, having been first discovered in the

context of gauged supersymmetric sigma model [HKLR87].

In Chapter 2, we study Morse theory with moment maps. Morse theory with |µ|2 was

developed by Kirwan [Kir84] by direct analogy with Morse theory with the Yang-Mills

functional in two dimensions [AB82]. In two dimensions, one may also study the Yang-

Mills-Higgs functional [Wil08], which is analogous to |µHK|2 on a hyperkähler manifold.
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In fact, it was in this context that we first encountered  Lojasiewicz estimates, which

provided the key idea of the main theorem of Chapter 2.

In four dimensions, one may also consider Yang-Mills instantons, which are solutions

to the Euclidean equations of motion with finite action. These give important non-

perturbative corrections to the quantum path integral and are the subject of intense

study in theoretical physics. The self-duality equations defining instantons take the form

of a hyperkähler moment map, and the moduli space of instantons is in fact an infinite-

dimensional hyperkähler quotient. In [AHDM78], the moduli space of instantons on R4

was famously constructed as a finite dimensional hyperkähler quotient of Euclidean space.

This construction was later generalized to any ALE space [KN90], which are themselves

hyperkähler quotients [Kro89]. In [DM96], a physical interpretation of these constructions

was given in terms of gauge theories arising from certain D-brane configurations in string

theory. The ALE and instanton moduli spaces above are all examples of Nakajima quiver

varieties [Nak94], and for this reason we focus on moduli spaces of quiver representations

in Chapter 3.

In Chapter 4, we revisit the residue formula in the context of hyperkähler quotients.

The residue formula [JK95] was itself developed by analogy with Witten’s quantum field

theory arguments [Wit92], and to a certain extent made many of Witten’s calculations rig-

orous. In Witten’s recent work [GW09, Wit11a, Wit11b], he takes the fruitful viewpoint

that symplectic manifolds should be thought of as middle-dimensional integration cycles

in an ambient almost hyperkähler manifold. This served as motivation to re-examine the

residue formula in the context of hyperkähler quotients.

In Chapter 5, we construct algebraic integrable systems from quiver representa-

tions. We prove integrability by embedding these spaces into certain Hitchin systems

[Hit87b, Hit87a]. Hitchin systems are themselves moduli spaces of solutions to the

Hitchin equations, which are a dimensional reduction of the self-duality equations. Using

the quantum field theoretic techniques of BPS state counting and wall-crossing, Gaiotto,

Moore, and Neitzke have given a conjectural construction of the hyperkähler metric on

Hitchin systems [GMN13]. Although we will not have much to say about this, the pri-

mary motivation of Chapter 5 was to construct an interesting class of toy models to

which the techniques of Gaiotto-Moore-Neitzke may be applied. We plan to investigate

this in future work.



Chapter 1. Introduction 4

1.3 Summary of Results

In Chapter 2, we review the basic theory of Morse theory with moment maps. We

develop some basic techniques to organize Morse theory calculations, and especially to

streamline index calculations. The main new result that we prove is the  Lojasiewicz

estimate of Theorem 2.3.11. This gives good analytic control on the gradient flow of

|µ|2 on Cn. In the case that the group is abelian, this theorem also applies to |µc|2

and |µHK|2. This yields a new proof of hyperkähler Kirwan surjectivity for hypertoric

varieties, and Morse theory provides a very short calculation of their cohomology rings

(both equivariant and ordinary). Much of the material in Sections 2.3 and 2.4 appeared

in an earlier article [Fis13].

In Chapter 3, we turn our attention to quiver varieties. In Theorem 3.2.13, we give a

general procedure to compute the Poincaré polynomials of subvarieties of quiver varieties

defined by relations in the path algebra. Nakajima quiver varieties are special cases, but

our procedure applies to a larger class of non-compact varieties. In §3.3 we give a detailed

example of this procedure.

In Chapter 4, we re-examine the Jeffrey-Kirwan residue formula in the context of hy-

perkähler quotients. We show that the residue formula can be interpreted as a procedure

for producing cogenerators of cohomology rings of hyperkähler quotients. Theorem 4.2.8

provides a specialization of the residue formula applicable to quotients of Cn by linear

group actions. As a corollary, this gives an algorithmic procedure to compute the inter-

section pairings and cohomology ring of any compact symplectic quotient of the form

Cn//G. Using the residue formula, we define a natural ring associated to any compact

symplectic quotient, which we call the VGIT ring. Conjecture 4.3.6 states that (under

appropriate conditions), the VGIT ring is equal to the image of the hyperkähler Kirwan

map. We give some explicit examples in §4.4. Theorem 4.3.11 provides an alternative

procedure to compute a complete set of cogenerators for any Nakajima quiver variety,

which is valid even if Conjecture 4.3.6 fails.

Finally, in Chapter 5 we turn our attention away from topology and focus on the

symplectic geometry of hyperkähler quotients. In Theorem 5.1.9, we identify a certain

class of hyperkähler quiver varieties with moduli spaces of parabolic Higgs bundles on P1.

Using this identification, together with standard arguments about Hitchin systems, we

prove in Theorem 5.2.10 that these quiver varieties are algebraic completely integrable

systems. This gives an interesting family of toy models of Hitchin systems for which the

hyperkähler metric may be computed explicitly.



Chapter 2

Morse Theory with Moment Maps

2.1 Hamiltonian Group Actions

2.1.1 Symplectic Reduction

We begin by reviewing basic notions in equivariant symplectic geometry. A classic ref-

erence is [GS84]. A symplectic manifold is a pair (X,ω) where X is a smooth manifold

and ω is a symplectic form on X. Let G be a compact Lie group with Lie algebra g,

and suppose that G acts on a symplectic manifold X by symplectomorphisms. For each

ξ ∈ g, we have the fundamental vector field vξ defined by

vξ(x) :=
d

dt

∣∣∣∣
t=0

etξ · x. (2.1)

The action is said to be Hamiltonian if there exists a G-equivariant map µ : X → g∗

satisfying

d 〈µ, ξ〉 = ivξω, (2.2)

for all ξ ∈ g. The map µ is called the moment map, and is unique (if it exists) up to the

addition of a central constant. If α is a central value of µ, then the symplectic reduction

X//
α

G is defined to be

X//
α

G := µ−1(α)/G. (2.3)

When the group G is understood, we will often denote X//
α

G by Xα.

Theorem 2.1.1. If α is a regular central value of µ, then Xα is a symplectic orbifold,

and a symplectic manifold if G acts freely on µ−1(α). Now suppose that (g, I, ω) is a

Kähler triple on X, and that the G-action preserves this Kähler structure. Then this

5
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Kähler structure descends to the symplectic reduction X//G, making it into a complex

orbifold.

Remark 2.1.2. Suppose that N ⊂ G is a normal subgroup, and let H = G/N . Then for

appropriately chosen moment map levels, there is a natural identification

X//G ∼= (X//N)//H. (2.4)

This is called reduction in stages.

2.1.2 Hyperkähler Reduction

A hyperkähler manifold is a tuple (M, g, I, J,K) such that g is a Riemannian metric on

M and I, J,K are skew-adjoint parallel endomorphisms of TM satisfying the quaternion

relations. This endows M with a triple (ωI , ωJ , ωK) of symplectic forms, defined by

ωI(u, v) = g(Iu, v), ωJ(u, v) = g(Ju, v), ωK(u, v) = g(Ku, v). (2.5)

The action of a compact Lie group G on M is called hyperhamiltonian if it is Hamiltonian

with respect to each of these symplectic forms. If we denote the corresponding moment

maps by µI , µJ , µK then we may package these together into a hyperkähler moment map

µHK : M → g⊗ sp1 given by

µHK(x) = µI(x)⊗ i+ µJ(x)⊗ j + µK(x)⊗ k (2.6)

where {i, j, k} is the standard basis of sp1
∼= su2

∼= R3.

Given a hyperkähler manifold, it is convenient to think of it as having a pair (ωR, ωC)

of symplectic forms, where ωR := ωI is the real symplectic form and ωC := ωJ + iωK is

the complex symplectic form. We denote the corresponding moment maps by µr and µc,

respectively. The hyperkähler quotient of M by G, denoted M///
α

G, is

M///
α

G := µ−1
HK(α)/G. (2.7)

As in the symplectic case, when no confusion should arise, we will often denote M///
α

G

by Mα.

Theorem 2.1.3 ([HKLR87]). If α is a regular central value, then M///
α

G is a hyperkähler

orbifold, and a hyperkähler manifold provided that the action of G on µ−1
HK(α) is free. The
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metric on M///
α

G is complete provided that the metric on M is.

Denote the real and complex parts of α by αR and αC, respectively. If αC is regular,

then µ−1
c (αC) is a complex submanifold of M , and hence is Kähler. Then we have

M///
α

G = µ−1
r (αR) ∩ µ−1

c (αC)/G = µ−1
c (αC)//

αR

G. (2.8)

Since the Kähler quotient µ−1
c (αC)//

αR

G may be identified with the geometric invariant

theory quotient µ−1
c (αC)//GC, we may think of the hyperkähler quotient as a holomorphic

symplectic reduction with respect to the action of GC.

2.1.3 Cuts and Modification

We review two basic constructions which we will be useful for our purposes. Let X be a

symplectic manifold with Hamiltonian circle action.

Definition 2.1.4. For any σ ∈ R we define the symplectic cut [Ler95] Xσ to be

Xσ := (X ×C) //
σ

S1, (2.9)

where the S1 action is given by s · (x, z) = (s · x, sz). Similarly, if M is hyperkähler with

a hyperhamiltonian circle action, we define its hyperkähler modification [DS06] Mσ to be

Mσ := (M × T ∗C) ///
σ

S1. (2.10)

Note that if M is a hyperkähler analogue of X, then there is a natural inclusion

Xσ ↪→Mσ.

We now consider the special case of X = Cn, with the standard circle action given

by s · z = sz. For σ > 0, Cn
σ
∼= Pn as a variety, but its Kähler metric and symplectic

form depend on σ. If G ⊂ U(n), then G acts on Cn as well as on Cn
σ. We will need the

following lemma.

Lemma 2.1.5. Suppose that G acts linearly on X = CN with proper moment map. Then

for a sufficiently large cut parameter σ, we have a natural identification

X//
α

G ∼= Xσ//
α

G (2.11)

as Kähler manifolds.
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Proof. This is easy to see by reduction in stages. By the hypothesis that the G-moment

map is proper, we can find an embedding χ : S1 ↪→ G so that the S1-moment map is

proper. We define an action of G× S1 on X ×C by

(k, s) · (x, z) = (χ(s)kx, sz) (2.12)

Note that (X ×C)//
α

G ∼= (X//
α

G)×C and the residual S1 action acts only on the second

factor, so we have

(X ×C) //
(α,σ)

(G× S1) ∼= (X//
α

G)× (C //
σ−α′

S1) ∼= (X//
α

G)× {pt} ∼= X//
α

G (2.13)

provided that σ−α′ > 0, where α′ is the projection of α to the image of dχ. On the other

hand, we can perform the reductions in the opposite order. Again, assuming σ > α′, we

have

(X ×C) //
(α,σ)

(G× S1) ∼= ((X ×C)//
σ

S1)//
α

G ∼= Xσ//
α

G (2.14)

2.1.4 Equivariant Cohomology and the Kirwan Map

We will use equivariant cohomology throughout this thesis, so we review the basic con-

structions. A basic reference for equivariant cohomology and localization is [GS99].

First we recall the Borel model of equivariant cohomology. Let M be a G-space, and

let EG be the classifying space of G. The equivariant cohomology1 H∗G(M) is defined to

be

H∗G(M) := H∗(EG×GM) (2.15)

where EG is the classifying space, and EG ×G M = (EG ×M)/G is the quotient by

the diagonal G-action. The functor H∗G(·) is an extraordinary cohomology theory on the

category of G-spaces.

When G is a Lie group acting smoothly on a manifold M , there is an alternative

construction of equivariant cohomology called the Cartan model. One simply defines

H∗G(M) to be the cohomology of the complex

Ω∗G(M) := (Ω∗(M)⊗ Sym g∗)G , (2.16)

1We will always take cohomology with real coefficients.
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where the equivariant differential D is defined to be

D = d⊗ 1−
∑
a

ia ⊗ φa (2.17)

where {φa} is a basis of g∗ and ia denotes the interior product with the fundamental

vector field dual to the basis element φa. In all of the cases that we will consider, the

Borel and Cartan models of equivariant cohomology are naturally isomorphic.

Definition 2.1.6. Let M be a symplectic manifold with Hamiltonian G-action. The

Kirwan map is the natural map

κ : H∗G(M)→ H∗(M//G) (2.18)

induced by the inclusion µ−1(0) ↪→M . Similarly, if M is hyperkähler with a hyperhamil-

tonian G-action, the hyperkähler Kirwan map is the natural map

κHK : H∗G(M)→ H∗(M///G). (2.19)

It is well-known that the Kirwan map is surjective for a large class of symplectic

quotients [Kir84]. However, the hyperkähler Kirwan map is not so well-understood.

Conjecture 2.1.7. The hyperkähler Kirwan map is surjective.

Remark 2.1.8. This conjecture is definitely false if one considers certain infinite-dimensional

quotients. The moduli space of rank 2, fixed-determinant Higgs bundles provides an ex-

plicit counterexample [DWWW11].

Remark 2.1.9. While preparing this thesis, we became aware of the work of McGerty and

Nevins [MN14]. By studying the Kirwan-Ness decomposition on the quotient stack Y =

X/G, they obtain a modified version of Kirwan surjectivity for the algebraic symplectic

quotient T ∗X///G.

2.2 Morse Theory

2.2.1 The Moment Map as a Morse-Bott Function

We begin by recalling (without proof) basic facts about Morse theory with moment

maps. Standard references include Atiyah-Bott [AB82, AB84], Atiyah [Ati82], and Kir-

wan [Kir84]. Let G act on (X,ω) with moment map µ, and let T ⊆ G be a maximal
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torus. For β ∈ t, we define µβ to be the pairing 〈µ, β〉. Denote by Tβ the closure in T of

{etβ | t ∈ R}. Throughout, we will assume that we have fixed some compatible metric

and almost complex structure.

Proposition 2.2.1. For any β ∈ t, the function µβ is Morse-Bott. The critical set of

µβ is equal to the fixed-point set XTβ .

Let C be a connected component of XTβ . Since any x ∈ C is fixed by Tβ, we obtain

an isotropy representation on TxX. If we fix a compatible metric and almost complex

structure, then we may decompose TxX into a direct sum of irreducibles

TxX ∼=
⊕
i∈I

C(νi), (2.20)

where I is some indexing set and νi are the weights of the isotropy representation, counted

with multiplicity. We call a weight ν positive if 〈β, ν〉 > 0 and negative if 〈β, ν〉 < 0.

Let N+C and N−C be the subbundles of TX|C consisting of the positive and negative

weight spaces of the isotropy representation, respectively.

Proposition 2.2.2. The bundles N+C and N−C are respectively the positive and nega-

tive eigenbundles of the Hessian of µβ on C. In particular, the Morse index of µβ on C

is equal to twice the number of negative weights, counted with multiplicity.

For the remainder of this section, we will assume that µβ is proper and bounded below,

and that XTβ is compact. Let C ⊆ XTβ be a connected component of the fixed-point

set. Denote by X±C the sublevel sets

X±C = {x ∈ X | µβ(x) ≤ µβ(C)± ε} (2.21)

where ε is some positive number chosen small enough so that the only critical value

occurring in [µβ(C)− ε, µβ(C) + ε] is µβ(C) itself.

Proposition 2.2.3. The equivariant Thom-Gysin sequence for the Morse stratification

with respect to µβ splits into short exact sequences

0→ H∗−λT (C)→ H∗T (X+
C )→ H∗T (X−C )→ 0. (2.22)

The composition of H∗−λT (C)→ H∗T (X+
C ) with the restriction H∗T (X+

C )→ H∗T (C) is given

by multiplication by the equivariant Euler class of the negative normal bundle to C. In

particular, the function µβ is equivariantly perfect.
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Theorem 2.2.4. Suppose that XT is compact and there exists some component β such

that µβ is proper and bounded below. Then X is equivariantly formal, i.e. H∗T (X) ∼=
H∗(BT ) ⊗ H∗(X) as a H∗(BT )-module. As a consequence, the function µβ is perfect,

and the Poincaré polynomial of X is given by

Pt(X) =
∑

C⊆XTβ

tλPt(C), (2.23)

where the sum is over connected components C of the fixed-point set.

Theorem 2.2.5. Under the same hypotheses as above, the restriction H∗T (X)→ H∗T (XT )

is an injection.

2.2.2 Computing Isotropy Representations

We saw in the previous subsection that Morse theory with a moment map amounts to

computing the fixed-point set as well as the isotropy representations. Not only does this

allow us to compute the Poincaré polynomial of our manifold, but in addition we may

use Proposition 2.2.3 to inductively construct the cohomology ring.

The most important special case that we consider is the following. Suppose that X

is a symplectic manifold that we understand well—in most cases, a vector space, flag

variety, or product thereof. Suppose that a compact group H acts on X, and G ⊂ H is

a normal subgroup. Then K := H/G has a residual action on the symplectic reduction

X = X//G. The goal of this section is to give a description of Morse theory on X with

respect to the K action in terms of the H-action on X. We assume throughout this

section that G acts freely on µ−1
G (0), so that X is smooth.

Proposition 2.2.6. x ∈ XK if and only if there is a lift x̃ ∈ X and a unique map

φ : H → G (depending on the lift x̃) such that for all h ∈ H, h·x̃ = φ(h)·x̃. Furthermore,

the map φ satisfies the properties φ|G = 1G and φ(gh) = gφ(h)g−1φ(g) for all g, h ∈ H.

Proof. Suppose that x ∈ XK . Then for any representative x̃, h · x̃ must represent the

same point in X, and hence differs from x̃ by an element of G. Since the action of G on

µ−1
G (0) is free, they differ by a unique element of G, which we will denote by φ(h). This

defines the map φ : H → G. Now consider two elements g, h ∈ H. We compute

φ(gh) · x̃ = gh · x̃ = gφ(h)x̃ = gφ(h)g−1gx̃ = gφ(h)g−1φ(g)x̃, (2.24)

and hence φ(gh) = gφ(h)g−1φ(g).
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Proposition 2.2.7. Let φ be as in the preceding proposition, for some lift x̃ ∈ X of

a fixed point x ∈ XK. Then the set kerφ ⊆ H is a subgroup of H and is naturally

isomorphic to K. Consequently, we have H ∼= K n G, where the semidirect product

structure is given by (k1, g1)(k2, g2) = (k1k2, k1g2k
−1
1 g1)

Proof. A short calculation using the property φ(gh) = gφ(h)g−1φ(g) verifies that kerφ

is indeed a subgroup of H. We define a map ψ : K → kerφ by ψ(k) = φ(k̃)−1k̃, for any

representative k̃ ∈ H of k. This is well-defined, since any other representative of k is of

the form k̃g with g ∈ G, and a short calculation shows that φ(k̃g)−1k̃g = φ(k̃)−1k̃. It

is easy to check that this is a group homomorphism, and is inverse to the quotient map

kerφ→ K. The isomorphism H
∼=→ K nG is given by the map h 7→ ([h], φ(h)).

Now suppose that x ∈ XK is some particular fixed point with lift x̃ ∈ X, and let

φ : H → G be the induced map as in the preceding propositions. Using φ, we define a

new K-action on X, denoted ∗, by

k ∗ y := φ(k)−1k · y. (2.25)

The property φ(k1k2) = k1φ(k2)k−1
1 φ(k1) ensures that k1 ∗ (k2 ∗ y) = (k1k2) ∗ y, so this

is indeed an action. This new action has the property that x̃ will be fixed by all of K.

Hence we have an isotropy representation of K on Tx̃X. Moreover, this new K-action on

X induces the original K-action on X, since for any y ∈ X, k · y and φ−1(k)k · y lie on

the same G-orbit.

Proposition 2.2.8. Let x ∈ XK, x̃ ∈ X a representative, and φ as above. We have the

following complex of K-representations

0→ g
dρ−→ Tx̃X

dµG−→ g∗ → 0, (2.26)

where ρ is the action map and K acts on g ∼= g∗ by conjugation. Consequently, TxX is

isomorphic as a K-representation to the cohomology of this complex.

Proof. By the preceding proposition, we identify K with kerφ ⊂ H. Then the twisted K-

action is nothing more than the restriction of the H-action to K under this identification.

Since G is a normal subgroup of H, then g is invariant under the adjoint action of H,

so we may restrict this to a K-action on g. Since the action map and moment map are

H-equivariant, this gives us an equivariant complex

0→ g
dρ−→ Tx̃X

dµG−→ g∗ → 0 (2.27)
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as claimed. At the level of vector spaces, we have TxX ∼= Tx̃µ
−1(0)/Tx̃Ox̃, where Ox̃ is

the G-orbit through x̃. Since Tx̃µ
−1(0) = ker dµG(x̃) and Tx̃Ox̃ = imρ, we find that the

cohomology of this complex is isomorphic to TxX.

Since knowledge of the isotropy representation allows us to immediately compute the

Morse index, the above proposition gives an effective method to compute Morse indices

for a large class of Hamiltonian group actions. However, it will be convenient to have a

slightly more general statement for invariant subvarieties. Suppose that E is a linear H-

representation and that f : X → E is an H-equivariant map. Then f−1(0) is H-invariant

and induces a subset2 V (f) ⊂ X.

Proposition 2.2.9. Let f : X → E an H-equivariant map to a linear representation of

H, x ∈ V (f)K, x̃ ∈ X a representative, and φ as above. We have the following complex

of K-representations

0→ g→ Tx̃X
dµG⊕df−→ g⊕ E → 0, (2.28)

and TxV (f) is isomorphic as a K-representation to the cohomology of this complex.

Proof. The argument is identical to that of the previous proposition, with dµG ⊕ df in

place of dµG.

Our basic toolkit is nearly complete. However, since we only care about the weights

and multiplicities of isotropy representations of maximal tori, it is most convenient to

work at the level of the representation ring3 of K. We summarize the preceding arguments

in the following theorem.

Theorem 2.2.10. In the representation ring of K, we have the following equality

[TxX] = [Tx̃X]− [gC]. (2.29)

If f : X → E is an H-equivariant map to a linear representation of H, then we also have

[TxV (f)] = [Tx̃X]− [gC]− [E] (2.30)

2In all cases that we consider, X will be a quasiprojective variety and V (f) will in fact be an algebraic
subvariety.

3Recall that the representation ring of a group is the ring consisting of formal Z-linear combinations
of isomorphism classes of representations, with addition and multiplication given by direct sum and
tensor product, respectively. For a torus T of rank r, we have Rep(T ) ∼= Z[t±11 , . . . , t±1r ].
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2.2.3 Equivariant Morse Theory

We now recall some of the basic results of equivariant Morse theory as developed by

Atiyah-Bott [AB82] and Kirwan [Kir84]. Let M be a symplectic manifold with a Hamil-

tonian action of a compact group G, and assume that 0 is a regular value of the moment

map.4 Let T ⊂ G be a maximal torus, and let µT denote the restriction of the moment

map. For β ∈ t∗, we define

Tβ := {exp(tβ) | t ∈ R}, (2.31)

Zβ := µ−1(β), (2.32)

Cβ := G ·
(
Zβ ∩MTβ

)
, (2.33)

Gβ := StabG(β). (2.34)

Let t+ be a positive Weyl chamber and let B be the collection of β ∈ t+ such that Cβ is

non-empty. Kirwan calls these minimal combinations of weights.

Proposition 2.2.11. The critical set of |µ|2 is equal to the union
⋃
β∈B Cβ.

Theorem 2.2.12. The function |µ|2 is Morse-Bott-Kirwan.

Proposition 2.2.13. Let x ∈ Zβ ∩MTβ . Then the negative normal space to Zβ ∩MTβ

at x is isomorphic to N−x (MTβ)/Tx(G ·x). In particular, the Morse index at x is equal to

λβ = λ(µβ;Cβ)− dimG+ dimGβ. (2.35)

We would like to do Morse theory with |µ|2, and to avoid analytic subtleties one

usually assumes that M is compact or that µ is proper. However, we will need to work

in a more general setting. As remarked in [Kir84, §9], it is enough to assume that the

path of steepest descent through any point of M is contained in a compact subset. This

notion is extremely useful, so we adopt the following definition.

Definition 2.2.14. A function f : M → R is said to be flow-closed if every positive

time trajectory of −∇f is contained in a compact set.

For each component Cβ of the critical set, denote by Mβ
± sub-level sets

Mβ
± := {x ∈M | |µ|2 ≤ |β|2 ± ε} (2.36)

4This assumes that we wish to study the symplectic reduction at moment map level 0. We can always
assume that this is the case, by making the replacement µ 7→ µ− α.
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where ε is taken sufficiently small so that the interval [|β|2−ε, |β|2 +ε] contains no critical

values other than |β|2.

Theorem 2.2.15. If |µ|2 is flow-closed, then the stable manifolds Sβ of its gradient flow

form a smooth stratification of M . The Thom-Gysin sequence splits into short exact

sequences

0→ H
∗−λβ
G (Cβ)→ H∗G(Mβ

+)→ H∗G(Mβ
−)→ 0 (2.37)

for each β ∈ B. For any β ∈ B, the restriction H∗G(M) → H∗G(Mβ
±) is surjective. In

particular, the Kirwan map is surjective, and its kernel is generated by those elements of

f ∈ H∗G(M) such that for some β, the restriction of f to Cβ is in the ideal generated by

the equivariant Euler class of the negative normal bundle to Cβ.

Corollary 2.2.16. We have the following equality of Poincaré series

PG
t (M) =

∑
β

tλβPG
t (Cβ), (2.38)

or equivalently,

Pt(M//G) = PG
t (M)−

∑
β 6=0

tλβPG
t (Cβ). (2.39)

By the above theorems, we can understand the cohomology of the quotient in terms

of the G-equivariant cohomology of the connected components of the critical set. Luckily,

we have the following.

Proposition 2.2.17. Let β ∈ B. Then we have H∗G(Cβ) ∼= H∗Gβ
(
Zβ ∩MTβ

)
.

This proposition yields an inductive procedure as follows. By standard results in

Hamiltonian group actions, the connected components of MTβ are symplectic submani-

folds. The group Gβ = Stab(β) acts on MTβ with moment map given by the restriction of

µ. Let Hβ ⊆ Gβ be the kernel of the action map Gβ → Diff(MTβ), and let Kβ = Gβ/Hβ.

Proposition 2.2.18. Suppose that Kβ acts locally freely on Zβ ∩MTβ . Then we have

H∗Gβ(Zβ ∩MTβ) ∼= H∗(BHβ)⊗H∗(MTβ//Kβ). (2.40)

Proof. Simply compute:

H∗Gβ(Zβ ∩MTβ) = H∗(EGβ ×Gβ (Zβ ∩MTβ)) (2.41)

= H∗(((EGβ/Hβ)× (Zβ ∩MTβ))/Kβ) (2.42)



Chapter 2. Morse Theory with Moment Maps 16

= H∗((EGβ/Hβ)× ((Zβ ∩MTβ)/Kβ)) (2.43)

∼= H∗(BHβ)⊗H∗((Zβ ∩MTβ)/Kβ) (2.44)

= H∗(BHβ)⊗H∗(MTβ//Kβ). (2.45)

Remark 2.2.19. There is a well-known equivalence between symplectic reduction on

Kähler varieties and geometric invariant theory [MFK94, Chapter 8]. The fundamen-

tal result is that the Morse stratification with respect to |µ|2 agrees with the algebraic

Kirwan-Ness stratification. In particular, the stable manifold of µ−1(0) consists precisely

of the semistable points, as defined by GIT. We will tend to take the symplectic point of

view, but we will occasionally take advantage of the algebro-geometric description when

it is convenient to do so.

2.2.4 Examples

Below we present some standard examples to illustrate Morse theory with moment maps,

and in particular to elucidate our method of computing Morse indices. In Section 3.3 we

present a very involved calculation which assumes familiarity with these techniques.

Example 2.2.20. Complex projective space Pn may be identified with the symplectic

quotient Cn+1//S1. We use homogeneous coordinates [z0 : · · · : zn] on Pn. Define an S1

action on Cn+1 by

s · (z0, . . . , zn) = (z0, sz1, s
2z2, . . . , s

nzn). (2.46)

This induces an S1 action on Pn. Suppose that [z0 : · · · : zn] is fixed. Then according to

Proposition 2.2.6, there is a map φ : S1 → S1 such that s ∗ z = φ(s) · z for all s ∈ S1.

Since S1 is abelian, φ is must be a genuine homomorphism, and hence is of the form

s 7→ sk for some k. The fixed-point set is non-empty only if k ∈ {0, . . . , n}. Given such

a φ, the twisted action is given by

s ∗ (z0, . . . , zn) = (s−kz0, s
1−kz1, . . . , s

n−kzn). (2.47)

Hence the fixed-points are isolated and of the form [0 : · · · : 0 : 1 : 0 : · · · : 0]. According

to Theorem 2.2.10, the isotropy representation then is given by

[TxP
n] =

n∑
i=0

si−k − 1, (2.48)
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hence the Morse index is λk = 2#{i | i− k < 0} = k. Hence

Pt(P
n) =

n∑
k=0

t2k = 1 + t2 + · · ·+ t2n. (2.49)

Example 2.2.21. The hyperkähler ALE spaces may be constructed as hyperkähler quo-

tients [Kro89]. We consider the type An ALE space M, which is the hyperkähler quotient

of T ∗Cn+1 by (S1)n, where the action of (S1)n on Cn+1 is given by

(s1, . . . , sn) · (x1, . . . , xn, xn+1) = (s1x1, . . . , snxn, (s1 · · · sn)−1xn+1). (2.50)

The moment map equations are

|xj|2 + |yn+1|2 = αj + |yj|2 + |xn+1|2, (2.51)

xjyj − xn+1yn+1 = 0, (2.52)

for j = 1, . . . , n. Let us take 0 < α1 < · · · < αn. The S1-action on M is given by

s · (x, y) = (sx, sy). As in the previous example, a point (x, y) represented by (x̃, ỹ) is

fixed if and only if there is a homomorphism φ : S1 → (S1)n such that

φ(s)−1s · (x̃, ỹ) = (x̃, ỹ) (2.53)

for all s ∈ S1. Such a homomorphism is necessarily of the form φ(s) = (sw1 , . . . , swn),

and this must solve (sx̃, sỹ) = φ(s) · (x̃, ỹ) which gives the system of equations

sxj = swjxj, j = 0, . . . , n (2.54)

syj = s−wjyj, j = 0, . . . , n (2.55)

sxn+1 = s−w1−···−wnxn+1, (2.56)

syn+1 = sw1+···+wnyn+1. (2.57)

There are two possible cases: (i) yn+1 = 0 and (ii) yn+1 6= 0. In the first case, the moment

map equations force that xj 6= 0 for j = 1, . . . , n, so that w1 = . . . wn = 1. Then we must

have yj = 0 for j = 1, . . . , n as well as xn+1 = 0. Hence this corresponds to a unique

fixed point. The isotropy representation is given by sn−1 + s1−n, and hence the Morse

index is equal to 2 if n > 1 and 0 if n = 1.

In the second case, since yn+1 6= 0 we have
∑
wi = 1, and hence xn+1 = 0. For each

j, the complex moment map equations force at least one of xj, yj to be zero. Subtracting
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the real moment map equation for index k from that of index j gives

|xj|2 + |yk|2 = αj − αk + |yj|2 + |xk|2. (2.58)

For j > k, at least one of xj or yk must be non-zero. Let ` be the smallest index such

that y` = 0. Then x`+1 6= 0, and therefore y`+1 = 0, hence x`+2 6= 0, and so on. Hence we

find xj = 0, yj 6= 0, j < `, xj 6= 0, yj = 0, j ≥ `, y` = 0. Now in order to have
∑
wi = 1,

we have to choose w` = 2`− n. Hence the fixed-points are parameterized by the integer

` ∈ {1, . . . , n}, and the isotropy representation is s1+n−2` + s1−n+2`. Hence the Morse

index is 0 if ` ∈ [(n− 1)/2, (n+ 1)/2] and 2 otherwise. Combining this with the previous

result, we find that the Poincaré polynomial of the An ALE space is

Pt(M) = 1 + nt2. (2.59)

Example 2.2.22. In this case we use equivariant rather than ordinary Morse theory. The

Grassmannian Gr(2, n) may be constructed as a symplectic quotient of the space of

2 × n matrices by the left multiplication by U(2), i.e. Gr(2, n) ∼= C2n//
α

U(2), where

the reduction is taken at the matrix diag(α, α). Up to the action of the Weyl group,

the possible values β that can occur as minimal combinations of weights are β =

diag(0, 0), diag(0,−α), diag(−α,−α). The critical set corresponding to β = diag(0, 0)

is µ−1(0), i.e. the set whose (U(2)-equivariant) cohomology we would like to compute,

so there is nothing to be done. The critical set corresponding to β = diag(−α,−α) is

simply the origin in C2n. The negative normal bundle is equal to all of Cn, In particular,

the Morse index is equal to 4n.

The non-trivial critical set is the one corresponding to β = diag(0,−α). We have

Gβ
∼= U(1)× U(1), with Tβ ∼= {1} × U(1). (C2n)Tβ consists of matrices of the form(

∗ ∗ · · · ∗
0 0 · · · 0

)
(2.60)

and Zβ consists of those matrices of this form such that the norm-square of the top row is

equal to α. Hence Zβ/U(1)×{1} ∼= Pn−1. The index of µβ is equal to 2n, and subtracting

the dimension of U(2)/Stab(β) we find that the Morse index is equal to 2n − 2. Hence

the Poincaré polynomial of Gr(2, n) is equal to

Pt(Gr(2, n)) =
1− t4n

(1− t2)(1− t4)
− t2n−2(1 + t2n)

(1− t2)2
. (2.61)
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2.3 Noncompact Quotients

2.3.1 Complex and Hyperkähler Moment Maps

One might expect to be able to develop an analogous Morse theory for |µHK|2. However,

this appears not to be the case, except when G is a torus [Kir85]. The problem is that in

the nonabelian situation, the norm of the gradient of |µHK|2 contains a term proportional

to the structure constants of the group that is difficult to understand (see Remark 2.3.21).

In [JKK09], it was found instead that the function |µc|2 is better behaved, owing to the

fact that µc is I-holomorphic.

Theorem 2.3.1 (Jeffrey-Kiem-Kirwan [JKK09], Kirwan [Kir85]). The function f = |µc|2

is minimally degenerate. If f is flow-closed, then the stable manifolds SC form a K-

invariant stratification of M and the equivariant Thom-Gysin sequence splits into short

exact sequences. Consequently, the restriction H∗G(M)→ H∗G(µ−1
c (0)) is surjective. If G

is a torus, the same conclusions hold for |µHK|2 provided that it is flow-closed.

Note that µ−1
c (0) is a G-invariant complex submanifold of M (provided 0 is regular),

so that M///G ∼= µ−1
c (0)//G. Hence surjectivity of map H∗G(µ−1

c (0)) → H∗(M///G) can

be studied by the usual methods (but see Corollary 2.3.17). In principle, this reduces the

question of Kirwan surjectivity for hyperkähler quotients to the following conjecture.

Conjecture 2.3.2 ([JKK09]). If µc is a complex moment map associated to a linear

action by a compact group G on a vector space, then |µc|2 is flow-closed.

This was proved for the special case of S1 actions in [JKK09], but the method of

proof does not admit any obvious generalization. We will prove the following.

Theorem 2.3.3. Conjecture 2.3.2 is true when G is a torus.

This is an immediate consequence of Proposition 2.3.7 and Theorem 2.3.11. To appre-

ciate why this result requires some effort, let us contrast it with the analogous statement

for |µ|2, where µ is an ordinary moment map associated to a linear action on a Hermitian

vector space V . It is immediate from the definitions that ∇|µ|2 = 2Ivµ, where vµ de-

notes the fundamental vector field of µ. Hence, the gradient trajectory through a point

x always remains in the GC-orbit through x. Thus it suffices to restrict attention to

the GC-orbits. Flow-closedness is then a consequence of the following proposition, which

follows easily from the KAK decomposition of reductive Lie groups [Kna02].

Proposition 2.3.4 (Sjamaar [Sja98, Lemma 4.10]). Suppose GC acts linearly on V , let

{gn} be a sequence of points in GC, and let {xn} be a bounded sequence in V . Then the

sequence {gnxn} is bounded if {µ(gnxn)} is bounded.
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Now consider the gradient flow of |µc|2 on T ∗V . Since |µc|2 = |µJ |2+|µK |2, we see that

∇|µc|2 = 2JvµJ+2KvµK . The problem is immediate: due to the simultaneous appearance

of J and K, the gradient trajectories appear to lie on the orbits of a “quaternification”

of G, but in general no suitable quaternification of G exists. More precisely, if we let D
denote the distribution on V generated by the G action (i.e. the integrable distribution

whose leaves are the G-orbits), then DC := D+ID is integrable, whereas the distribution

DH := D + ID + JD +KD on T ∗V is not integrable in general.

In a few specific examples, a detailed study of DH leads to definite conclusions about

the gradient flow, but at present we cannot prove a general result in this direction. In

any case, we will not pursue this approach in the present work (but see Remarks 2.3.21

and 2.3.22, which are related to this problem).

With these considerations in mind, it would be illuminating to have a proof of the

flow-closedness of |µ|2 that relies neither on arguments involving GC nor on properness,

as such a proof might generalize to the hyperkähler setting. This is exactly the content

the main result of this chapter, Theorem 2.3.11. The key idea is to relax the assumption

of properness to the weaker condition of satisfying a certain gradient inequality.

In the case of ADHM spaces [AHDM78], a gradient-like flow was studied by Boyer

and Mann [BM93], following an idea of Taubes [Tau84] to perturb ∇|µHK|2 in such a

way that its flow is better behaved analytically. However, this approach does not seem

to be applicable to reduction at non-zero values of the moment map. The idea of using

gradient estimates to study the flow of ∇|µHK|2 directly was inspired in part by [Wil08].

2.3.2  Lojasiewicz Inequalities

We begin by giving a precise definition of the type of inequality we wish to consider, as

well as its most important consequence.

Definition 2.3.5. Let (M, g) be a complete Riemannian manifold. A smooth real-valued

function f on M is said to satisfy a global  Lojasiewicz inequality if for any real number

fc in the closure of the image of f , there exist constants ε > 0, k > 0, and 0 < α < 1,

such that

|∇f(x)| ≥ k|f(x)− fc|α, (2.62)

for all x ∈M such that |f(x)− fc| < ε.

Remark 2.3.6. The term global  Lojasiewicz inequality is borrowed from [JKS92]; however,

we use it in a different way, as we are concerned specifically with bounding the gradient

of f .
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Proposition 2.3.7. Suppose f satisfies a global  Lojasiewicz inequality and is bounded

below. Then f is flow-closed.

Proof. Let x(t) be a trajectory of −∇f . Since f(x(t)) is decreasing and bounded below,

limt→∞ f(x(t)) exists. Call this limit fc. Let ε, k, and α be the constants appearing

in the global  Lojasiewicz inequality for f with limit fc. For large enough T , we have

|f(x(t)) − fc| < ε whenever t > T . Consider t2 > t1 > T , and let f1 = f(x(t1)) and

f2 = f(x(t2)). Since ẋ = −∇f , we have that

d(x(t1), x(t2)) ≤
∫ t2

t1

|∇f(x(t))|dt, (2.63)

where d(x, y) denotes the Riemannian distance. By the change of variables t 7→ f(x(t)),

we obtain

d(x(t1), x(t2)) ≤
∫ f1

f2

|∇f |−1df (2.64)

≤ k−1

∫ f1

f2

|f − fc|−αdf (2.65)

= k−1(1− α)−1
(
|f1 − fc|1−α − |f2 − fc|1−α

)
(2.66)

< k−1(1− α)−1|f(x(T ))− fc|1−α. (2.67)

Since α < 1, the last expression can be made arbitrarily small by taking T sufficiently

large, so we see that limt→∞ x(t) exists, and in particular the gradient trajectory is

contained in a compact set.

This argument establishes flow-closedness directly from the  Lojasiewicz inequality,

without appealing to compactness. Thus it would be sufficient to show that |µ|2 satisfies

such an inequality. To motivate why we might expect this to be case, we recall the

classical  Lojasiewicz inequality.

Theorem 2.3.8 ( Lojasiewicz Inequality [BM88,  Loj64]). Let f be a real analytic function

on a domain in RN , and let c be a critical point of f . Then there is an open neighbourhood

U of c such that for any compact subset K ⊂ U , there are constants k > 0 and 0 < α < 1

such that the inequality

|∇f(x)| ≥ k |f(x)− f(c)|α (2.68)

holds for all x ∈ K.

If f is a proper real analytic function, then this immediately implies that f satisfies
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a global  Lojasiewicz inequality as defined above. Since our primary concern is Morse

theory, we can relax the assumption of analyticity as follows.

Proposition 2.3.9. Suppose f is a proper Morse function. Then f satisfies a global

 Lojasiewicz inequality.

Proof. By the Morse lemma, near each critical point we can choose coordinates in which

f is real analytic. Hence f satisfies the classical  Lojasiewicz inequality near each critical

point, and since f is proper this can be extended to a global inequality.

For a moment map µ, the function |µ|2 is in general neither Morse nor Morse-Bott,

but minimally degenerate (in the sense of [Kir84]). Nonetheless, we can still obtain a

global  Lojasiewicz inequality whenever µ is proper.

Proposition 2.3.10. Suppose µ is a moment map associated to an action of a com-

pact Lie group, and suppose furthermore that µ is proper. Then |µ|2 satisfies a global

 Lojasiewicz inequality.

Proof. Lerman [Ler05] proves that the moment map is locally real analytic with respect

to the coordinates induced by the local normal form, and uses this fact to show that |µ|2

satisfies the classical  Lojasiewicz inequality. Since µ is proper, this can be extended to a

global inequality.

Since we would like to drop the assumption of properness, it is natural to ask whether

there are examples of moment maps which are not proper but nevertheless satisfy a global

 Lojasiewicz inequality. The answer to this question is in the affirmative, at least when

the action is linear. The following is the main theorem of this chapter, which we prove

in Section 2.3.3.

Theorem 2.3.11. Let µ be a moment map associated to a unitary representation of

a compact group G on a Hermitian vector space V . Then f = |µ|2 satisfies a global

 Lojasiewicz inequality. In detail, for every fc ≥ 0, there exist constants k > 0 and ε > 0

such that

|∇f(x)| ≥ k|f(x)− fc|
3
4 (2.69)

whenever |f(x)− fc| < ε. If G is a torus, then the same holds for the functions |µc|2 and

|µHK|2 associated to the action of G on T ∗V .

Remark 2.3.12. This theorem is a generalization of [Nee85, Theorem A.1]. However, in

[Nee85], it is assumed that the constant term in the moment map is chosen so that f is
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homogeneous (see equation (2.85)), leading to an inequality of the form

|∇f | ≥ kf
3
4 , (2.70)

which holds on all of V . Both sides are homogeneous of the same degree, so that it suffices

to prove the inequality on the unit sphere, allowing the use of compactness arguments.

In Theorem 2.3.11, we make no such assumption, and this complicates several steps of

the proof.

Remark 2.3.13. If X ⊂ V is a G-invariant subvariety, then it is easy to see that Theorem

2.3.11 implies that the restriction of f to X satisfies a global  Lojasiewicz inequality.

Similarly, if X ⊂ T ∗V is a G-invariant hyperkähler subvariety, we deduce the inequality

for the restrictions of |µc|2 and |µHK|2.

Remark 2.3.14. In [DG05] and [Kur98] it is shown that certain classes of functions satisfy

similar global  Lojasiewicz inequalities; indeed this was the motivation to consider such

inequalities. However, these general theorems cannot rule out the possibility α ≥ 1,

which is not sharp enough to prove the boundedness of all gradient trajectories. In this

sense, the real content of Theorem 2.3.11 is the bound on the exponent.

In what follows, let G be a compact group acting unitarily on a Hermitian vector

space V , with moment map µ. Note that since the action is linear, we have H∗G(V ) =

H∗G(point) =: H∗G. For αR ∈ g∗ and αC ∈ g∗C, we denote

X(αR) := V //
αR

G, (2.71)

M(αR, αC) := T ∗V ///
(αR,αC)

G. (2.72)

Corollary 2.3.15. Let f = |µ|2. Then for each component C of the critical set of f ,

the gradient flow defines a G-equivariant homotopy equivalence from the stable manifold

SC to the critical set C. If G is abelian, then the same holds for the functions |µc|2 and

|µHK|2.

Remark 2.3.16. If µ is assumed to be proper then this is a special case of the main theorem

of [Ler05]. However, the essential ingredient of the proof is the  Lojasiewicz inequality.

We give the proof below for completeness, but the details do not differ significantly from

[Ler05].

Proof. We define a continuous map F : SC × [0,∞) → SC by (x, t) 7→ x(t), where x(t)

is the trajectory of −∇f beginning at x, evaluated at time t. By Proposition 2.3.7, we
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can extend this to a map F : SC × [0,∞] → SC by (x,∞) 7→ limt→∞ x(t). This map is

the identity when restricted to C, and maps SC × {∞} to C. We must verify that this

extended map is continuous.

We must show that for any x0 ∈ SC and any sequence {(xn, tn)} of points in SC×[0,∞]

satisfying limn→∞ xn = x0 ∈ SC and limn→∞ tn =∞ that limn→∞ xn(tn) exists. We will

show that it is equal to xc := limt→∞ x0(t). Let fc be the value of f on C and let ε, k

be the constants appearing in Theorem 2.3.11. Given such a sequence, let η > 0 and

assume η < ε but is otherwise arbitrary; let T > 0 be chosen large enough so that

|f(x0(t)) − fc| < η for t > T ; and let N > 0 be chosen to that tn > T for n > N . The

map SC → SC given by x 7→ x(T ) is continuous, so we can find δ > 0 such that

|x− x0| < δ =⇒ |x(T )− x0(T )| < η. (2.73)

Since x 7→ f(x(T )) is continuous, we can shrink δ if necessary so that

|x− x0| < δ =⇒ |f(x(T ))− f(x0(T ))| < η. (2.74)

Choose N larger if necessary such that |xn − x0| < δ for n > N . We would like to show

that |xn(tn)− xc| → 0 as n→∞. For n > N we have

|xn(tn)− xc| = |xn(tn)− xn(T ) + xn(T )− x0(T ) + x0(T )− xc| (2.75)

≤ |xn(tn)− xn(T )|+ |xn(T )− x0(T )|+ |x0(T )− xc|. (2.76)

By our choice of N , the second term is bounded by η, and we may apply the argu-

ment in the proof of Proposition 2.3.7 to show that the third term is bounded by

k−1|f(x0(T )) − fc|
1
4 < 4k−1η

1
4 . Finally, to bound the first term we again apply the

argument of Proposition 2.3.7 to obtain the bound

4k−1
(
|f(xn(T ))− fc|

1
4 − |f(xn(tn))− fc|

1
4

)
< 4k−1|f(xn(T ))− fc|

1
4 . (2.77)

Since |xn − x0| < δ, we have

|f(xn(T ))− fc| = |f(xn(T ))− f(x0(T )) + f(x0(T ))− fc| (2.78)

≤ |f(xn(T ))− f(x0(T ))|+ |f(x0(T ))− fc| (2.79)

< 2η. (2.80)
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Hence the first term is bounded by 4k−1(2η)
1
4 < 8k−1η

1
4 , and we obtain

|xn(tn)− xc| ≤ 12k−1η
1
4 + η. (2.81)

Since we may take η arbitrarily small, we see that |xn(tn)− xc| → 0.

Corollary 2.3.17. If αC ∈ g∗C is regular central, then for any central αR ∈ g∗, the set

µ−1
r (αR)∩ µ−1

c (αC) is a G-equivariant deformation retract of µ−1
c (αC), and in particular

H∗G(µ−1
c (αC)) ∼= H∗(M(αR, αC)). (2.82)

Proof. Since αC is regular central, µ−1
c (αC) is a G-invariant complex submanifold of

T ∗V , and furthermore G acts on µ−1
c (αC) with at most discrete stabilizers. Hence the

only component of the critical set of |µr − αR|2 that intersects µ−1
c (αC) is the absolute

minimum, which occurs on µ−1
r (αR). By Corollary 2.3.15, the gradient flow of −|µr−αR|2

gives the desired G-equivariant deformation retract from µ−1
c (αC) to µ−1

r (αR)∩µ−1
c (αC).

Thus

H∗G(µ−1
c (αC)) ∼= H∗G(µ−1

r (αR) ∩ µ−1
c (αC)) ∼= H∗(M(αR, αC)). (2.83)

Corollary 2.3.18. If α is a regular central value of µ, then the Kirwan map H∗G →
H∗(X(α)) is surjective. If G is a torus and (αR, αC) is a regular value of the hyperkähler

moment map, then the hyperkähler Kirwan map H∗G → H∗(M(αR, αC)) is surjective.

Proof. Theorem 2.3.11 and Proposition 2.3.7 show that |µ − α|2 is flow-closed, so we

obtain surjectivity of H∗G → H∗(X(α)) by Theorem 2.2.15.

In the hyperkähler case, if G is a torus then |µc − αC|2 is flow-closed, so by The-

orem 2.3.1 we obtain surjectivity of H∗G → H∗G(µ−1
c (αC)). By Corollary 2.3.17, the

map H∗G(µ−1
c (αC)) → H∗(M(αR, αC)) is an isomorphism, so we have surjectivity of

H∗G → H∗(M(αR, αC)).

Remark 2.3.19. Konno proved surjectivity of the map H∗G → H∗(M(αR, αC)) when G is

a torus using rather different arguments [Kon00a]. Konno also computed the kernel of

the Kirwan map, giving an explicit description of the cohomology ring H∗(M(αR, αC)).

We study this case in detail in Section 2.4, and we will see that Morse theory allows us

to compute the kernel very easily.
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2.3.3 Proof of the  Lojasiewicz Inequality

Let G be a compact Lie group with Lie algebra g, and suppose G acts unitarily on a

Hermitian vector space G. Without loss of generality we will regard G as a subgroup

of U(V ) and identify g with a Lie subalgebra of u(V ), which we identify with the Lie

algebra of skew-adjoint matrices. We will use the trace norm on u(V ) to induce an

invariant inner product on g, and use this to identify g with its dual. For any ξ ∈ g there

is a fundamental vector field vξ which is given by vξ(x) = ξx. We denote by stab(x) the

Lie algebra of the stabilizer of a point x ∈ V ; i.e.

stab(x) = {ξ ∈ g | vξ(x) = 0}. (2.84)

If we fix an orthonormal basis {ea} of g, then a moment map is given by

µ(x) =
∑
a

1

2
〈ieax, x〉 − α, (2.85)

where i =
√
−1 is the complex structure on V and α is any central element of g. Then

for f = |µ|2, we have

∇f(x) = 2ivµ(x)(x) =
∑
a

2iµa(x)eax, (2.86)

and since i is unitary, we have that

|∇f | = 2|vµ|. (2.87)

Lemma 2.3.20. Suppose G is abelian, and consider its action on T ∗V . Let fi = |µi|2

for i = I, J,K. Then 〈∇fi,∇fj〉 = 0 for i 6= j.

Proof. We compute:

〈∇fJ ,∇fK〉 = 4 〈JvµJ , KvµK 〉 (2.88)

= 4 〈IvµJ , vµK 〉 (2.89)

= 4ωI(vµJ , vµK ) (2.90)

= 4 〈µJ , dµI(vµK )〉 (2.91)

= 4 〈µJ , [µK , µI ]〉 (2.92)

= 0. (2.93)

Similar computations show that the other two cross terms vanish.
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Remark 2.3.21. The proof of this lemma makes it clear why the assumption that G is

abelian is so useful in the hyperkähler setting. The cross term

〈∇fJ ,∇fK〉 = 4 〈µI , [µJ , µK ]〉 (2.94)

is exactly the obstruction to proving an estimate in the general nonabelian case. The

function on the right hand side is very natural, and seems to be genuinely hyperkähler,

having no analogue in symplectic geometry. Numerical experiments suggest that it is

small in magnitude compared to |∇fJ |+ |∇fK |, but we do not know how to prove this.

A theorem in this direction might be enough to prove flow-closedness (and hence Kirwan

surjectivity) in general.

Remark 2.3.22. In light of the discussion following Proposition 2.3.4, the cross term

〈µI , [µJ , µK ]〉 should have an interpretation in terms of the geometry of the non-integrable

distribution DH. Subriemannian geometry may have a key role to play in proving Kirwan

surjectivity for hyperkähler quotients by nonabelian groups.

Proposition 2.3.23. Let T ⊂ G be a maximal torus of G, and let µG and µT be the

corresponding moment maps. Let fG = |µG|2 and fT = |µT |2. Suppose that for any

fc ≥ 0, fT satisfies a global  Lojasiewicz inequality. Then fG satisfies a global  Lojasiewicz

inequality with the same constants and exponent.

Proof. Since G is compact, for each x ∈ V we can find some g ∈ G so that AdgµG(x) ∈
t. By equivariance of the moment map, we have AdgµG(x) = µG(gx) ∈ t. Hence

µG(gx) = µT (gx), so that |vµG(gx)| = |vµT (gx)|. Using equality (2.87), this tells us that

|∇fG(gx)| = |∇fT (gx)|. Since fG(gx) = |µG(gx)|2 = |µT (gx)|2 = fT (gx), we deduce the

 Lojasiewicz inequality for fG from the inequality for fT .

We assume for the remainder of this section that G is a torus.

Proposition 2.3.24. Fix fc ≥ 0, and suppose that for each µc ∈ g satisfying |µc|2 = fc,

there exist constants ε′ > 0 and c′ > 0 (depending on µc) such that

|∇f(x)| ≥ c′|f(x)− fc|
3
4 (2.95)

whenever |µ(x)−µc| < ε′. Then f satisfies a global  Lojasiewicz inequality, i.e., there exist

constants ε > 0 and c > 0 so that the inequality (2.95) holds whenever |f(x)− fc| < ε.

Proof. Suppose that for each µc as above we can find constants ε(µc) and c(µc) so that

inequality (2.95) holds. Let U(µc) be the ε(µc)-ball in g centered at µc. These open
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sets cover the sphere S of radius
√
fc in g, and by compactness we can choose a finite

subcover. Denote this finite subcover by {Ui}ni=1, with centers µi and constants ci, and let

c = mini ci. The finite union ∪iUi contains an ε-neighborhood of S for some sufficiently

small ε. Since f(x) = |µ(x)|2, if we choose ε′ > 0 sufficiently small then |f(x)− fc| < ε′

implies that
∣∣|µ(x)| −

√
fc
∣∣ < ε, so that µ(x) ∈ ∪iUi. In particular, there is some j such

that µ(x) ∈ Uj, and by inequality (2.95) we have

|∇f(x)| ≥ cj|f(x)− fc|
3
4 ≥ c|f(x)− fc|

3
4 , (2.96)

as desired.

Before giving the proof of Theorem 2.3.11, we isolate some of the main steps in the

following lemmas. Let us introduce the following notation. For x ∈ V \ {0}, let x̂ denote

its projection to the unit sphere, i.e. x̂ = x/|x| or equivalently x = |x|x̂. Since the action

is linear, we have that vξ(x) = |x|vξ(x̂) and stab(x) = stab(x̂).

Lemma 2.3.25. Fix ŷ in the unit sphere in V . Let P be the orthogonal projection from

g to stab(ŷ)⊥, and Q = 1 − P . Then there is a neighborhood U of ŷ such that for any

ξ ∈ g, inequalities

|vξ(x)| ≥ c|x||Pξ| (2.97)

|vξ(x)| ≥ c′|vPξ(x)| (2.98)

|vξ(x)| ≥ c′′ (|vPξ(x)|+ |vQξ(x)|) (2.99)

hold for all x such that x̂ ∈ U . The constants c, c′, c′′ are positive and depend only on ŷ

and U but not on x or ξ.

Remark 2.3.26. A version of this lemma appears as part of the proof of [Nee85, Theorem

A.1], though it is not stated exactly as above. We repeat the argument below so that

our proof of Theorem 2.3.11 is self-contained.

Proof. Fix ŷ and let P and Q be as above. Let W be the smallest G-invariant subspace

of V containing ŷ, and let PW : V → W be the orthogonal projection. Note that W

is generated by vectors of the form ξ1 · · · ξlŷ, with ξi ∈ gC. Since PW is a projection,

|vξ| ≥ |PWvξ|, so to establish inequality (2.97) it suffices to show that |PWvξ| ≥ c|Pξ|.
Note that PW is equivariant, i.e. ξPW = PW ξ for all ξ ∈ g. Note also that since K is

abelian, if ξ ∈ stab(ŷ) then ξ ∈ ann(W ), since ξξ1 · · · ξlŷ = ξ1 · · · ξlξŷ = 0. For any

orthonormal basis {ea}di=1 of g chosen so that {ea}ni=1 is an orthonormal basis of stab(ŷ)⊥
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and {ea}di=n+1 is an orthonormal basis of stab(ŷ), we have Pξ =
∑d

a=1 ξ
aPea =

∑n
a=1 ξ

aea.

Similarly, we find

PWvξ(x) =
d∑
a=1

PW ξ
aeax =

d∑
a=1

ξaeaPWx =
n∑
a=1

ξaeaPWx = PWvPξ(x). (2.100)

Taking norms, we see that

|PWvξ(x)|2 =
n∑
a=1

n∑
b=1

ξaξb 〈PW eax, PW ebx〉 = (Pξ)TH(x)(Pξ), (2.101)

where H(x) is the matrix with entries Hab(x) = 〈PW eax, PW ebx〉 for a, b = 1, . . . , n. By

construction, this matrix is positive definite at ŷ, so for a sufficiently small neighborhood

U of ŷ, we obtain |PWvξ(x̂)|2 ≥ c|Pξ|2, with the positive constant c depending only on ŷ

and the choice of neighborhood U . For any x with x̂ ∈ U , we obtain |vξ(x)| = |x||vξ(x̂)| ≥
c|x||Pξ|, which is inequality (2.97).

We can deduce inequality (2.98) from inequality (2.97) as follows. We have

|vPξ(x̂)| = |
n∑
a=1

ξaeax̂| ≤ |Pξ|
n∑
a=1

|eax̂|. (2.102)

Shrinking U if necessary, we can assume that the functions |eax̂| are bounded on U , and

so we obtain |vPξ(x̂)| ≤ c′|Pξ| ≤ c−
1
2 c′|vξ(x̂)|. Hence for any x with x̂ ∈ U we have

|vPξ(x)| = |x||vPξ(x̂)| ≤ c−
1
2 c′|x||vξ(x̂)| = c−

1
2 c′|vξ(x)|, (2.103)

which is inequality (2.98).

To establish inequality (2.99), first note the following consequence of the triangle

inequality. If v, w are vectors in some normed vector space, and |v + w| ≥ a|v| with

a > 0, then we have

|v|+ |w| = |v|+ |v + w − v| ≤ 2|v|+ |v + w| ≤
(

1 +
2

a

)
|v + w|. (2.104)

Since ξ = Pξ + Qξ, we have vξ(x) = vPξ(x) + vQξ(x), so applying inequality (2.98)

together with the inequality (2.104) above, we obtain

|vξ(x)| ≥ c′′′ (|vPξ(x)|+ |vQξ(x)|) , (2.105)

with the constant c′′′ depending only on ŷ and the neighborhood U .



Chapter 2. Morse Theory with Moment Maps 30

Lemma 2.3.27. Let f = |µ|2 and fix µc ∈ g. Then there exist constants c > 0 and ε > 0

(depending on µc) such that whenever |µ(x)− µc| < ε, we have

|x|2|f(x)| ≥ c |f(x)− fc|
3
2 . (2.106)

Proof. Fix some particular µc. Recall that µ is quadratic in the coordinate x with

no linear terms. Thus µ is affine in the coordinates vij = xix̄j, and we may write

µ(x) = φ(v), where φ(v) = Av − α, for some linear transformation A : V ⊗ V → g. We

have |vij| = |xi||xj| ≤ 1
2

(|xi|2 + |xj|2), so that |v| ≤ 1
2

∑
i,j |xi|2 + |xj|2 = N |x|2, where

N = dimV . Thus |x|2|f(x)| = |x|2|φ(v)|2 ≥ N−1|v||φ(v)|2, so it suffices to show that

|v||φ(v)|2 ≥ c
∣∣|φ(v)|2 − fc

∣∣ 32 , (2.107)

whenever |φ(v)− µc| < ε. This follows immediately from Lemma 2.3.28, which we state

and prove below.

Lemma 2.3.28. Let V1 and V2 be inner product spaces, and consider an affine map

φ : V1 → V2 given by φ(v) = Av − α for some linear map A : V1 → V2 and constant

α ∈ V2. Then for any φc in the image of φ, there exist constants c > 0 and ε > 0 such

that

|v||φ(v)|2 ≥ c
∣∣|φ(v)|2 − |φc|2

∣∣ 32 (2.108)

whenever |φ(v)− φc| < ε.

Proof. To avoid unnecessary clutter, we use the shorthand v2 := |v|2 below. First note

that if P is a projection such that AP = A, then we have φ(v) = φ(Pv), and so

|v||φ(v)|2 = |v||φ(Pv)|2 ≥ |Pv||φ(Pv)|2. (2.109)

Taking P to be the orthogonal projection from V1 to (kerA)⊥, without loss of generality

we can assume that A is injective. Similarly, without loss of generality we may assume

that A is surjective. Suppose that φc ∈ V2 is fixed. Pick vc ∈ V1 so that φ(vc) = φc.

There are four possible cases.

Case 1: vc = 0, φc = 0. In this case, α = 0, and φ(v) = Av, so that |φ(v)| ≤ |A||v|.
Thus |v||φ(v)|2 ≥ |A|−1|φ(v)|3, as desired. We may take ε to be any positive number,

and c = |A|−1.

Case 2: vc = 0, φc 6= 0. Take ε ≤ |φc|/2. Then

|φ(v)2 − φ2
c | = | 〈φ(v)− φc, φ(v) + φc〉 | (2.110)
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≤ |φ(v)− φc||φ(v) + φc| (2.111)

≤ |φ(v)− φc| (2|φc|+ ε) (2.112)

≤ 5

2
|φ(v)− φc||φc|, (2.113)

so we have |φ(v)2−φ2
c | ≤ c1|φ(v)−φc||φc|, where c1 is a numerical constant independent

of φc. Since |φ(v)−φc| < |φc|/2, we also have |φ(v)2−φ2
c | ≤ c2|φc|2. Combining these two

inequalities, we have |φ(v)2−φ2
c |

3
2 ≤ c3|φ(v)−φc||φc|2. Since φ(v)−φc = A(v−vc) = Av,

we have |φ(v) − φc| ≤ |A||v|. Putting this back into the previous inequality, we obtain

|φ(v)2 − φ2
c |

3
2 ≤ |A||v||φc|2. On the other hand, with our choice of ε we have |φ| ≥ 1

2
|φc|,

so that |φ(v)2 − φ2
c |

3
2 ≤ 4|A||v||φ|2, as desired.

Case 3: vc 6= 0, φc = 0. Take ε = |A−1|−1|A|−1|α|/2. Since in this case Avc = α, we

have ε ≤ |A−1|−1|vc|/2, and

|vc| = |v − (v − vc)| (2.114)

≤ |v|+ |v − vc| (2.115)

= |v|+ |A−1φ(v)| (2.116)

≤ |v|+ |A−1|ε (2.117)

≤ |v|+ |vc|
2
. (2.118)

Thus |v| ≥ |vc|/2 ≥ |A|−1|α|/2. Then

|φ(v)|3 ≤ ε|φ(v)|2 =
1

2
|A−1|−1|A|−1|α||φ(v)|2 ≤ |A−1|−1|v||φ(v)|2, (2.119)

which is the desired inequality.

Case 4: vc 6= 0, φc 6= 0. Let ε′ be chosen as in case (3), and let ε = min{ε′, |φc|/2}. As

in the previous cases, this choice of ε guarantees that |v| ≥ |vc|/2, and that |φ(v)| ≥ |φc|/2.

As before,

|φ(v)2 − φ2
c | ≤ |φ(v)− φc||φv + φc| (2.120)

≤ ε(2|φc|+ ε) (2.121)

≤ 5

4
|φc|2. (2.122)

Similarly, since |v − vc| ≤ |vc|/2 and |φ(v)− φc| ≤ |A||v − vc|, we also have

|φ(v)2 − φ2
c | ≤ (3/4)|A||vc||φc|. (2.123)
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Putting these together, we have that

|φ(v)2 − φ2
c |

3
2 ≤ c|vc||φc|2 ≤ c′|v||φ(v)|2, (2.124)

where c and c′ are numerical constants independent of φc.

Lemmas 2.3.25 and 2.3.27 allow us to prove the following local estimates, which are

essential in the proof of Theorem 2.3.11.

Proposition 2.3.29. Let µc ∈ g be fixed and y is some point in V with discrete stabilizer.

Then there exists an open neighborhood U of ŷ and constants c > 0 and ε > 0 such that

|∇f(x)|2 ≥ k|f(x)− fc|
3
2 (2.125)

for all x ∈ V \ {0} such that x̂ ∈ U and |µ(x)− µc| < ε.

Proof. Suppose y ∈ V and stab(y) = 0. Then by Lemma 2.3.25, there is a neighborhood

U of ŷ so that

|vξ(x)|2 ≥ c|x|2|ξ|2 (2.126)

for all x such that x̂ ∈ U . Take ξ = µ(x) and apply Lemma 2.3.27 to find c′ and ε so that

|vµ(x)(x)|2 ≥ c′
∣∣|µ(x)|2 − fc

∣∣ 32 , (2.127)

whenever |µ(x)−µc| < ε. Since |∇f(x)| = 2|vµ(x)(x)|, this gives the desired inequality.

Proposition 2.3.30. Let y ∈ V and suppose stab(y) is a proper nontrivial subspace of

g. Then there are proper subtori G1, G2 of G such that G ∼= G1 ×G2, a neighborhood U

of ŷ, and a constant c > 0 such that

|∇f(x)| ≥ c (|∇fG1(x)|+ |∇fG2(x)|) (2.128)

for all x ∈ V \ {0} with x̂ ∈ U , where fG1 = |µG1 |2 and fG2 = |µG2|2.

Proof. Let g1 = stab(y) and g2 = g⊥1 . Since g is abelian, both g1 and g2 are Lie subalge-

bras, and g = g1 ⊕ g2. Then µG = µG1 ⊕ µG2 , and |µG|2 = |µG1|2 + |µG2|2, so the result

follows immediately from Lemma 2.3.25 and inequality (2.99).

Proof of Theorem 2.3.11. By Proposition 2.3.23 we will assume that G is a torus. By

Proposition 2.3.24, it suffices to show that for each µc ∈ g, there is some ε > 0 so that

inequality (2.69) holds when |µ(x) − µc| < ε. Additionally, since 0 is always a critical



Chapter 2. Morse Theory with Moment Maps 33

point of f , it suffices to prove the estimate only on V \ {0}. Furthermore, it suffices to

show that each point ŷ of the unit sphere has a neighborhood U such that the estimate

holds for all x with x̂ ∈ U , since by compactness we can choose finitely many such

neighborhoods to cover the unit sphere, and this yields the inequality on V \ {0}.
We will prove the estimate by induction on the dimension of G. First suppose dimG =

1. Then we may assume without loss of generality that G acts locally freely on V \ {0},
since otherwise the fundamental vector field vξ(x) vanishes on a nontrivial subspace and

we can restrict our attention to its orthogonal complement. Then Proposition 2.3.29

yields the desired neighborhoods and estimates.

Now assume that dimG > n and we have proved the estimate for tori of dimension

≤ n. Without loss of generality, we can assume that there is no nonzero vector in V

which is fixed by all of G (since we can restrict to its orthogonal complement). Let ŷ be

some point in the unit sphere, and let g1 = stab(ŷ). If g1 = 0, we may apply Proposition

2.3.29 to get a neighborhood Uŷ and a constant kŷ such that the estimate holds on Uŷ.

Otherwise, let g2 = g⊥1 so that g = g1 ⊕ g2, corresponding to subtori G1 and G2. Then

we may apply Proposition 2.3.30 to find a neighborhood Uŷ so that

|∇f(x)| ≥ k (|∇fG1(x)|+ |∇fG2(x)|) , (2.129)

holds for all x with x̂ ∈ Uŷ. Let Pi : g → gi, i = 1, 2 be the orthogonal projections,

µc,i = Piµc, and fc,i = |µc,i|2. Since µGi are the moment maps for the action of Gi, which

are tori of dimension ≤ n, we may apply the induction hypothesis to find a neighborhood

U of ŷ and constants ε > 0, c > 0 so that

|∇fG1(x)| ≥ k′|fG1(x)− fc,1|
3
4 , (2.130)

|∇fG2(x)| ≥ k′|fG2(x)− fc,2|
3
4 , (2.131)

for all x such that x̂ ∈ U and |µGi(x)− µc,i| < ε. For any non-negative numbers a, b, we

have a
3
4 + b

3
4 ≥ (a+ b)

3
4 , so we obtain

|∇f(x)| ≥ k′′ (|fG1(x)− fc,1|+ |fG2(x)− fc,2|)
3
4 ≥ k′′|f(x)− fc|

3
4 , (2.132)

whenever |µ(x)− µc| < ε, as desired.

To obtain the estimate for the functions |µc|2 and |µHK|2, we simply note that by

Lemma 2.3.20, the norm of the gradient is bounded below by a sum of terms of the

form |∇|µi|2|, and since we can bound each term individually we obtain a bound for the

sum.
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Remark 2.3.31. As pointed out in Remark 2.3.12, Theorem 2.3.11 is a generalization of

[Nee85, Theorem A.1] and much of the argument is similar. The main new ingredients

are Lemma 2.3.27 and Proposition 2.3.29, which are absolutely essential in handling the

general case of a nonzero constant term in the moment map.

2.4 Application to Hypertoric Varieties

2.4.1 Toric Varieties

Let T be a subtorus of the standard N -torus (S1)N , with quotient K := (S1)N/T . We

have a short exact sequence

1→ T
i−→ (S1)N

π−→ K → 1. (2.133)

Taking Lie algebras, we have

0→ t
i−→ RN π−→ k→ 0, (2.134)

0→ k∗
π∗−→ RN i∗−→ t∗ → 0. (2.135)

Recall the standard Hamiltonian action of (S1)N on CN . This restricts to a Hamiltonian

action of T on CN , and hence induces an action on T ∗CN . Given α ∈ t∗, the toric variety

associated to this data is the Kähler quotient

Xα := CN//
α

T, (2.136)

and the hypertoric variety associated to this data is the hyperkähler quotient

Mα := T ∗CN ///
(α,0)

T. (2.137)

Note that Xα has a residual Hamiltonian action of K, and that Mα has a residual

hyperhamiltonian action of K.

It is convenient to organize the data determining Xα and Mα into a hyperplane ar-

rangement as follows. Let {ej} be the standard basis of RN . Then we obtain a collection

{uj} of weights defined by uj := i∗(ej) ∈ t∗, as well as a collection of normals {ni} defined

by ni = π(ei) ∈ k. Note that we allow repetitions, i.e. ui and uj are considered to be

distinct elements of A for i 6= j even if ui = uj as elements of t∗, and similarly for the

normals. Pick some d ∈ RN such that i∗(d) = α. Then we can define affine hyperplanes
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Hi by

Hi = {x ∈ k∗ | 〈ni, x〉 − di = 0}, (2.138)

as well as half-spaces

H±i = {x ∈ k∗ | ± (〈ni, x〉 − di) ≥ 0}. (2.139)

This arrangement of hyperplanes will be denoted by A. An example is pictured in Figure

2.1 below.

Figure 2.1: The hyperplane arrangement corresponding to the hyperkähler analogue of

P̃2, the blow-up of P2 at a point. The lines are the hyperplanes Hi and the shaded area

is the common intersection ∩H+
i , which is the moment polytope of P̃2.

It is well-known that the geometry and topology of toric varieties is controlled by their

moment polytopes, or dually by their normal fans [Ful93]. Hyperplane arrangements play

an analogous role in hypertoric geometry. In fact, most of the geometry and topology

can be recovered from the matroid underlying the hyperplane arrangement. We will

show that Morse theory on hypertoric varieties is more naturally understood in terms of

the weight matroid of the arrangement, which is dual to the matroid of the hyperplane

arrangement.

Definition 2.4.1. Let B = {u1, . . . , uN} be the collection of weights of T acting on

CN . For any subset J ⊂ B, the rank of J , denoted rk(J ), is defined to be equal to

the dimension of the span of J . A subset J is called a flat if for any uk ∈ B \ J ,

rk(J ∪ {uk}) > rk(J ). A flat is called a hyperplane if rk(J ) = dim(T )− 1. The weight

matroid is the set of all flats.

Remark 2.4.2. The relationship between hypertoric geometry and matroid theory was

developed in [HS02]. The weight matroid of B and the hyperplane arrangement A are

related by Gale duality.

Remark 2.4.3. In our notation, the collection of weights B will be the set {u1, . . . , uN},
where uj = i∗(ej) as above.
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2.4.2 Analysis of the Critical Sets

We now consider a quotient of the form M(αR, αC) with αC a regular value of µc. Note

that this includes quotients of the form M(αR, 0) as a special case, since we can always

rotate the hyperkähler frame. We identify T ∗CN with CN × CN and use coordinates

(x, y). Shifting µc by αC, we can take it to be

µc(x, y) =
N∑
i=1

xiyiui − αC, (2.140)

and we will consider Morse theory with the function f = |µc|2. If J ⊆ B is a flat, we

define a subspace VJ ⊂ CN by

VJ :=
⊕
uj∈J

V (uj). (2.141)

and a torus TJ by TJ = T/NJ , where NJ is the kernel of the action map on VJ . We

define MJ to be the hyperkähler quotient

MJ := T ∗VJ ///
αJ

TJ , (2.142)

where αJ is an induced moment map level which we define below.5

The inclusion i : T ↪→ (S1)N induces a surjective map of rings i∗ : H∗(S1)N → H∗T , so

that H∗T
∼= Q[u1, . . . , uN ]/ ker i∗ as a graded ring. By abuse of notation we will write uj

to denote its image in H∗T .6 If J ⊆ B is a flat, then we define a class uJ ∈ H∗T by

uJ :=
∏
β∈J c

β, (2.143)

and note that the product is taken over the complement of J .

Proposition 2.4.4. For a generic parameter β, the critical set of f is the disjoint union

of sets CJ , where the union runs over all flats J of the weight matroid, where the sets

CJ are defined by

CJ =

(⋂
β∈J

{β · µc = 0}

)
∩

(⋂
β 6∈J

{(xβ, yβ) = 0}

)
. (2.144)

5α can always be chosen so that the moment map levels αJ which appear for flats J are all regular.
6Note that we also use the symbol uj to denote the vectors i∗(ej), but no confusion should arise as

it should be clear from context which of the two meanings is intended.
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The Morse index of CJ is given by λJ = 2(N − #J ). Up to a nonzero constant, the

T -equivariant Euler class of the negative normal bundle to CJ is given by the restriction

of the class uJ to H∗T (CJ ), where uJ is defined by (2.143). The T -equivariant Poincaré

series of CJ is equal to (1 − t2)−rPt(MJ ), where r is the codimension of TJ in T and

MJ is the quotient defined by (2.142).

Proof. Using equation (2.140), we see that

|∇f(x, y)|2 = 4
N∑
i=1

(
|xi|2 + |yi|2

)
|ui · µc(x, y)|2. (2.145)

Since this is a sum of non-negative terms, if ∇f(x, y) = 0, each term in the sum must

be 0. Thus for each weight ui, we must have either that (xi, yi) = 0 or that ui · µc = 0.

Let us fix some particular critical point (xc, yc) ∈ T ∗CN , and let J be the set of weights

for which ui · µc(xc, yc) = 0. By construction J is a flat and (xc, yc) ∈ CJ . Hence

every critical point is contained in CJ for some flat J . Conversely, ∇f = 0 on CJ by

construction, so we see that Critf = ∪JCJ , where the union runs over the flats J ⊆ B.

To see that the union is disjoint, write µc = µJ + µJ c , where

µJ (x, y) =
∑
ui∈J

uixiyi − (αC)J , (2.146)

µJ c(x, y) =
∑
ui 6∈J

uixβyβ − (αC)⊥J , (2.147)

(αC)J is the projection of αC to t∗J , and (αC)⊥J = αC− (αC)J . Then at (xc, yc), we have

µJ (xc, yc) = 0 and µJ c(xc, yc) = −(αC)⊥J . Thus on CJ , µc takes the value −(αC)⊥J . For

generic αC, we have (αC)⊥J 6= (αC)⊥J ′ for J 6= J ′, hence CJ ∩ CJ ′ = ∅ for J 6= J ′.
To determine the Morse index of CJ , we compute

|µc(x, y)|2 = |µJ (x, y)|2 + |µJ c(x, y)|2 + 2Re 〈µJ (x, y), µJ c(x, y)〉 . (2.148)

The term |µJ (x, y)|2 has an absolute minimum at (xc, yc), and so does not contribute to

the Morse index. Since (αC)⊥J is orthogonal to µJ (x, y) for all (x, y), the third term can

be rewritten as

2Re
〈
µJ (x, y), µJ c + (αC)⊥J

〉
. (2.149)

Looking at the expressions (2.146) and (2.147) for µJ and µJ c , we see that at (xc, yc),

µJ vanishes to first order, whereas µJ c + (αC)⊥J vanishes to second order. Hence the

inner product of these terms vanishes to third order and does not affect the Morse index.
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Thus the Morse index is determined solely by the second term, which is

|µJ c(x, y)|2 = |(αC)⊥J |2 − 2Re
∑
i∈J c

〈
(αC)⊥J , ui

〉
xiyi + fourth order. (2.150)

For generic αC, we have
〈
(αC)⊥J , ui

〉
6= 0 for all ui ∈ J c, and since each term in the sum

is the real part of the holomorphic function
〈
(αC)⊥J , ui

〉
xiyi it must contribute 2 to the

Morse index. Hence the Morse index is λJ := 2#J c = 2(N −#J ). Since the jth factor

of (S1)N acts on (xj, yj) with weight (1,−1), this also shows that the equivariant Euler

class is given by a nonzero multiple of uJ (defined by (2.143)), as claimed.

Finally, we compute the equivariant Poincaré series of CJ . Let VJ ∈ CN be defined

as above, and let NJ ⊂ T be the subtorus that acts trivially on VJ . Then we have an

isomorphism T ∼= TJ ×NJ . Let r be the dimension of NJ , which is the codimension of

TJ in T . The moment map for the action of TJ on T ∗VJ is given by the restriction of

µJ (as defined by equation (2.146)) to T ∗VJ . Hence CJ = µ−1
J (0) ∩ T ∗VJ , and

P T
t (CJ ) = P

TJ×NJ
t (CJ ) = (1− t2)−rP

TJ
t (CJ ) = (1− t2)−rPt(MJ ). (2.151)

Remark 2.4.5. Note that the critical sets CJ are all nonempty, and that the Morse

indices do not depend on αC (as long as it is generic). This is due to the fact that µc is

holomorphic. In the real case, i.e. |µr − αR|2, the critical sets and Morse indices have a

much more sensitive dependence on the level αR.

By Theorem 2.3.1 and Corollary 2.3.18, the hyperkähler Kirwan map κ : H∗T →
H∗(M) is surjective, and its kernel is the ideal generated by the equivariant Euler classes

of the negative normal bundles to the components of the critical set. Since we described

these explicitly in Proposition 2.4.4, we immediately obtain the following description of

H∗(M).

Theorem 2.4.6. Assume αC is generic. Then the cohomology ring H∗(M) is isomor-

phic to H∗(BT )/ kerκ, where κ is the hyperkähler Kirwan map. Its kernel is the ideal

generated by the classes uJ , for every proper flat J ⊂ B.

Remark 2.4.7. The cohomology ring H∗(M) was first computed by Konno [Kon00a,

Theorem 3.1]. The relations defining kerκ obtained by Konno are not identical to those

in Theorem 2.4.6, but it is not difficult to see that they are equivalent. It was pointed

out to us by Proudfoot that this equivalence is a special case of Gale duality [BLVS+99].
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Remark 2.4.8. Under the assumption that M is smooth (and not just an orbifold), the

same result holds with Z coefficients [Kon00a]. In principle, it should be possible to

extend our Morse-theoretic arguments to obtain this stronger result using the ideas and

results of [TW03, §7].

Quotients of the form M(αR, 0) inherit an additional S1-action induced by the S1

action on T ∗CN given by t·(x, y) = (x, ty). This action preserves the Kähler structure and

rotates the holomorphic symplectic form (i.e. t∗ωC = tωC). Let us fix some particular αR

and denote M := M(αR, 0). We would like to understand the S1-equivariant cohomology

H∗S1(M) (which, unlike the ordinary cohomology of M, does depend on the choice of αR).

To compute the S1-equivariant cohomology, it is more convenient to work directly with

|µHK|2 = |µr|2 + |µc|2, where

µr =
∑
i

ui
(
|xi|2 − |yi|2

)
− αR, (2.152)

µc =
∑
i

uixiyi. (2.153)

By Theorems 2.3.1 and 2.3.11 |µHK|2 is minimally degenerate and flow-closed, and since

it is also S1-invariant we can consider the T × S1-equivariant Thom-Gysin sequence.

The usual arguments of the Kirwan method extend to the S1-equivariant setting, so we

obtain surjectivity of map κS1 : H∗T×S1 → H∗S1(M), and its kernel is generated by the

T × S1-equivariant Euler classes of the negative normal bundles to the components of

the critical set.

To find the components of the critical set of |µHK|2 and to compute the equivariant

Euler classes, we can repeat the arguments of Proposition 2.4.4 almost without mod-

ification. The components of the critical set are again indexed by flats J . The only

important difference is that since we now work with T × S1-equivariant cohomology, we

have to be more careful in computing the equivariant Euler classes. Let us make the

identification H∗T×S1
∼= H∗T [u0]. When we expand |µHK|2 about a critical point as in the

proof of Proposition 2.4.4, the relevant term is now (cf. equation (2.150))

− 2
∑
ui∈J c

〈
(αR)⊥J , ui

〉 (
|xi|2 − |yi|2

)
, (2.154)

where (αR)⊥J is defined in a manner analogous to (αC)⊥J as in the proof of Proposition

2.4.4. We see that the xi term appears with an overall negative sign if
〈
(αR)⊥J , ui

〉
> 0;

otherwise it is the yi term that appears with a negative sign. Since S1 acts on x with

weight 0 and acts on y with weight 1, and since T acts on x and y with oppositely signed
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weights, we find that the equivariant Euler class is given (up to an overall constant) by

ũJ :=

 ∏
ui∈J+

ui

 ∏
ui∈J−

(u0 − ui)

 , (2.155)

where

J ± := {ui ∈ J c | ±
〈
(αR)⊥J , ui

〉
> 0}. (2.156)

We thus obtain the following.

Theorem 2.4.9. The S1-equivariant cohomology H∗S1(M) is isomorphic to

H∗T×S1/ kerκS1 , (2.157)

where κS1 is the S1-equivariant Kirwan map. Its kernel is the ideal generated by the

classes ũJ , for every proper flat J .

Remark 2.4.10. The S1-equivariant cohomology rings were first computed by Harada and

Proudfoot [HP05a]. Note that unlike the ordinary cohomology ring, the S1-equivariant

cohomology ring depends explicitly on the parameter α.

2.4.3 Hyperkähler Modifications

Recall from Section 2.1.3 that there is a natural operation called hyperkähler modifica-

tion, which is the hyperkähler analogue of symplectic cutting. If M = T ∗CN///T is a

hypertoric variety with a residual torus action by K, then for any choice of S1 ↪→ K we

can consider the modification

M̃ := M× T ∗C///S1 ∼= T ∗CN+1///T̃ , (2.158)

where we have set T̃ = T × S1. We also consider the quotient

M̂ := M///S1 ∼= T ∗CN///T̃ , (2.159)

which are both hypertoric varieties. As we saw in the previous section, for any hyper-

toric variety, equivariant Morse theory with |µc|2 is controlled entirely by the underlying

matroid. Hence if we can deduce a relation between the matroids of M, M̃, and M̂, we

will be able to determine a relation between their Poincaré polynomials and cohomology

rings.
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Let B, B̃, and B̂ denote the respective collections of weights defining the hypertoric

varieties M, M̃, and M̂, and let µ, µ̃, and µ̂ denote the respective (complex) moment

maps. We can relate collections of weights B̃ and B̂, corresponding to the modification

and quotient of M , to the weights B as follows.

Lemma 2.4.11. Let B̃ = {ũj}N+1
j=1 . Then B̂ = {ũj}Nj=1 and B = {uj}Nj=1, where uj is the

image of ũj after quotienting by span{ũN+1}.

Proof. The weights are determined by the embeddings t ↪→ RN , t̃ ↪→ RN+1, and t̂ ↪→ RN .

Note that t̃ ∼= t⊕R. If we pick a basis of t (and use the standard basis of RN), we can

represent the embedding t ↪→ RN by some matrix B. The S1 action on M is determined

by specifying its weights on CN ; this is equivalent to adjoining a column to B. This gives

the matrix B̂ determining t̃ ↪→ RN . Finally, to obtain the modification M̃ , we let the

S1 act on an additional copy of C with weight −1. This amounts to adjoining the row

(0, . . . , 0,−1) to B̂, to obtain B̃ determining t̃ ↪→ RN+1. Since the weights uj, ũj, and

ûj correspond to the rows of B, B̃, and B̂, respectively, the result follows.

By the above lemma, we have B, B̂ ∼= {1, . . . , N} and B̃ ∼= {1, . . . , N + 1} as sets.

Hence any subset J ⊂ B may be regarded as a subset of B̂ as well as of B̃. We will use

this identification for the remainder of this section.

Lemma 2.4.12. Let J ⊆ B. Then

1. J is a flat of B if and only if J ∪ {N + 1} is a flat of B̃.

2. J is a flat of B̂ if J is a flat of B.

3. J is a flat of B̂ if and only if at least one of J or J ∪ {N + 1} is a flat of B̃.

Proof. Let B̃ = {ũj}N+1
j=1 . By the previous lemma, B̂ = {ũj}Nj=1 and B = {uj}Nj=1, where

uj is the image of ũj after quotienting by span{uN+1}.
To prove (1), first suppose that J is a flat of B. Suppose that there is some ũi ∈

t̃J∪{N+1}. If i = N + 1 then i ∈ J ∪ {N + 1} and there is nothing to check, so suppose

that i 6= N + 1. Applying the quotient map, we see that ui ∈ tJ (since ũN+1 goes to 0),

and since J was a flat of B we see that i ∈ J ⊂ J ∪ {N + 1}. Hence J ∪ {N + 1} is a

flat of B̃.

Conversely, suppose that J ∪ {N + 1} is a flat of B̃. Suppose that there is some

ui ∈ tJ . Then if ui =
∑

j∈J ajuj, we see that ũi −
∑

j∈J ajũj is in the kernel of the

projection, and so is some multiple of ũN+1. Hence ũi ∈ t̃J∪{N+1}. Since J ∪ {N + 1} is
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a flat of B̃, we must have i ∈ J ∪ {N + 1}. But i 6= N + 1 by assumption, so we have

i ∈ J .

To prove (2), suppose that J is a flat of B. If ũi ∈ t̃J , then applying the quotient

map we find ui ∈ tJ . Hence i ∈ J .

To prove (3), first suppose that J ∪ {N + 1} is a flat of B̃. Then by (1), J is a flat

of B, and by (2) J is a flat of for B̂. On the other hand, if J is a flat of B̃, then it is

certainly a flat of B̂. This establishes one direction.

Conversely, suppose that J is a flat of B̂. If ũN+1 6∈ t̃J then J is a flat of B̃; otherwise

ũN+1 ∈ t̃J and thus J ∪ {N + 1} is a flat of B̃.

We rephrase the preceding lemma as the following trichotomy:

Lemma 2.4.13. Let J ⊆ {1, · · · , N} be a flat of B̂. Then exactly one of the following

cases occurs:

1. J is a flat of B̃ and J is not a flat of B.

2. J is a flat of B and both J and J ∪ {N + 1} are flats of B̃.

3. J is a flat of B and J ∪ {N + 1} is a flat of B̃, while J is not.

Moreover, every critical subset for B and B̃ occurs as exactly one of the above.

Theorem 2.4.14. If M̃ is a hyperkähler modification of M and M̂ is the corresponding

quotient, then

Pt(M̃) = Pt(M) + t2Pt(M̂). (2.160)

Proof. We will prove this by induction on N = #B, the number of the number of weights

(equivalently, the number of hyperplanes in A). The base case can be verified easily, so

we assume that the result is true for modifications (M̃′,M′, M̂′), where M′ is a quotient

of T ∗CN ′ , with N ′ < N .

By Theorems 2.3.1 and 2.3.11, the functions f = |µc|2, f̃ = |µ̃C|2, and f̂ = |µ̂C|2 are

equivariantly perfect. M is a quotient of T ∗CN by a torus of rank d, while M̃ and M̂ are

quotients of T ∗CN+1 and T ∗CN , respectively, by a torus of rank d+ 1. Hence we have

1

(1− t2)d
=
∑
C

tλCP T
t (C), (2.161)

1

(1− t2)d+1
=
∑
C̃

tλ̃CP T̃
t (C̃), (2.162)

1

(1− t2)d+1
=
∑
Ĉ

tλ̂CP T̂
t (Ĉ). (2.163)
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Since 0 is the absolute minimum in each case, we obtain

1

(1− t2)d
= Pt(M) +

∑
C,f(C)>0

tλCP T
t (C), (2.164)

and similarly for M̃ and M̂. Since

1

(1− t2)d+1
=

1

(1− t2)d
+

t2

(1− t2)d+1
= 0, (2.165)

we just have to show that∑
C̃,f̃(C̃)>0

tλ̃CP T̃
t (C̃) =

∑
C,f(C)>0

tλCP T
t (C) +

∑
Ĉ,f̂(Ĉ)>0

tλ̂C+2P T̂
t (Ĉ). (2.166)

to obtain the desired recurrence relation among the Poincaré polynomials of M, M̃, and

M̂. By Lemma 2.4.13, there is a trichotomy relating the critical sets of f̃ to the critical

sets of f and f̂ . We will consider each case separately.

Case (1): We have C̃ = C̃J where J is a flat of B̃ and B̂ but not of B. From

Proposition 2.4.4, we have λ̃J = λ̂J + 2 and C̃J = ĈJ × (0, 0). Hence tλ̃JP T̃
t (C̃J ) =

tλ̂J+2P T̂
t (ĈJ ).

Case (2): We have C̃ = C̃J where J is a flat of B̂ and J ∪ {N + 1} is a flat of B̃.

Then λ̃J = λ̂J + 2 and λ̃J∪{N+1} = λJ . The terms involving C̃J and ĈJ are equal as

in case (1). Since both J and J ∪ {N + 1} are flats of B̃, it must be that ũN+1 6∈ t̃J .

Hence T̃J∪{N+1} ∼= T̃J ×S1, where the last factor is generated by ũN+1, and we find that

M̃J∪{N+1} ∼= MJ . Hence P T̃
t (C̃J∪{N+1}) = P T

t (CJ ).

Case (3): C̃ = C̃J∪{N+1}, where J is critical for B and B̂ but not for B̃. By Proposition

2.4.4, we have P T̃
t (C̃J∪{N+1}) = (1 − t2)−rPt(M̃J∪{N+1}), P

T
t (CJ) = (1 − t2)−rP (MJ),

and P T̂
t (ĈJ ) = (1− t2)−rPt(M̂J ), where r is the codimension of TJ in T . Thus we have

to show that

Pt(M̃J∪{N+1}) = Pt(MJ ) + t2Pt(M̂J ). (2.167)

But M̃J∪{N+1} is a modification of MJ , and M̂J is the corresponding quotient of MJ .

Since J is a proper subset of {1, . . . , N}, the relation (2.167) is true by induction.

The relation (2.160) is equivalent to the following recurrence relation among the Betti

numbers of M, M̃, and M̂:

b̃2k = b2k + b̂2k + b̂2k−2. (2.168)

If we let dk denote the number of bounded k-dimensional facets of the polyhedral complex
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generated by the half-spaces H±i (with d̃k and d̂k defined similarly), it is easy to see that

these satisfy the same relation:

d̃k = dk + d̂k + d̂k−1. (2.169)

Since any toric hyperkähler orbifold can be constructed out of a finite sequence of modifi-

cations starting with T ∗Cn, an easy induction argument then yields the following explicit

description of Pt(M).

Corollary 2.4.15 (Bielawski-Dancer [BD00, Theorem 7.6]). The Poincaré polynomial

of M is given by

Pt(M) =
∑
k

dk(t
2 − 1)k. (2.170)



Chapter 3

Quivers with Relations

3.1 Moduli of Quiver Representations

3.1.1 Quiver Representations

In this chapter, we will study varieties associated to quivers. The basic results concerning

theory of quiver representations can be found in [CB], and the theory of moduli spaces of

representations from the algebro-geometric point of view was developed in [Kin94]. We

will focus on hyperkähler varieties constructed from quivers, studying a mild generaliza-

tion of the varieties introduced by Nakajima [Nak94]. For the most part, we will not

rely on any deep results from these works, and will instead work directly with the tools

developed in Chapter 2.

Definition 3.1.1. A quiver Q = (I, E) is a finite directed graph with vertex set I and

edge set E . We will assume that the vertices of Q are labelled by by {©,�} so that

I = V tW , where V consists of the vertices labelled “©” and W consists of the vertices

labelled “�”. A dimension vector d = (di)i∈I is an assignment of a non-negative integer

di to each i ∈ I. We will often write d = (v,w) so that di = vi for i ∈ V and di = wi for

i ∈ W .

Given a quiver with dimension vector (Q,d = (v,w)) we define vector spaces

V =
⊕
i∈V

Vi, (3.1)

W =
⊕
i∈W

Wi, (3.2)

Rep(Q,d) =
⊕
i→j∈E

Hom(Di, Dj), (3.3)

45
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where Vi = Cvi , Wi = Cwi , and Di = Vi for i ∈ V and Di = Wi for i ∈ W . The vector

space Rep(Q,d) is the space of representations of Q of dimension d. We will often write

this as Rep(Q,v,w) to emphasize the decomposition d = (v,w). We define groups

Gv =
∏
i∈V

U(vi), (3.4)

Gw =
∏
i∈W

U(wi), (3.5)

Gd = Gv ×Gw, (3.6)

which act naturally on Rep(Q,v,w). We denote by µv, µw, µd the corresponding moment

maps. We also consider the double Q of a quiver, defined by Q = (V , E t E) where E
denotes reversing the orientation of all the edges in E .

For a fixed dimension vector d = (v,w) we now define several moduli spaces of

representations as follows:

Xα(v,w) := Rep(Q,v,w)//
α

Gv, (3.7)

Xα(v,w) = Rep(Q,v,w)//
α

Gv, (3.8)

Mα(v,w) := T ∗Rep(Q,v,w)///
α

Gv. (3.9)

We call Xα(v,w) the Kähler quiver variety, Xα(v,w) the doubled quiver variety, and

Mα(v,w) the hyperkähler quiver variety. Note that there are natural inclusions1

T ∗Xα(v,w) ⊂Mα(v,w) ⊂ Xα(v,w) (3.10)

and that all three of these spaces have a residual Hamiltonian action ofGw. Hence we may

consider their quotients Xα(v,w)//Gw and Mα(v,w)///Gw. Of course, these quotients

do not depend on the particular choice of decomposition I = VtW—this is just reduction

in stages (cf. Remark 2.1.2). However, we will see in the following sections that we will

be able to understand these quotients by studying the Gw-equivariant stratification on

varieties of the form Xα(v,w).

Example 3.1.2. The quiver pictured in Figure 3.1 is called the ADHM quiver. By the

ADHM construction [AHDM78], the hyperkähler quiver variety Mα(k, n) may be identi-

fied with the moduli space of framed SU(n) instantons on R4 of charge k. This construc-

1It is easy to check that X is holomorphic Poisson, M ↪→ X is a symplectic leaf, and X ↪→ M is a
Lagrangian subvariety.
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tion was later generalized by Kronheimer and Nakajima [KN90] to construct Yang-Mills

instanton moduli spaces from any affine ADE quiver.

k n

Figure 3.1: The ADHM quiver, with doubled edges indicated by dashed arrows.

Example 3.1.3. See the quiver pictured in Figure 3.2. We have v = (2) and w =

(1, 1, 1, 1). Then Xα(v,w) ∼= Gr(2, 4), and Xα(v,w)//Gw
∼= Gr(2, 4)//(S1)4. If we

interchange the labels � ↔ ©, then we have Xα(v,w) ∼= (P1)4, and Xα(v,w)//Gw
∼=

(P1)4///SU(2). This is the most basic example of a polygon space [Kly94], and its hy-

perkähler analogue is a hyperpolygon space [Kon00b, HP05a].

2 2

1 1

1 11 1

1 1

Figure 3.2: Left: a star quiver with dimension vector; right: its double.

Remark 3.1.4. The definition of quiver variety that we use here is a slightly different than

the usual the notion of a Nakajima quiver variety [Nak94]. To obtain a Nakajima variety

from the construction above, first start with a quiver Q all of whose vertices are labelled

by ©. Then construct a new quiver Q′ from Q by adding a “shadow vertex” i′, labelled

by �, for each vertex i of Q, as well as a single edge from i′ to i. Then the hyperkähler

quiver variety Mα(v,w) associated to Q′ by the above construction coincides with the

Nakajima variety associated to Q. We illustrate this in Figure 3.3.

v1

w1

v2

w2

v3

w3

v4

w4

Figure 3.3: A Nakajima quiver constructed by adding “shadow” vertices.
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3.1.2 Relations in the Path Algebra

We wish to consider certain natural subvarieties of quiver varieties, constructed in the

following way. Suppose that E is a linear representation of Gd, and f : Rep(Q,d)→ E is

an equivariant algebraic map. Then f−1(0) ⊂ Rep(Q,d) is Gd-invariant, hence it defines

a subvariety

V (f) ⊂ Xα(v,w). (3.11)

By equivariance, this subvariety is preserved by the Gw-action, so we also obtain a

subvariety

V (f)//Gw ⊂ Xα(v,w)//Gw. (3.12)

Understanding compact subvarieties of this form will be the primary focus of this chapter.

To understand the relevance of these subvarieties, let us recall the path algebra of a quiver.

Definition 3.1.5. LetQ be a quiver. The path algebra C[Q] ofQ is the unital associative

algebra generated by directed paths in Q. The product of paths p1 and p2 is defined to

be the composition of p1 and p2 if they are composable, and zero otherwise.

Construction 3.1.6. Let f ∈ C[Q]. Then for any dimension vector d, f induces a

Gd-equivariant map Rep(Q,d)→ Ed, where Ed is a linear representation of Gd. We can

write f (uniquely) as

f =
∑

(i,j)∈I×I

fij (3.13)

where each summand fij is a linear combination of paths from vertex i to vertex j. Hence

fij induces a map Rep(Q,d)→ Hom(Di, Dj). Hence we get an induced map (which, by

abuse of notation, we denote by f)

f : Rep(Q,d)→
⊕

(i,j):fij 6=0

Hom(Di, Dj). (3.14)

It is easy to see that this map is Gd-equivariant.

Hence given any polynomial f in the edges, we obtain an equivariant map f :

Rep(Q,d) → E, and the subvariety V (f) ⊂ Xα(Q,d) can be interpreted as the sub-

variety of representations which satisfy the relation f = 0, i.e. we can interpret V (f) as

a moduli space of representations of the quotient path algebra C[Q]/ 〈f〉.

Remark 3.1.7. The complex moment map on Rep(Q,d) is a polynomial in the edges, and

the hyperkähler quiver variety is the subvariety of Xα(Q,d) defined by the corresponding

relation.
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Proposition 3.1.8. Given an equivariant map f : Rep(Q,d) → E as above, there is a

natural Gw-equivariant bundle E → Xα(v,w) with section s such that V (f) = s−1(0). In

particular, V (f) is smooth if s is transverse to 0. Similarly, V (f)//Gw is the vanishing

set of a section of a vector bundle over Xα(v,w)//Gw.

Proof. Let P = µ−1
v (α), where µv is the moment map for the Gv action. This is the total

space of a principal Gv-bundle over Xα(v,w). Hence we may take the associated bundle

E = P ×Gv E. Since f is Gv-equivariant, it induces a section s of E .

Remark 3.1.9. Given V (f) ⊂ X we can always compactify via symplectic cuts to obtain

V (f) ⊂ X, where X is projective. Moreover, V (f) may be identified with the vanishing

set of a section of a bundle E → X. If this bundle happens to be positive, then Sommese’s

Theorem [Laz04, Chapter 7] implies that the restriction H∗(X)→ H∗(V (f)) is surjective

in degrees less than dimX − rkE. It may be possible to deduce hyperkähler Kirwan

surjectivity by arguments along these lines. We plan to investigate this in future work.

3.2 Morse Theory on Quiver Varieties

3.2.1 Circle Actions

We define a circle compact variety to be a Kähler variety together with a Hamiltonian

circle action such that the fixed-point set is compact, and the moment map is proper and

bounded below. Now let Q = (I, E) be a quiver. For each edge e ∈ E , pick a non-negative

integer we. Then we can define an S1-action on Rep(Q,d) by

s · xe = swexe. (3.15)

This commutes with the Gd-action, and hence descends to an S1-action on Xα(v,w) (as

well as Xα(v,w)//Gw). The moment map for this action is given by

µS1(x) =
1

2

∑
e∈E

we|xe|2 (3.16)

which is non-negative. We have the following lemma.

Lemma 3.2.1. Every quiver variety Xα(v,w) admits an S1-action of the form s · [xe] =

[swexe] such that the moment map is proper and bounded below.

Proof. By the preceding discussion, we need only show that the weights we may always

be chosen so that µS1 is proper on Xα(v,w). We can always arrange this by taking we = 1
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for every e ∈ E , since in this case µS1 is proper on Rep(Q,v,w), before quotienting, and

hence descends to a proper map on Xα(v,w).

Remark 3.2.2. Note that the action given by taking we = 1 for all e ∈ E is, in some

sense, the worst case scenario. It is often the case that we can pick a different S1-action,

which is more convenient for certain purposes. The most important special case is when

Q is an acyclic quiver. Then for its double we have Rep(Q,v,w) ∼= T ∗Rep(Q,v,w) and

it suffices to take the weight one action on the fibers, i.e. t · (x, y) = (x, ty). In worked

examples, we will always make it clear what S1-action we have chosen.

The only remaining condition we must check for circle compactness of Xα(v,w) is

that the fixed-point set is compact. Since µS1 is proper, the fixed-point set is a union of

compact subvarieties. What remains to be shown is that this is a finite union, i.e. that

there are only finitely many connected components of the fixed-point set. We will do this

by enumerating the connected components combinatorially.

Suppose that we have fixed an S1-action on Rep(Q,d) as above, and denote this

action by xe 7→ s · xe. Now suppose that there is some S1 action on D = V ⊕W . This

induces a new S1-action on Rep(Q,d) which we denote by xe 7→ s ∗ xe.

Definition 3.2.3. Given two S1-actions on Rep(Q,d), denoted · and ∗, a compatible

representation is a representation x ∈ Rep(Q,d) such that for all s ∈ S1, s · x = s ∗ x.

The set of compatible representations may be naturally identified with a vector sub-

space isomorphic to Rep(Q̃, d̃), for some auxiliary quiver (Q̃, d̃). We can take the vertex

set Ĩ to consist of the direct summands Di(λ) in the weight space decomposition of Di,

for i ∈ I, and the dimension of each vertex to be dimDi(λ). For each edge e ∈ E mapping

i to j, we add edges in Q̃ from Di(λ) to Di(λ
′), for all λ, λ′ such that λ′ − λ is equal to

the weight of the edge e under the · action.

Example 3.2.4. Consider the quiver with one vertex and a single edge taking this vertex

to itself. Let the S1-action be given by weight 1 on this edge. Consider the case of

dimension vector (3). In order to produce a compatible representation with at least one

edge, the S1-action on C3 must have at least two distinct weights differing by 1. The

inequivalent choices of weights are then (0, 0, 1), (0, 1, 1), (0, 1, 2), and (0, 1, a) with a ≥ 3.

These lead to the quivers in the Figure 3.4 below.

Remark 3.2.5. It is clear that there are only finitely many quivers produced by this

construction for any finite quiver Q with dimension vector d.
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2 1 1 2 1 1 1 1 1

Figure 3.4: Compatible representations of the quiver with one node and a single edge
loop, with dimension vector d = (3).

Proposition 3.2.6. Let Q be a quiver and suppose that we have picked an S1-action on

Rep(Q,v,w) as above, inducing an S1-action on Xα(v,w). Then every connected com-

ponent of the fixed-point set consists of equivalence classes of compatible representations,

for some auxiliary S1-action on V ⊕W which acts trivially on W . Consequently, the

S1-fixed point set of Xα(v,w) consists of finitely many connected components.

Proof. By Proposition 2.2.6, on any connected component of Xα(v,w)S1 we can choose

a homomorphism φ : S1 → Gv such that for each edge x, we have

s · x = swex = φ(g) · x = φ(g)jxφ(g)−1
i . (3.17)

Moreover, since S1 is abelian, we can assume (by conjugation by an element of Gv if

necessary) that φ maps to the maximal torus of Gv. Hence the vector space Vi associated

to each vertex i ∈ V decomposes into weight spaces, and equation (3.17) implies that for

each edge x mapping i to j, the component of x mapping weight space Vi(λ) to Vj(ν)

is identically zero unless ν − λ = we. Hence every representation on this connected

component is a compatible representation as described above.

Example 3.2.7. We consider the double of the polygon space of Example 3.1.3, with the

S1-action given by the fiberwise action as in Remark 3.2.2. We assume that the moment

map level is chosen so that the polygon space is non-empty. Figure 3.5 depicts all possible

components of the fixed-point set. (Not all of these will be non-empty, as this depends

on the particular choice of moment map level.)

3.2.2 Morse Theory with µw and |µw|2

In this section we would like to understand the Gw-equivariant Morse stratification on

Xα(v,w) with respect to the Gw-moment map. We will assume throughout that µw is

proper on Xα(v,w).

Before we proceed, let us note that there is a natural direct sum operation

Rep(Q,v,w)⊕ Rep(Q,v′,w′) ↪→ Rep(Q,v + v′,w + w′), (3.18)

given by sending a pair of representations (x, x′) to the representation x⊕ x′. We define
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Figure 3.5: The four possible types of fixed-point set for the S1-action on the doubled
polygon space.

a partition of (v,w) to be a finite sequence of dimension vectors (v1,w1), . . . , (vl,wl)

such that (v1,w1) + · · ·+ (vl,wl) = (v,w) . Denote by P(v,w) the set of all partitions

of (v,w). For each λ ∈ P(v,w), there is a subspace of Rep(Q,v,w) consisting of those

representations which decompose as a direct sum according to the partition λ. Such

representations can be enumerated diagrammatically, as shown by the following lemma,

which follows directly from the definition of direct sum.

Lemma 3.2.8. Let λ ∈ P(v,w). Then the representations of Q that decompose according

to λ are naturally identified with representations of |λ| disjoint copies of Q, where |λ|
denotes the length of the partition.

Example 3.2.9. Consider the star quiver as in Figure 3.2 with dimension vector d =

(2, 1, 1, 1, 1), and consider the partition d = (1, 1, 0, 0, 0) + (1, 0, 1, 0, 0) + (0, 0, 0, 1, 1).

Then we can represent the space of representations which decompose according to this

partition by Figure 3.6.

Theorem 3.2.10. Let β ∈ tw be a topological generator of a torus Tβ ⊆ Tw. Then

[x] ∈ Xα(v,w) is fixed by Tβ only if there is a representative x which decomposes as a

direct sum for some partition λ ∈ P(v,w). Conversely, if x decomposes as a non-trivial

direct sum, then [x] is fixed by some non-trivial sub-torus of Tw.

Proof. Since [x] is fixed by Tβ, for each s ∈ Tβ, there is some φ(s) ∈ Gv such that

s · x = φ(s) · x, (3.19)
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Figure 3.6: Diagrammatic depiction of the representations decomposing according to the
partition described above.

and in particular we get a homomorphism φ : Tβ → Gv. Define subtorus T ⊂ Gd as

the image of s 7→ sφ(s)−1. Then we can decompose V ⊕W into weight spaces under

the action of T , and the above equation implies that for each edge e, the component xe

decomposes as a direct sum.

Conversely, if x decomposes according to a nontrivial partition λ, we can always choose

a subtorus Tβ ⊂ Tw and a map φ : Tβ → Tv such that the weight space decomposition of

V ⊕W corresponds to λ. Hence [x] will be fixed by Tβ.

Remark 3.2.11. The above theorem gives an explicit enumeration of the connected com-

ponents of the critical set of |µw|2 in terms of simpler quivers, since every critical point

of |µw|2 is conjugate to a point fixed by some Tβ ⊆ Tw. By the results of Section 2.2.3,

we may explicitly compute the Morse indices, and inductively compute the equivariant

cohomology.

Remark 3.2.12. In the special case W = I,V = ∅, all of the edges are even and so

representations fixed by Tβ decompose as direct sums in the ordinary sense. Additionally,

in this special case we may drop the hypothesis that µw is proper, since by Theorem 2.3.11

the gradient flow of |µw|2 always converges. This special case was studied in detail in

[HW11], where it was proved that the Gd-equivariant Morse stratification agrees with

the algebraic stratification induced by the Harder-Narasimhan filtration.

3.2.3 Cohomology of Subvarieties

The results of Section 3.2.1 show that any quiver variety Xα(v,w) is circle compact, and

moreover that the circle action can be chosen so that the fixed-point set is a finite union

of simple quiver varieties. The results of Chapter 2 and Section 3.2.2 then allow us to

compute the Betti numbers of the connected components of the fixed-point set, and in

addition we may compute the cohomology rings of these compact quiver varieties using

the more sophisticated techniques of Chapter 4.
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However, hyperkähler quiver varieties are defined as subvarieties cut out by the com-

plex moment map equation, so there is still some work to be done. In this section we

will describe a technique that allows us to piggyback the results of Chapter 2 and the

preceding sections, so as to settle this question for a large class of subvarieties of quiver

varieties. This technique is heavily computational, and we will give a detailed case study

in Section 3.3 below.

Let us fix a quiver Q with dimension vector d = (v,w), and assume that we have

fixed a circle action so that Xα(v,w) is circle compact. Let f : Rep(Q,v,w) → E be

some Gd× S1-equivariant polynomial in the edges, and assume that V (f) ⊂ Xα(v,w) is

smooth. Note that

V (f)S
1

= V (f) ∩ Xα(v,w)S
1

(3.20)

and hence

Crit
(
|µw|2

∣∣
V (f)

)
= V (f) ∩ Crit|µw|2, (3.21)

so that the Morse stratifications with respect to the S1-action and to |µw|2 on V (f)

can understood by the combinatorial arguments of Sections 3.2.1 and 3.2.2. Putting

everything together, we have the following theorem.

Theorem 3.2.13. Let (Q,v,w) be a quiver with dimension vector, and suppose that we

have chosen a circle action on Rep(Q,v,w) as in the preceding sections so that Xα(v,w)

is circle compact and such that f : Rep(Q,v,w) → E is S1 × Gd-equivariant, and such

that V (f) is smooth. Then we may compute Pt(V (f)//Gw) by the following procedure.

1. By Morse theory with the S1-action, express the Poincaré polynomial of V (f)//Gw

in terms of the Poincaré polynomials of the connected components of V (f)S1//Gw.

Working one connected component at a time, we may now assume that Xα(v,w)

is compact.

2. By equivariant formality, PGw
t (V (f)) = Pt(BGw)Pt(V (f)).

3. Compute Pt(V (f)) by Morse theory with a generic component of µw.

4. Compute Pt(V (f)//Gw) by Morse theory with |µw|2. The equivariant cohomology

of the higher critical sets of |µw|2 may be computed from the ordinary cohomology

of subvarieties of simple quiver varieties, which we compute by induction.

Remark 3.2.14. The crucial hypothesis is that we have chosen a decomposition I = VtW
so that V (f) ⊂ Xα(v,w) is smooth, so that our reduction in stages procedure involves

only smooth varieties. We do not claim that it is always possible to do this, but we
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are not aware of any counterexamples. We suspect that it is always possible for acyclic

quivers. We will see in the following section that it is always possible for star-shaped

quivers.

3.3 Rank Three Star Quivers

3.3.1 Star Quivers

In this section we will illustrate the techniques developed in this chapter by giving a

detailed calculation of the cohomology of the fixed-point sets of a particular family of

hyperkähler quiver varieties. We will revisit this family in Chapters 4 and 5.

The family that we consider are the hyperkähler varieties associated to the quiver

pictured in Figure 3.7. In the rank two case (where the sink has dimension two rather than

three), the Kähler quiver varieties are polygon spaces [Kly94, HK98]. Their hyperkähler

analogues are called hyperpolygon spaces, and have been well-studied [Kon00b, HP05a].

In particular, hyperkähler Kirwan surjectivity is known to hold and their cohomology

rings have been explicitly computed.

In the rank three case, the calculations become considerably more involved. It will

take the remainder of this chapter to compute their Betti numbers, and we will not

show that hyperkähler Kirwan surjectivity holds until Chapter 4. Our Morse theory

calculation closely parallels that of rank three parabolic Higgs bundles [GPGMn07]. This

is no coincidence, as we shall see in Chapter 5.

3

1

1

1

1

x1

x2

...

xn

Figure 3.7: Rank three star quiver.

Let x1, . . . , xn denote the incoming edges, and let y1, . . . , yn denote the outgoing

edges on the doubled quiver. We will explicitly write these as column and row vectors,

respectively. Note that the overall diagonal S1 subgroup ofGd acts trivially on Rep(Q,d),

so strictly speaking we should quotient only by PGd := Gd/S
1. We have pgw

∼= su3⊕Rn

and hence we take (central) moment map levels α ∈ Rn. We always assume that the
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components αi of α are taken to be positive. We denote the Kähler and hyperkähler

quotients by Xα(n) and Mα(n), respectively. In what follows, we adopt the following

notation. We denote by [n] the set {1, . . . , n}, and for a subset S ⊆ [n], we denote by αS

the sum

αS =
∑
i∈S

αi. (3.22)

When it is clear from context, we will denote α[n] =
∑n

i=1 αi simply by α.

Proposition 3.3.1. The real and complex moment maps on T ∗Rep(Q,d) are given by

µr =
1

2

(
(xx∗ − y∗y)0, |y1|2 − |x1|2, . . . , |yn|2 − |xn|2

)
∈ su3 ⊕Rn, (3.23)

µc = ((xy)0,−y1x1, . . . ,−ynxn) ∈ sl3 ⊕Cn, (3.24)

where (·)0 denotes the traceless part of a matrix. For a regular value (α, 0) of µHK, both

Xα(n) and Mα(n) are smooth.

Proof. The formulas for the moment maps follow by direct calculation. Smoothness

follows from [Nak94, Theorem 2.8] (this is a general fact about quiver varieties).

3.3.2 Critical Sets for the Circle Action

The first order of business is to reduce the problem to computing the Betti numbers of

compact subvarieties, by choosing an appropriate circle action. We define the action on

T ∗Rep(Q,d) to be

s · (x, y) = (x, sy). (3.25)

The moment map for this action is

µS1(x, y) =
1

2

∑
i

|yi|2. (3.26)

Lemma 3.3.2. This action makes Mα(n) circle compact.

Proof. From the moment map equations,2 we have

|xi|2 = αi + |yi|2, (3.27)

2To avoid factors of 1/2, we are taking the reduction at moment map level α/2.
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for each i ∈ [n]. Since the moment map for the S1-action is given by 1
2
|y|2, we have that

|x|2 + |y|2 =
∑
i

|xi|2 + |y|2 =
∑
i

αi + 2|y|2 =
∑
i

αi + 2µS1(x, y), (3.28)

and hence µS1 is proper on Mα(n).

Now that we have a circle action making Mα(n) circle compact, we must enumerate

the connected components of the fixed-point set. A point [x, y] ∈ Mα(n) will be fixed

only if there is a homomorphism φ : S1 → U(3)× (S1)n such that

xi = g(s)xih
−1
i (s), (3.29)

syi = hi(s)yig(s)−1, (3.30)

for each i ∈ [n], where we have denoted the components of φ by g ∈ U(2) and hi ∈ S1.

Since the moment map equations force xi 6= 0 for each i ∈ [n], we have that xi is

an eigenvector of g(s) with eigenvalue hi(s). The second equation shows that y∗i is an

eigenvector of g(s) with eigenvalue s−1hi(s).

There are four possible cases depending on the multiplicities of the eigenvalues of

g(s). In the first case, suppose that g(s) has a single eigenvalue of multiplicity three.

Then this forces all yi corresponding to Xα(n) ⊂Mα(n). We call this type (3).

Next suppose that g(s) has two distinct eigenvalues. In order to avoid the previous

case, at least one of the yi must be non-zero. Hence the eigenvalues of g(s) are of

the form (λ, λs−1). There are two possible cases for their multiplicities: (λ, λ, s−1λ)

and (λ, s−1λ, s−1λ). We call these type (2, 1) and (1, 2), respectively. Each of these types

corresponds to many connected components of the critical set, enumerated by the possible

choices of hi(s). Since every xi is non-zero, hi(s) can only take the value λ or s−1λ. Hence

each particular connected component is indexed by the set S = {i ∈ [n] | hi(s) = λ}.
These are pictured in Figure 3.8 below.

In the last case, we assume that g(s) has three distinct eigenvalues. We can assume

that they are of the form (λ, s−1λ, s−aλ) and with a 6= 1, 0,−1. Now, if α is assumed

to be generic so that Mα(n) is smooth, by Theorem 3.2.10 no representation [x, y] ∈
Mα(n) admits a non-trivial direct sum decomposition. Hence the quiver representing

this connected component must be connected, and the only way to obtain this is to take

a = 2. We call this a type (1, 1, 1) critical set. The type (1, 1, 1) critical sets are indexed

by the choice of

S1 = {i ∈ [n] | hi(s) = λ}, (3.31)
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S Sc

1

1

...

1

1

1

...

1

xjxi yi

S Sc

1

1

...

1

1

1

...

1

xjxi yi

Figure 3.8: Left: type (1, 2); right: type (2, 1).

S2 = {i ∈ [n] | hi(s) = s−1λ}, (3.32)

S3 = {i ∈ [n] | hi(s) = s−2λ}. (3.33)

The diagrammatic representation of the type (1, 1, 1) critical set is pictured in Figure

3.9.

1 1 1

S1 S2 S3

xi xi xiyi yi1

1

...

1

1

1

...

1

1

1

...

1

Figure 3.9: Type (1, 1, 1) critical set.

We summarize the above arguments in the following theorem.

Proposition 3.3.3. Let Mα be a rank 3 star quiver variety, and assume that α is generic.

Then the connected components of MS1

α can be classified into three types: (3), (2, 1), (1, 2),

and (1, 1, 1). Type (3) consists of the single component Xα(n). The type (2, 1) and (1, 2)

critical sets are indexed by a subset S ⊂ [n], and the type (1, 1, 1) critical sets are indexed

by a pair of disjoint subsets S1, S2 ⊂ [n].

In the remaining sections, we will show how to use Theorem 3.2.13 to compute the

Betti numbers of these critical sets. The homotopy type of Mn(α) does not depend on

the particular choice of α, as long as it is generic,3 so we can simplify the calculation by

3This is a well-known fact about hyperkähler quotients. Various special cases appear in the literature,
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choosing α to be extreme—we can ensure that the type (3) and (1, 2) critical sets are

always empty. This reduces the problem to calculating the Betti numbers of the type

(2, 1) and (1, 1, 1) critical sets, and of these only type (2, 1) turns out to be non-trivial.

However, it should be emphasized that the method of extreme stability is in no way

whatsoever essential—it is just a trick to reduce the amount of calculation necessary.

3.3.3 The Type (3) Critical Set

As noted above, the type (3) critical set is just the Kähler quiver variety Xα ⊂Mα, and

thus has index 0, since it is the absolute minimum of µS1 . Its Poincaré polynomial can be

computed straightforwardly using the equivariant Morse theory of Chapter 2. However,

we can avoid this calculation entirely simply by choosing α to be extreme.

Proposition 3.3.4. Suppose that α satisfies αn >
∑n−1

i=1 αi. Then the Kähler quiver

variety Xα(n) is empty.

Proof. The moment map equations are∑
i

(xix
∗
i )0 = 0, (3.34)

|xi|2 = αi. (3.35)

Now consider the map sending xi to vi := (xix
∗
i )0 ∈ su3. The first moment map equation

demands that
∑
vi = 0, and hence

|vn| =

∣∣∣∣∣
n−1∑
i=1

vi

∣∣∣∣∣ ≤
n−1∑
i=1

|vi|. (3.36)

On the other hand, we have

|vi|2 = Tr (viv
∗
i ) (3.37)

= Tr

((
xix
∗
i −

1

3
|xi|2

)(
xix
∗
i −

1

3
|xi|2

))
(3.38)

= |xi|4 −
2

3
|xi|4 +

1

3
|xi|4 (3.39)

=
2

3
|xi|4 =

2

3
α2
i . (3.40)

e.g. [Nak94, Corollary 4.2], and in our case it is easily deduced from Corollary 2.3.17.
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Hence if we choose αn >
∑n−1

i=1 αi, then |vn| violates the above upper bound, and there

can be is no solution to the moment map equations.

3.3.4 The Type (1, 2) Critical Sets

Next we consider the type (1, 2) critical sets. Their Poincaré polynomials can be com-

puted in a manner analogous to the technique described below for the type (2, 1). How-

ever, we can always eliminate this case by choosing α to be extreme.

Proposition 3.3.5. The type (1, 2) critical set indexed by S ⊂ [n] is empty unless the

following conditions hold: (i) αSc > 2αS, (ii) #S ≥ max(1, 6 − n), and (iii) #Sc ≥ 2.

The isotropy representation at any point in this connected component of the critical set

is given by

n+ #S − 6 + (n+ #S − 6)t+ (#Sc − 2)t2 + (#Sc − 2)t−1 (3.41)

In particular, the complex dimension of this connected component is n+ #S − 6 and its

Morse index is 2(#Sc − 2).

Proof. A type (1, 2) critical set labelled by S ⊂ [n] corresponds to a map φ : S1 →
U(3)× (S1)n given by

g(s) = diag(1, s−1, s−1), hi(s) = 1 for i ∈ S, hi(s) = s−1 for i ∈ Sc. (3.42)

For i ∈ S, we have x = (∗, 0, 0)T , yi = (0, ∗, ∗), and for i ∈ Sc we have xi = (0, ∗, ∗)T ,

yi = 0. Then the real moment map equation
∑

i xix
∗
i − y∗i yi = (α/3)13×3 gives∑

i∈S

|xi|2 = α/3, (3.43)

∑
i∈Sc
|xi|2 −

∑
i∈S

|yi|2 = 2α/3. (3.44)

Using the real moment map equation |xi|2 = |yi|2 + αi, we find

∑
i

|yi|2 =
∑
i∈S

|yi|2 =
∑
i∈S

(|xi|2 − αi) = α/3− αS =
αSc − 2αS

3
, (3.45)

from which we deduce αSc > 2αS. From equation 3.43 we see that S is nonempty, so

#S ≥ 1. From the real moment map equation, we also see that
∑

i∈Sc xix
∗
i has rank 2,



Chapter 3. Quivers with Relations 61

so #Sc ≥ 2. Finally, the map φ determines representations

[TxRep(Q)] = 2n+ #S + (2n+ #S)t+ (#Sc)t−1 + (#Sc)t2 (3.46)

[g] = n+ 4 + 2t+ 2t−1 (3.47)

[E] = 2 + (n+ 4)t+ 2t2. (3.48)

Using Theorem 2.2.10 we obtain the isotropy representation as desired.

Now using condition (1) above, we can ensure that neither the type (3) nor the type

(1, 2) critical sets contribute to Pt(Mα(n)).

Proposition 3.3.6. Suppose that α satisfies αn > 2
∑n−1

i=1 αi. Then there are no type

(1, 2) critical sets.

Proof. We repeat essentially the same argument as in the type (3) case. From the proof

of Proposition 3.3.5 above, we have that |xi|2 = αi for i ∈ Sc, and that∑
i∈Sc

xix
∗
i =

αSc

3
13×3. (3.49)

Now, the condition αSc > 2αS implies that necessarily n ∈ Sc. As in the type (3) case,

consider the vectors vi := (xix
∗
i )0. The moment map equation implies

∑
vi = 0, so by

the triangle inequality we find

|vn| ≤
n−1∑
i=1

|vi|, (3.50)

but as in the type (3) case this contradicts αn > 2
∑n−1

i=1 αi >
∑n−1

i=1 αi.

3.3.5 The Type (2, 1) Critical Sets

Finally, we encounter the first case which cannot be eliminated by extreme stability.

Proposition 3.3.7. The type (2, 1) critical set is empty unless the following conditions

hold: (i) 2αSc > αS, (ii) #S ≥ 3, and (iii) #Sc ≥ 1. The isotropy representation of any

point is given by

2#S − 6 + (2#S − 6)t+ (2#Sc − 2)t2 + (2#Sc − 2)t−1. (3.51)

In particular, if it is non-empty then its complex dimension is 2#S − 6 and its Morse

index is 2(2#Sc − 2).
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Proof. A type (2, 1) critical set labelled by S ⊆ [n] corresponds to a homomorphism

φ : S1 → U(3)× (S1)n given by

g(s) = diag(1, 1, s−1), hi(s) = 1 for i ∈ S, hi(s) = s−1 for i ∈ Sc. (3.52)

For i ∈ S, we have x = (∗, ∗, 0)T , yi = (0, 0, ∗), and for i ∈ Sc we have xi = (0, 0, ∗)T ,

yi = 0. Then the real moment map equation
∑

i xix
∗
i − y∗i yi = (α/3)13×3 gives∑

i∈S

|xi|2 = 2α/3, (3.53)

∑
i∈Sc
|xi|2 −

∑
i∈S

|yi|2 = α/3. (3.54)

Using the real moment map equation |xi|2 = |yi|2 + αi and rearranging, we find

∑
i

|yi|2 =
2αSc − αS

3
, (3.55)

from which we deduce 2αSc > αS. From equation 3.54 we see that Sc is nonempty, so

#S ≥ 1. From the real moment map equation, we also see that
∑

i∈S xix
∗
i has rank 2, so

#S ≥ 2. Finally, the subgroup determines representations

[TxRep(Q)] = n+ 2#S + (n+ 2#S)t+ (2#Sc)t2 + (2#Sc)t−1 (3.56)

[g] = n+ 4 + 2t+ 2t−1 (3.57)

[E] = 2 + (n+ 4)t+ 2t2 (3.58)

where E ∼= psl2⊕Cn is the target space of the complex moment map. Hence by Theorem

2.2.10 we obtain the desired expression for the isotropy representation.

We will compute the Poincaré polynomials of the type (2, 1) critical sets by Theorem

3.2.13. To do this, we have to choose a decomposition I = V t W in order to apply

reduction in stages. To ensure that the subvarieties V (f) (defined by the residual part

of the complex moment map) are smooth, we make the following choice: W = S. The

decorated quiver corresponding to this decomposition is pictured in Figure 3.10.

To simplify things, let us note that up to isomorphism we can ignore the edges xi for

i ∈ Sc. This is pictured in Figure 3.11.

Lemma 3.3.8. The type (2, 1) critical set indexed by S ⊂ [n] is isomorphic to the moduli

space of representations of the quiver with the edges xi deleted for i ∈ Sc, as in Figure
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2 1

S Sc

xi xiyi1

1

...

1

1

1

...

1

Figure 3.10: The reduction in stages used for the type (2, 1) critical set.

2 1

γ −δ

S

xi yi1

1

...

1

Figure 3.11: Simplification of the type (2, 1) critical set, with the moment map level
(γ, δ) as indicated.

3.11. Under this isomorphism, the moment map level at the leftmost vertex is given by

(γ/2)12×2 where γ = 2α/3, and at the rightmost vertex by −δ, where δ = (2αSc − αS)/3.

Proof. For each i ∈ Sc, the moment map equation is given by |xi|2 = αi. From Proposi-

tion 3.3.7, the moment map equation at the vertex is∑
i∈Sc
|xi|2 −

∑
i∈S

|yi|2 =
α

3
(3.59)

Now, since for i ∈ Sc xi is a 1× 1 matrix of norm αi, up to the S1 action we simply have

xi =
√
αi and there are no additional moduli. Hence we can simply delete these edges.

Rearranging the above equation, we have

−
∑
i∈S

|yi|2 =
α

3
−
∑
i∈Sc
|xi|2 =

2αSc − αS
3

= −δ, (3.60)
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as claimed. The moment map equation∑
i

xix
∗
i =

α

3
13×3 +

∑
i

y∗i yi, (3.61)

also implies
∑

i∈S xix
∗
i = (α/3)12×2, so γ = 2α/3 as claimed.

For the remainder of this section, we let Q = (V tW , E) denote the type (2, 1) quiver

pictured in Figure 3.11. The first step of Theorem 3.2.13 is to compute the Poincaré

polynomial of V (f) ⊂ Xα(Q,v,w) where f : Rep(Q,v,w) → E ∼= C2 is the residual

part of the complex moment map, given by

f(x, y) =
∑
i∈S

xiyi. (3.62)

Proposition 3.3.9. The Poincaré polynomial of V (f) ⊂ Xα(Q,v,w) is given by

Pt(V (f)) = Pt(Gr(2, n))Pt(P
n−3) (3.63)

Proof. Pick a generic component β of tw to that Tβ = Tw. (We will make a particular

choice of β once we need it to compute Morse indices.) Let h = 〈µw, β〉 so that h

is a perfect Morse-Bott function and Crit(h) = Xα(Q,v,w)Tw . To proceed, we have

to compute the Tw-fixed point set of V (f). As in the proof of Theorem 3.2.10, a point

[x, y] ∈ Xα(Q,v,w) is fixed if there is a map φ : Tw → Gv such that t·(x, y) = φ(t)·(x, y).

If we denote t = (t1, . . . , tn) then, writing this out in components, we have the equations

g1(t)xi = tixi, (3.64)

yig2(t)−1 = t−1
i yi. (3.65)

Now, by the moment map equations, at least two of the xi must be non-zero and linearly

independent, say xa and xb with a < b. Then the first of the above equations force

g1(t) = diag(ta, tb). On the other hand, the moment map equations also force at least

one of the yi to be non-zero, say yc. The second equation then forces g2(t) = tc, and

this determines φ completely. Furthermore, the residual complex moment map equation

is
∑

i∈S xiyi = 0, and this can only be satisfied if c 6= a, b. Hence the fixed-points are

isolated and are indexed by tuples (a, b, c) with a < b and c 6= a, b.

To compute Morse indices, we first compute the isotropy representations using The-
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orem 3.2.10. We find

[TxRep(Q,v,w)] =
∑
l

(
tat
−1
l + tbt

−1
l + tlt

−1
c

)
(3.66)

[gv] = tat
−1
b + tbt

−1
a + 3 (3.67)

[E] = tat
−1
c + tbt

−1
c . (3.68)

If we take the particular generic component (1, ε, ε2, . . . , εn−1) for ε small, then a weight

of the form tit
−1
j is negative if and only if j < i. Hence the Morse index is given by

λ(a, b, c) = 2n− 6 + 2a+ 2b+ 2c− 2d, (3.69)

where d = 0 if c < a, 1 if a < c < b, and 0 if c > b. Hence

Pt(V ) =
n−1∑
a=1

n∑
b=a+1

∑
c 6=a,b

tλ(a,b,c) (3.70)

and with a bit of algebraic manipulation this yields the claimed formula for Pt(V (f)).

Remark 3.3.10. A quicker way to calculate Pt(V ) is to simply observe that the projection

[x, y] 7→ [x] makes V (f) the total space of a fiber bundle over Gr(2, n) with fiber Pn−3.

However, Morse theory with the Tw-action provides a systematic way to compute V (f)

for a large class of subvarieties of quiver varieties without relying on such coincidences.

Now that we have calculated the Poincaré polynomial of Pt(V (f)), we must next

enumerate the connected components of the critical set of |µw|2. By Theorem 3.2.10,

these are enumerated by the possible direct sum decompositions. At the left-most vertex,

which has dimension 2, there are two possibilities: either it does not decompose, or it

decomposes as 1 + 1. We call these two possibilities type (2) and type (1, 1) respectively.

First let us consider type (2). Under a direct sum decomposition of this form, the

only possibility is that some of the edges are identically zero. Define

S = {i ∈ [n] | xi 6= 0 generically}, (3.71)

T = {i ∈ [n] | yi 6= 0 generically}. (3.72)

The type (2) critical set corresponding to the choice S, T ⊂ [n] is pictured in Figure 3.12.

Now, suppose that S ∩ T 6= ∅, and let i ∈ S ∩ T . Since xi 6= 0 generically, this forces

g1 = diag(ti, ti). Similarly, since yi 6= 0 generically, we have g2 = ti. Hence the generic

stabilizer is given by the subtorus (s1, . . . , sn) of Tw, where sl = ti for l ∈ S ∪ T , and
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Figure 3.12: The type (2) stratum of the type (2, 1) critical set.

sl = tl for l 6= S ∪ T . However, the fixed-point set of this stabilizer subgroup consists of

{xi = 0 | i 6∈ (S ∪ T )} ∪ {yi = 0 | i 6∈ (S ∪ T )}, (3.73)

so in fact S = T . This divides the type (2) critical sets into two subcases, S = T and

S ∩ T = ∅, which we call type A and type B respectively.

Next we consider the remaining case, type (1, 1). Now we define S and T as in the

type (2) case, and the decomposition 2 = 1 + 1 further decomposes S as S = S1 t S2, as

pictured in Figure 3.13. Now, as in the type (2) case there are additional subcases. By

arguments analogous to those above, either T is equal to one of the Si (which we may

assume is S1, simply by relabelling), or T is disjoint from both S1 and S2. We denote

these subcases by type C and type D, respectively.

1

1

1

...

1

...

S1

S2

1

1

1

...

1

T

Figure 3.13: The type (1, 1) stratum on the type (2, 1) quiver.

Summarizing the above arguments, we have the following theorem.

Theorem 3.3.11. The critical sets for |µw|2 on the type (2, 1) are classified into the

types A,B,C, and D described above. Hence The Poincaré polynomial of the type (2, 1)
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critical set on Mα(n) may be computed as

Pt(V (f)//Gw) = Pt(BGw)Pt(V (f))−RA −RB −Rc −RD, (3.74)

where RA, RB, RC , RD are corrections due to the type A,B,C,D critical sets of |µw|2,

respectively. These may be computed by Propositions 3.3.14, 3.3.19, 3.3.22, and 3.3.25

below.

Type A Critical Sets

We have a subset S ⊂ [n] satisfying Sc 6= ∅. This critical set is given by xi = 0, yi = 0

for i ∈ Sc.

Lemma 3.3.12. The stabilizer of a generic point of the type A critical set is the subgroup

TS ⊆ Tw consisting of elements of the form ti = s for i ∈ S with no constraint on the ti

for i ∈ Sc. The map φ : TS → Tv is given by g1 = diag(s−1, s−1), g2 = s−1. The isotropy

representation is given by

3(#S)− 7 +
∑
i∈Sc

(2st−1
i + s−1ti). (3.75)

Proof. The generic stabilizer follows from the definition of the type A critical set. To

compute the isotropy representation, we simply compute

[Rep(Q,v,w)] = 3(#S) +
∑
i∈Sc

(2st−1
i + s−1ti) (3.76)

[gv] = 5 (3.77)

[E] = 2 (3.78)

and appeal to Theorem 2.2.10.

Lemma 3.3.13. The Morse index λ is given by

λ = 2#Sc + 2#{j ∈ Sc | µS + αj > 0}. (3.79)

where µS = (γ− δ−αS)/(#S). The equivariant topology of the type A critical set is that

of the type (2, 1) critical set with stability parameters (γ, α′, δ), where α′ = {α′i}i∈S and

α′i = αi + µS. Hence its Poincaré polynomial may be computed inductively.

Proof. The condition of being critical forces µ(x) to lie in stab(x), and hence µi = µi′ for
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i, i′ ∈ S. Denote this common value by µS. Using the moment map equations, we find

(#S)µS =
∑
i∈S

(|xi|2 − |yi|2 − αi) = γ − δ − αS. (3.80)

Since xj, yj = 0 for j ∈ Sc, we have µj = −αj for j ∈ Sc. Appealing to the isotropy

representation, we obtain the desired formula for the Morse index.

Proposition 3.3.14. The correction RA of a type A critical set labelled by S = T ⊂ [n]

is given by

RA(S) =
tλ

(1− t2)#Sc
Pt(C

(2,1)(γ, α′, δ)) (3.81)

where λ is the Morse index as computed above and C(2,1)(γ, α′, δ) denotes a type (2, 1)

critical set with moment map level (γ, α′, δ), as computed above.

Type B Critical Sets

We have disjoint subsets S1, S2 ⊂ [n] satisfying #S1 ≥ 3 and #S2 ≥ 1. The coordinates

(xi, yi) satisfy the conditions xi = 0 for i ∈ Sc1 and yi = 0 for i ∈ Sc2.

Lemma 3.3.15. The stabilizer of a generic point of the type B critical set is the subgroup

TS ⊆ Tw consisting of elements of the form ti = s1 for i ∈ S1 ti = s2 for i ∈ S2

with no constraint on the ti for i ∈ (S1 ∪ S2)c. The map φ : TS → Tv is given by

g1 = diag(s−1
1 , s−1

1 ), g2 = s−1
2 . The isotropy representation is given by

(2#S1 + #S2 − 5) + (#S1 + 2#S2 − 2)s1s
−1
2 +

∑
i 6∈S1∪S2

(2s1t
−1
i + s−1

2 ti) (3.82)

Proof. The form of the stabilizer follows from the definition of the type B critical set,

and to obtain the isotropy representation, we simply compute

[Rep(Q,v,w)] =
∑
i∈S1

(2 + s1s
−1
2 ) +

∑
i∈S2

(2s1s
−1
2 + 1) +

∑
i 6∈S1∪S2

(2s1t
−1
i + s−1

2 ti) (3.83)

[gv] = 5 (3.84)

[E] = 2s1s
−1
2 (3.85)

and appeal to Theorem 2.2.10.

Lemma 3.3.16. The Morse index is given by 2λ0+4λ1+2λ2, where λ0 = #S1+2#S2−2
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if µS1 > µS2 and λ0 = 0 otherwise, and

λ1 = #{i 6∈ S1 ∪ S2 | µS1 + αi > 0}, (3.86)

λ2 = #{i 6∈ S1 ∪ S2 | µS2 + αi < 0}, (3.87)

and where µS1 = (γ−αS1)/(#S1) and µS2 = −(δ+αS2)/(#S2). The equivariant topology

of the type B critical set is that of a rank 2 polygon space with moment map level α′ =

{α′i}i∈S and α′i = αi + µS1.

Proof. The condition of being critical forces µ(x) to lie in stab(x), and hence µi = µi′

for i, i′ ∈ S1 and similarly for i, i′ ∈ S2. Denote these common values by µS1 , µS2 ,

respectively. Using the moment map equations, we find

(#S1)µS1 =
∑
i∈S1

(|xi|2 − αi) = γ − αS1 , (3.88)

(#S2)µS2 =
∑
i∈S1

(−|yi|2 − αi) = −δ − αS2 , (3.89)

Since xj, yj = 0 for j ∈ Sc, we have µj = −αj for j ∈ Sc. Appealing to the isotropy

representation, we obtain the desired formula for the Morse index.

Lemma 3.3.17. The Poincaré polynomial of the polygon space P(α) may be computed

inductively by equivariant Morse theory.

Proof. The calculation is very similar to those carried out in the remainder of this chap-

ter, so we will just give a sketch. Let (Q,d) be the star quiver with dimension vector

(2, 1, . . . , 1). We choose the decomposition d = v + w, where v = (2, 0, . . . , 0) and

w = (0, 1, . . . , 1). Then Gv = U(2) and Gw = Tw = (S1)n. If a subtorus Tβ ⊂ Tw

stabilizes a point [x], then we can choose some homomorphism φ : Tβ → Gv so that for

all t ∈ Tβ we have

t · x = φ(t) · x, (3.90)

for some representative x of [x]. We can assume that φ(t) = diag(tν1 , tν2) for characters

ν1, ν2 of Tβ. Then there are two possible cases: ν1 = ν2, and ν1 6= ν2. In the first case,

the stabilizer Tβ must take the form hi(t) = tν , for all i ∈ S for some subset S ⊂ [n]. The

equivariant topology of the critical set is that of the polygon space P(α|S), where α|S
denotes the vector {αi+µS}i∈S, where µS = αSc/(#S). In the second case, the critical set

corresponds to a choice of disjoint subsets S1, S2 ⊂ [n] where hi(t) = tνj for i ∈ Sj. The

Morse index is straightforward to compute, and one finds that the equivariant topology
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of the critical set is that of a point. By Corollary 2.2.16, we have

Pt(P(α)) =
Pt(Gr(2, n))

(1− t2)n−1
−
∑
C

tλCPG
t (C), (3.91)

where the sum is over the higher critical sets C of |µ|2, which we have just enumerated.

Since the terms on the right hand side can be expressed in terms of simpler polygon

spaces, we obtain a recursion relation for their Poincaré polynomials.

Remark 3.3.18. Klyachko [Kly94] obtained a similar recursion relation for the special

moment map level (1, . . . , 1). Later, Konno [Kon00b] obtained an explicit formula by

studying the circle action on hyperpolygons. In this case, the fixed-point set consists of

P(α) together with a finite union of projective spaces. Hence the Poincaré polynomial

of P(α) can be expressed as a difference of the Poincaré polynomial of its hyperkähler

analogue and a weight sum of Poincaré polynomials of projective spaces. By taking an

extreme moment map level so that P(α) is empty, Konno obtains an explicit formula for

the Poincaré polynomial of the hyperpolygon space. Since the latter is independent of

the moment map level, substituting it into the former yields an explicit expression for

the Poincaré polynomial of P(α).

Proposition 3.3.19. The correction RB of a type B critical set labelled by S1, S2 ⊂ [n]

is given by

R =
tλ

(1− t2)1+#Sc
Pt(P(α′)) (3.92)

where λ is the Morse index as computed above and P(α′) is the polygon space with moment

map level α′ as computed above.

Type C Critical Sets

For the type C critical set, we have disjoint subsets S1, S2 ⊂ [n] satisfying #S1 ≥ 2,

#S2 ≥ 1.

Lemma 3.3.20. The stabilizer of a generic point of the type C critical set is the subgroup

TS ⊆ Tw consisting of elements of the form ti = sj for i ∈ Sj, with no constraint on ti

for i 6∈ S1 ∪ S2. The map φ : TS → Tv is given by g1 = diag(s−1
1 , s−1

2 ), g2 = s−1
1 . The

isotropy representation is given by

2(#S1) + #S2 − 4 + (#S1 + #S2 − 1)s−1
1 s2 + (#S2 − 1)s1s

−1
2

+
∑

i 6∈S1∪S2

s1t
−1
i + s2t

−1
i + s−1

1 ti.
(3.93)
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Proof. The form of the stabilizer follows from the definition of the type C critical set,

and to obtain the isotropy representation, we simply compute

[Rep(Q,v,w)] =
∑
i∈S1

(2 + s−1
1 s2) +

∑
i∈S2

(1 + s−1
1 s2 + s1s

−1
2 )

+
∑

i 6∈S1∪S2

(s1t
−1
i + s2t

−1
i + s−1

1 ti)
(3.94)

[gv] = 3 + s1s
−1
2 + s−1

1 s2 (3.95)

[E] = 1 + s−1
1 s2 (3.96)

and appeal to Theorem 2.2.10.

Lemma 3.3.21. Let µS1 = (γ/2− δ − αS1)/(#S1) and µS2 = (γ/2− αS2)/(#S2). Then

the Morse index is given by 2λ0 + 2λ1 + 2#(S1 ∪ S2)c, where

λ0 =

{
#S2 − 1, µS1 > µS2

#S1 + #S2 − 1, µS1 < µS2

(3.97)

λ1 = #{i 6∈ S1 ∪ S2 | µS2 + αi > 0}, (3.98)

The equivariant topology of the type C critical set is that of the projective space P#S1−2.

Proof. The condition of being critical forces µ(x) to lie in stab(x), and hence µi = µi′

for i, i′ ∈ S1 and similarly for i, i′ ∈ S2. Denote these common values by µS1 , µS2 ,

respectively. Using the moment map equations, we find

(#S1)µS1 =
∑
i∈S1

(|xi|2 − |yi|2 − αi) =
γ

2
− δ − αS1 , (3.99)

(#S2)µS2 =
∑
i∈S1

(|xi|2 − αi) =
γ

2
− αS2 , (3.100)

(3.101)

Since xj, yj = 0 for j ∈ (S1 ∪ S2)c, we have µj = −αj for j ∈ Sc. Appealing to the

isotropy representation, we obtain the desired formula for the Morse index.

Proposition 3.3.22. The correction RC of a type C critical set labelled by S, T ⊂ [n] is

given by

RC =
tλ

(1− t2)1+#(S1∪S2)c
Pt(P

#S1−2) (3.102)

where λ is the Morse index as computed above.
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Type D Critical Sets

We have disjoint subsets S1, S2, S3 ⊂ [n] satisfying #S1 ≥ 1, #S2 ≥ 1,#S3 ≥ 1.

Lemma 3.3.23. The stabilizer of a generic point of the type D critical set is the subgroup

TS ⊆ Tw consisting of elements of the form ti = sj for i ∈ Sj, with no constraint on ti

for i 6∈ S1 ∪S2 ∪S3. The map φ : TS → Tv is given by g1 = diag(s−1
1 , s−1

2 ), g2 = s−1
3 . The

isotropy representation is given by

(#S1 + #S2 + #S3 − 3) + (#S1 − 1)s−1
1 s2 + (#S2 − 1)s1s

−1
2

+ (#S1 + #S3 − 1)s1s
−1
3 + (#S2 + #S3 − 1)s2s

−1
3

+
∑

i 6∈S1∪S2∪S3

(s1t
−1
i + s2t

−1
i + s−1

3 ti)

(3.103)

Proof. The form of the stabilizer follows from the definition of the type C critical set,

and to obtain the isotropy representation, we simply compute

[Rep(Q,v,w)] =
∑
i∈S1

(1 + s2s
−1
1 + s1s

−1
3 ) +

∑
i∈S2

(1 + s1s
−1
2 + s2s

−1
3 )

+
∑
i∈S3

(1 + s1s
−1
3 + s2s

−1
3 ) +

∑
i 6∈S1∪S2

(s1t
−1
i + s2t

−1
i + s−1

3 ti)
(3.104)

[gv] = 3 + s1s
−1
2 + s−1

1 s2 (3.105)

[E] = s1s
−1
3 + s2s

−1
3 (3.106)

and appeal to Theorem 2.2.10.

Lemma 3.3.24. Let µS1 = (γ/2 − αS1)/(#S1), µS2 = (γ/2 − αS2)/(#S2), and µS3 =

−(δ + αS3)/(#S3), and assume that µS1 > µS2. Then the Morse index is given by

2(#S2 − 1) + 2λ0 + 2λ1 + 2λ2 + 2λ3, where

λ0 = (#S1 + #S3 − 1)θ(µS1 − µS3) + (#S2 + #S3 − 1)θ(µS2 − µS3), (3.107)

λ1 = #{i 6∈ S1 ∪ S2 ∪ S3 | µS1 + αi > 0}, (3.108)

λ2 = #{i 6∈ S1 ∪ S2 ∪ S3 | µS2 + αi > 0}, (3.109)

λ3 = #{i 6∈ S1 ∪ S2 ∪ S3 | µS3 + αi < 0}, (3.110)

where θ denotes the Heaviside step function. The equivariant topology of the type D

critical set is that of a point.

Proof. The condition of being critical forces µ(x) to lie in stab(x), and hence µi = µi′

for i, i′ ∈ S1 and similarly for i, i′ ∈ S2. Denote these common values by µS1 , µS2 ,
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respectively. Using the moment map equations, we find

(#S1)µS1 =
∑
i∈S1

(|xi|2 − αi) =
γ

2
− αS1 , (3.111)

(#S2)µS2 =
∑
i∈S1

(|xi|2 − αi) =
γ

2
− αS2 , (3.112)

(#S3)µS3 =
∑
i∈S1

(−|yi|2 − αi) = −δ − αS3 , (3.113)

Appealing to the isotropy representation, we obtain the desired formula for the Morse

index.

Proposition 3.3.25. The correction RD of a type D critical set labelled by subsets

S1, S2, S3 ⊂ [n] is equal to

RD =
tλ

(1− t2)2+#(S1∪S2∪S3)c
(3.114)

where λ is the Morse index as computed above.

3.3.6 The Type (1, 1, 1) Critical Sets

Proposition 3.3.26. Let S1, S2, S3 be a decomposition of [n] indexing a critical set of

type (1, 1, 1). Then these subsets must satisfy (i) αS2∪S3 > 2αS1, (ii) 2αS3 > αS1∪S2,

(iii) #S1 ≥ 2, (iv) #S2 ≥ 2, and (v) #S3 ≥ 1. The isotropy representation is given by

(#S1 + #S2 − 4)(1 + t) + (n− 3)(t−1 + t2) + (#S3 − 1)(t−2 + t3). (3.115)

The dimension of the critical set is #S1 +#S2−4 and its Morse index is 2(n+#S3−4).

It is isomorphic to P#S1−2 ×P#S2−2

Proof. A fixed-point of this type corresponds to the map φ : S1 → Gv
∼= U(3) × (S1)n

given by g(t) = diag(1, t−1, t−2) and

hi =


1, i ∈ S1

t−1, i ∈ S2

t−2, i ∈ S3

(3.116)

To compute the isotropy representation, we compute

[TxRep(Q)] = n+ (#S1 + #S2)t+ (#S1)t2 + (#S2 + #S3)t−1 + (#S3)t−2 (3.117)
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[pgv] = n+ 2 + 2t+ 2t−1 + t2 + t−2 (3.118)

[E] = 2 + (n+ 2)t+ 2t2 + t3 + t−1 (3.119)

and appeal to Theorem 2.2.10. The isomorphism with the product of projective spaces

is given as follows. First, we consider the map to P#S1−1 ×P#S2−1 given by

[xi, yi] 7→ [xiyi : i ∈ S1]× [xjyj : j ∈ S2]. (3.120)

This is easily seen to be a well-defined embedding (at least for generic α). However,

the complex moment map equation gives the relations
∑

i∈S1
xiyi = 0 and

∑
i∈S2

xiyi =

0, so the image is the subvariety defined by these equations, which is isomorphic to

P#S1−2 ×P#S2−2.

3.3.7 The Poincare Polynomial

The preceding sections described the computation of the Morse indices of the S1-fixed

point sets, as well as inductive methods to compute the Poincaré polynomials of types

(2, 1) and (1, 1, 1). Since we can ensure that only these types appear by choosing the

moment map level α to be extreme, this gives an explicit inductive procedure to compute

Pt(Mα(n)) by Morse theory.4 We have implemented the this procedure in the computer

software Sage. For small values of n, we summarize the results in the following theorem.

Theorem 3.3.27. For small values of n, the Poincaré polynomials of the rank 3 star

quiver varieties Mα(n) are the following:

Pt(Mα(4)) = 1

Pt(Mα(5)) = 1 + 5t2 + 11t4

Pt(Mα(6)) = 1 + 6t2 + 22t4 + 51t6 + 66t8

Pt(Mα(7)) = 1 + 7t2 + 29t4 + 85t6 + 190t8 + 308t10 + 302t12

Pt(Mα(8)) = 1 + 8t2 + 37t4 + 121t6 + 311t8 + 653t10 + 1115t12 + 1450t14 + 1191t16

Remark 3.3.28. Using the Weil conjectures, Hausel produced an explicit generating func-

tion for the Poincaré polynomials of Nakajima quiver varieties [Hau06]. As a consistency

check, we have verified that our calculation is consistent with Hausel’s generating func-

tion for small values of n. Note that unlike the method of this chapter, Hausel’s method

does not give any direct information about the S1-fixed point set.

4Recall that the Betti numbers of Mα(n) do not depend on α, as long as α is generic.
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The Residue Formula Revisited

4.1 Generating Functions for Intersection Pairings

4.1.1 Cogenerators of Rings

Let k be a field of characteristic 0,1 V a graded k-vector space, and V ∗ its dual. Let

R = k[V ] ∼= Sym V ∗ and R∨ = k[V ∗] ∼= Sym V . Note that R has a natural grading

R =
⊕

d≥0R
d, where Rd := Symd V ∗ consists of homogeneous polynomials of degree

d. The natural pairing between V and V ∗ gives R∨ the structure of an R-module, with

Symd V ∗ acting on R∨ as homogeneous linear differential operators of degree d.

Lemma 4.1.1. Suppose that I ⊆ R is a homogeneous ideal such that S = R/I is finite-

dimensional over k. Then there exists a finitely-generated R-submodule S∨ ⊂ R∨ such

that I = annR(S∨). Consequently, the action of R on S∨ descends to an action of S on

S∨.

Proof. We define S∨ := HomR(R/I,R∨). Since an element φ ∈ HomR(R/I,R∨) is

uniquely determined by its image φ(1), S∨ is naturally a sub-module of R∨. An ele-

ment r ∈ R∨ is the image of 1 under φ ∈ HomR(S,R∨) if and only if I · r = 0. Hence

S∨ ∼= {r ∈ R∨ | I · r = 0}. (4.1)

By construction, I ⊆ annR(S∨). To see that this is in fact an equality, simply note

that for any degree d the vector spaces Rd and (R∨)d are naturally dual. Since I is

homogeneous, we have that (S∨)d is the annihilator of Id under the dual pairing, and

conversely.

1For our purposes we will only need to consider Q,R, and C.

75
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Remark 4.1.2. The conclusion of this lemma is definitely not true if we drop the hypoth-

esis that I is homogeneous. For example, if R = k[u] and I = 〈u− 1〉 then S = R/I ∼= k,

but S∨ = 0, since the differential equation(
∂

∂u
− 1

)
f(u) = 0 (4.2)

has no non-trivial polynomial solutions. Hence ann(S∨) = R 6= I.

Definition 4.1.3. Let S = R/I be as above. We call S∨ = HomR(S,R∨) the Fourier

dual of S. A cogenerator of S is an element f ∈ S∨. A set {f1, . . . , fn} of cogenerators

is said to be complete if this set generates S∨ as an R-module.

Definition 4.1.4. A finite-dimensional graded k-algebra is called level if every non-zero

element divides a non-zero element of top degree. It is said to satisfy Poincaré duality if

it is both level and one-dimensional in top degree.

Remark 4.1.5. A connected compact oriented manifold M satisfies Poincaré duality,

which implies that the ring H∗(M) satisfies Poincaré duality as defined above. In the

non-compact setting, levelness can be a suitable replacement for Poincaré duality in many

arguments. This property is known to hold for hypertoric varieties, and is conjectured

to hold for a large class of holomorphic symplectic quotients [Pro11].

Proposition 4.1.6. Let I ⊆ R be as above. Then the quotient ring S = R/I is level

if and only if the dual R-module S∨ is generated in top degree, and S satisfies Poincaré

duality if and only if S∨ is generated by a single polynomial of top degree.

Proof. Let S∨0 ⊆ S∨ be the R-submodule of S∨ generated by (S∨)n, where n is the top

non-vanishing degree of S. Then S∨ is generated in top degree if and only if S∨ = S∨0 .

By Lemma 4.1.1 this is true if and only if ann(S∨) = ann(S∨0 ). Note that we always have

the containment ann(S∨) ⊆ ann(S∨0 ), so S∨ is not generated in top degree if and only if

there exists f ∈ R, f 6∈ I such that f · S∨0 = 0. If there is such an f , then for all g of

complementary degree we have

(fg) · (S∨)n = (fg) · (S∨0 ) = g · (f · (S∨0 )) = 0. (4.3)

By the lemma, the image of f in S does not divide any non-zero element of top-degree,

hence S is not level.

In what follows, R will be the torus-equivariant cohomology of a point and I is the

kernel of the Kirwan map. The surprising result is that while the cohomology ring
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S might have a very complicated presentation in terms of generators and relations, in

many cases we can compute generators for the Fourier dual module rather easily. Hence,

Fourier duality gives a convenient way to encode the entire cohomology ring as a single

polynomial.

Example 4.1.7. Let R = Q[u] and I = 〈un+1〉 with deg u = 2. Then R∨ = Q[λ] where λ

is dual to u and u acts on R∨ as d/dλ. The dual module S∨ consists of all polynomials

in λ of total degree less than or equal to 2n, where deg λ = 2. Hence S∨ is generated as

an R-module by λn. It is well-known that S is isomorphic to the cohomology ring of Pn,

and we will see that its Jeffrey-Kirwan residue is (up to an overall constant) given by λn.

We will give many more examples in Section §4.4.

Let us record two easy lemmas, which we will need later in the chapter.

Lemma 4.1.8. Let I be a homogeneous ideal of R[u] such that S = R[u]/I is finite-

dimensional. Then the Fourier dual of S/ 〈u〉 is given by

{f ∈ S∨ | ∂f
∂u

= 0}. (4.4)

Proof. We have that S/ 〈u〉 = R[u]/ 〈I, u〉, so its Fourier dual consists of those elements

of R[u] which are simultaneously annihilated by I and u, i.e. those elements of S∨ which

do not depend on u.

Lemma 4.1.9. Let $ ∈ R be homogeneous, let I be a homogeneous ideal of R such that

S = R/I is finite dimensional, and suppose that {fi}i∈I is a complete set of generators

of S∨. Then a complete set of generators of (S/annS($))∨ is given by {$ · fi}i∈I .

Proof. If a ∈ annS($), then a ·$ ∈ I, so that

a · ($ · fi) = (a$) · fi = 0, (4.5)

and hence annR(D$fi) ⊂ 〈I, annS($)〉. Conversely, suppose that r ∈ R such that

[r] ∈ S/annS($) is non-zero. Then r$ 6∈ I, and hence (r$) · fi 6= 0 for some i ∈ I.

Hence
⋂
i∈I annR($ · fi) = 〈I, annS($)〉.

4.1.2 Generating Functions

Let G be a compact Lie group and T ⊂ G a maximal torus. Denote the Weyl group

N(T )/T by W . Let R = H∗(BT ) ∼= Q[u1, . . . , ur], with degXi = 2 and r the rank of G.

Then H∗(BG) ∼= RW and we regard elements of H∗(BG) as Weyl-invariant polynomials
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in the ui. Then R∨ = Q[λ1, . . . , λr] for dual variables λi, and for any polynomial f =∑
aIx

I we have the Fourier dual differential operator

Df :=
∑

aI

(
−i ∂
∂λ

)I
. (4.6)

Suppose that G acts linearly on X = CN and assume that X has a G-invariant

Hermitian inner product. Then for any regular central α ∈ g∗ the symplectic reduction

Xα := X//
α

G is a symplectic orbifold. We assume throughout this section that the

moment map µ : X → g∗ is proper so that Xα is compact.

Definition 4.1.10. We define the generating function Z : t∗ → Q by

Z(λ) =
1

|W |

∫
Xα

κ

(∑
s∈W

ei(λ−α)(s·u)

)
eω, (4.7)

where κ : H∗(BG)→ H∗(Xα) is the Kirwan map.

Note that although Z is defined as a Weyl-invariant formal power series in λ, due to

the finite-dimensionality of Xα it is actually a polynomial. It is a generating function in

the following sense.

Lemma 4.1.11. For any Weyl-invariant polynomial f ∈ RW we have

DfZ(α) =

∫
Xα

κ(f)eω. (4.8)

Hence the intersection pairings in Xα completely determine Z, and conversely.

Proof. Simply note that for any polynomial f(u) we have

Dfe
i(λ−α)(u) = f(u)ei(λ−α)(u). (4.9)

Now assume that f is Weyl-invariant. Average over the Weyl group, apply the Kirwan

map, multiply both sides by eω, and integrate over Xα to obtain

DfZ(λ) =
1

|W |

∫
Xα

κ

(
f(u)

∑
s∈W

ei(λ−α)(s·u)

)
eω. (4.10)

Now evaluate at λ = α to obtain the desired result. This shows that the intersection

pairings are the Taylor coefficients of Z about λ = α, and since Z is a polynomial, its

Taylor coefficients determine it completely.
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Theorem 4.1.12. f ∈ kerκ if and only if DfZ = 0. Hence the RW -module generated

by Z has annihilator equal to kerκ, and therefore it is the Fourier dual of H∗(Xα).

Proof. Without loss of generality assume that f is homogeneous. Then by Kirwan sur-

jectivity and Poincaré duality, f ∈ kerκ if and only if for all g ∈ RW ,∫
Xα

κ(fg)eω = 0. (4.11)

By the above lemma,
∫
Xα
κ(fg)eω = 0 if any only if (DfDgZ)(α) = 0 for all g. Then the

Taylor expansion of DfZ about λ = α is identically 0, hence DfZ = 0 identically.

4.2 Jeffrey-Kirwan Residues

4.2.1 The Residue Operation

We desire an effective method to compute the generating function Z associated to any

compact symplectic quotient Xα as in the preceding section. We begin by recalling the

residue operation:

Proposition 4.2.1. [JK97, Proposition 3.2] Let Λ ⊂ t be a non-empty open cone and

suppose that β1, . . . , βN ∈ t∗ all lie in the dual cone Λ∗. Suppose that λ ∈ t∗ does not lie in

any cone of dimension at most n−1 spanned by a subset of {β1, . . . , βN}. Let {u1, . . . , un}
be any system of coordinates on t and let du = du1 ∧ · · · ∧ dun be the associated volume

form. Then there exists a residue operation ResΛ defined on meromorphic differential

forms of the form

h(u) =
q(u)eiλ(u)∏N
j=1 βj(u)

du (4.12)

where q(u) is a polynomial. The operation ResΛ is linear in its argument and is charac-

terized uniquely by the following properties:

(i) If {β1, . . . , βN} does not span t as a vector space then

ResΛ

(
uJeiλ(u)∏N
j=1 βj(u)

du

)
= 0 (4.13)

(ii) For any multi-index J , we have

ResΛ

(
uJeiλ(u)∏N
j=1 βj(u)

du

)
=
∑
m≥0

lim
s→0+

ResΛ

(
uJ(i(λ(u))meisλ(u)

m!
∏N

j=1 βj(u)
du

)
. (4.14)
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(iii) The limit

lim
s→0+

ResΛ

(
uJeisλ(u)∏N
j=1 βj(u)

du

)
(4.15)

is zero unless N − |J | = n.

(iv) If N = n and {β1, . . . , βn} spans t∗ as a vector space then

ResΛ

(
uJeiλ(u)∏n
j=1 βj(u)

du

)
= 0 (4.16)

unless λ is in the cone spanned by {β1, . . . , βn}. If λ is in this cone, then the residue

is equal to β̄−1, where β̄ is the determinant of an n× n matrix whose columns are

the coordinates of β1, . . . , βn with respect to any orthonormal basis defining the same

orientation as β1, . . . , βn.

Although the above properties determine the residue operation completely, they can

be difficult to work with. However, in the one-dimensional case it is essentially the usual

residue operation from complex analysis. Consider meromorphic functions of z ∈ C

which take the form

f(z) =
m∑
j=1

gj(z)eiλjz (4.17)

where gj(z) are rational functions and λj ∈ R \ {0}. We introduce an operation Res+
z

defined by

Res+
z f(z)dz =

∑
λj≥0

∑
b∈C

Res
(
gj(z)eiλjzdz; z = b

)
. (4.18)

The following proposition reduces the residue operation to a series of iterated one-

dimensional residues.

Proposition 4.2.2. [JK97, Proposition 3.4] Let

h(u) =
q(u)eiλ(u)∏N
j=1 βj(u)

(4.19)

where q(u) is a polynomial, and λ is not in any proper subspace spanned by a subset

of {β1, . . . , βN}. For a generic choice of coordinate system {u1, . . . , un} on t for which

(0, . . . , 0, 1) ∈ Λ we have

ResΛ (h(u)du) = ∆Res+
u1
· · ·Res+

unh(u)du1 ∧ · · · ∧ dun (4.20)
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where the variables u1, . . . , un−1 are held constant while calculating Res+
un, and ∆ is the

determinant of any n × n matrix whose columns are the coordinates of an orthonormal

basis of t defining the same orientation as the chosen coordinate system.

Example 4.2.3. We compute the residue eiλu/un+1 with respect to the dual cone Λ∗ =

{λ|λ > 0} using Proposition 4.2.2. In this case, it is zero if λ < 0 and otherwise it is

equal to the usual residue from elementary complex analysis. Hence we have

ResΛ

(
eiλu

un+1

)
= θ(λ)Res

(
eiλu

un+1
;u = 0

)
= θ(λ)

(−iλ)n

n!
, (4.21)

where θ(λ) is the Heaviside step function, defined to be equal to 1 for λ > 0 and 0 for

λ < 0.

Example 4.2.4. We compute the residue

ResΛ

(
eiλ1u1+iλ2u2

u2
1u2(u2 − u1)

)
(4.22)

where Λ is the dual cone Λ∗ = {(λ1, λ2) | 0 < λ2, λ1 < λ2}. Since in this coordinate

system (0, 1) ∈ Λ, we may evaluate it via Proposition 4.2.2. We first take the residue

with respect to u2, keeping u1 fixed. There are two poles: u2 = 0 and u2 = u1. In the

first case we obtain −eiλ1u1/u3
1, and in the second ei(λ1+λ2)u1/u3

1. Taking the residue at

u1 = 0 in each case, we obtain

ResΛ

(
eiλ1u1+iλ2u2

u2
1u2(u2 − u1)

)
= θ(λ1)θ(λ2)

λ2
1

2
− θ(λ1 + λ2)θ(λ2)

(λ1 + λ2)2

2
, (4.23)

where the Heaviside factors are due to the fact that in each iterated one-dimensional

residue, only those poles for which λj > 0 contribute.

Remark 4.2.5. In the examples above, the chosen coordinate systems do not satisfy the

genericity assumption of Proposition 4.2.2. However, this assumption is needed only to

avoid ambiguous Heaviside factors of the form θ(0). As long as we assume that λ is

sufficiently generic, we are free to work in non-generic coordinate systems. However, the

assumption that (0, . . . , 1) ∈ Λ is crucial.

We shall need the following lemma in the next section.

Lemma 4.2.6. If λ is not in the dual cone Λ∗ then

ResΛ

(
uJeiλ(u)∏N
j=1 βj(u)

)
= 0 (4.24)



Chapter 4. The Residue Formula Revisited 82

Proof. If {β1, . . . , βN} do not span t∗ as a vector space, then by property (i) the residue

is zero and there is nothing to show. Otherwise, by properties (ii) and (iii) it suffices to

consider residues of the form

ResΛ

(
uJeiλ(u)∏N
j=1 βj(u)

)
(4.25)

with |J | = N − n. Since {β1, . . . , βN} span t∗ as a vector space, we can write

uk =
N∑
j=1

ckjβj(u) (4.26)

for some constants ckj, for each k = 1, . . . , n. Hence

uk∏N
j=1 βj(x)

=
∑
j

ckj∏
j 6=k βj(u)

. (4.27)

By induction on |J |, uJ/
∏N

j=1 βj(u) can be written as linear combination of terms of the

form
∏

j∈I βj(u)−1 where |I| = n. By property (iv), the corresponding residues are 0 if λ

is not in the dual cone Λ∗.

4.2.2 The Linear Residue Formula

We now recall the Jeffrey-Kirwan residue formula. Let G be a compact group acting on

a compact symplectic manifold X with moment map µ. Let α ∈ g∗ be regular central

and let Xα = X//
α

G be the symplectic reduction. Let T ⊂ G be a maximal torus, and

let XT be the T -fixed point set. Let F denote the collection of connected components of

XT . For each component F ∈ F , we have the T -equivariant Euler class eF ∈ H∗T (F ) of

the normal bundle. By the splitting principle, we can assume that each eF factors as a

product

eF =

nF∏
i=1

(cFi + βFi ) (4.28)

where the cFi are the Chern classes and the βFi the weights of the decomposition of the

pullback of the normal bundle into line bundles. Let B be the collection of all weights

appearing in this decomposition, for all components F ∈ F . Let Λ ⊂ t be any cone

complementary to the hyperplanes {β(u) = 0 | β ∈ B}.
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Theorem 4.2.7. [JK95, JK97] Let G act in a Hamiltonian fashion on a compact sym-

plectic manifold (X,ω), and let f ∈ H∗G. Then

∫
Xα

κ(f)eω = n0cGResΛ

(
$(u)2

∑
F∈F

rfFdu

)
, (4.29)

where $ is the product of the positive roots of G, n0 is the order of the stabilizer in G of

a generic point of µ−1(α), and the constant cG is defined by

cG =
in

|W |vol(T )
; (4.30)

u is a coordinate on t ⊗ C and F is the set of components of the fixed point set XT of

the action of T on M . If F is one of these components the meromorphic function rfF on

t⊗C is defined by

rfF (u) = ei(µT (F )−α)(u)

∫
F

i∗F (κ(f)(u)eω)

eF (u)
(4.31)

where iF : F → M is the inclusion and eF the T -equivariant Euler class of the normal

bundle to F in M . The individual terms of the sum on the right hand side depend on the

choice of Λ, but the overall sum does not.

We would like to apply the residue formula to quotients of the form Xα = X//
α

G,

where X = CN . Unfortunately, this does not satisfy the hypotheses of Theorem 4.2.7 as

X is not compact. We will need the following.

Theorem 4.2.8. Let G be a compact group with maximal torus T , and suppose G acts

unitarily on X = CN . Let α ∈ g∗ be regular central and let Xα = X//
α

G. Let {β1, . . . , βN}

be the multiset of weights of the action of T on X (counted with multiplicity). Suppose

further that there is some ξ ∈ t such that the ξ-component of the moment map is proper

and bounded below. Then for all f ∈ H∗G, we have

∫
Xα

κ(f)eω = n0cGResΛ

(
$2(u)f(u)e−iα(u)∏N

j=1 βj(u)

)
, (4.32)

where n0 and cG are as in Theorem 4.2.7, and the cone Λ is defined by

Λ = {u ∈ t | βj(u) < 0, j = 1, . . . , N}. (4.33)
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Proof. The moment map for the T action is given by

µT (x) =
1

2

N∑
j=1

βj|xj|2, (4.34)

hence the ξ-component is

µξT (x) =
1

2

N∑
j=1

β(ξ)|xβ|2. (4.35)

Thus µξT is proper and bounded below if and only if βj(ξ) > 0 for all j = 1, . . . , N .

This shows that −ξ ∈ Λ hence Λ is non-empty. Note that the dual cone Λ∗ contains

{−β1, . . . ,−βN}. To apply the residue formula, we compactify by taking a symplectic

cut (see §2.1.3). Let σ > 0 to be determined. We set

Xσ := (X ⊕C)//
σ

S1 (4.36)

where the S1 action on X ⊕C is given by

eiθ · (x⊕ z) = (eiθx)⊕ (eiθz) (4.37)

As a variety we have Xσ
∼= Pm, but the Kähler metric and hence symplectic form depend

on the parameter σ. Any point [x, z] ∈ Xσ can be represented by x⊕z ∈ X⊕C satisfying

1

2
|x|2 +

1

2
|z|2 = σ. (4.38)

Note that this implies that for any [x, z] ∈ Xσ a representative x⊕ z satisfies

1

2
|x|2 ≤ σ. (4.39)

Moreover, G acts naturally on Xσ and the moment map for the action is given by

µG([x, z]) = µG(x). (4.40)

By Lemma 2.1.5, for σ � α, we may identify X//
α

G ∼= Xσ//
α

G and hence it suffices to

compute the intersection pairings of Xσ//
α

G for large σ. Since Xσ is compact we may

apply the usual residue formula, Theorem 4.2.7. We have to identify the components of

XT
σ . In addition to the isolated fixed point [0,

√
2σ] ∈ Xσ corresponding to the origin in

X, the cutting procedure introduces additional fixed-points at infinity. These are all of
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the form

Fβ = {[x, 0] | x ∈ X(β)} (4.41)

where X(β) = {x ∈ X | t · x = β(t)x ∀ t}. On a component Fβ, we have

µT (Fβ) =
1

2
β|xβ|2 =

1

2
σ (4.42)

where we used equation (4.38) and the fact that the points of Fβ have the form [xβ, 0].

Now consider

〈µT (Fβ)− α, ξ〉 =
1

2
σβ(ξ)− α(ξ). (4.43)

If σ > 2α(ξ)/β(ξ) then the above quantity is strictly positive, and hence µT (Fβ) − α

does not lie in the cone spanned by {−β1, . . . ,−βN}. By Lemma 4.2.6, the residue of the

term corresponding to Fβ is necessarily zero. Hence none of the fixed-points at infinity

contribute to the residue formula, and the only remaining term is the contribution from

the origin, which is given exactly by equation (4.32).

As stated, Theorem 4.2.8 provides a method to calculate the intersection pairings

directly, but does not immediately yield the generating function for the intersection pair-

ings. To obtain this, we define a residue operation Resα as follows. Given a meromorphic

differential form h(u)eiλ(u)du, the residue ResΛ
(
h(u)eiλ(u)du

)
is a piecewise polynomial

function on t∗. We define Resα
(
h(u)eiλ(u)du

)
to be the unique polynomial in λ which is

equal to ResΛ
(
h(u)eiλ(u)

)
when λ is in the same chamber as α.

Corollary 4.2.9. Suppose α ∈ g∗ is regular central. Then the generating function Z(λ)

of Xα is given by

Z(λ) = n0cGResα

(
$2(u)e−iλ(u)∏N

j=1 βj(u)

)
(4.44)

Proof. By the formal properties of the residue operation, for any f ∈ RW we have

DfResα

(
$2(u)e−iλ(u)∏N

j=1 βj(u)

)
= Resα

(
$2(u)f(u)e−iλ(u)∏N

j=1 βj(u)

)
. (4.45)

By Theorem 4.2.8, the evaluation at λ = α gives the intersection pairing
∫
Xα
κ(f)eω, and

this property determines the generating function Z(λ) uniquely.

Remark 4.2.10. Generating functions for intersection pairings were also studied in [GS95].

Corollary 4.2.11. Let Q be any acyclic quiver with dimension vector d, and let α be a

generic moment map level. Then the Kirwan map H∗(BGd)→ H∗(Xα(Q,d)) is surjec-

tive, and the intersection pairings of Kirwan classes may be computed algorithmically by
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the Theorem 4.2.8. In particular, the ring structure on H∗(Xα(Q,d)) may be computed

algorithmically.

4.3 Hyperkähler Residues

4.3.1 Hyperkähler Residues

Let X = CN and M = T ∗CN . As before, we assume that a compact Lie group G acts

linearly on X, and as before we let T ⊂ G be a maximal torus. Then M = T ∗X which is

naturally a flat hyperkähler manifold. As before we let R = H∗(BT ) and RW ∼= H∗(BG).

We have the hyperkähler Kirwan map

κHK : RW → H∗(Mα). (4.46)

We would like to understand the kernel of the hyperkähler Kirwan map by computing

cogenerators. Since Mα is non-compact, there is no natural way to integrate over it.2

However, we can integrate over cycles. We define the hyperkähler residue operation to be

Z : H∗(M)→ (RW )∨, γ 7→ Zγ(λ) =
1

|W |

∫
γ

κ

(∑
s∈W

ei(λ−α)(s·u)

)
eω. (4.47)

As before, the following is an immediate consequence of the definition.

Lemma 4.3.1. For any f ∈ RW , we have

DfZγ(α) =

∫
γ

κ(f)eω. (4.48)

Theorem 4.3.2. The residues {Zγ | γ ∈ H∗(Mα)} are a complete set of cogenerators

for the image of the hyperkähler Kirwan map.

Proof. If κ(f) 6= 0, then there is some γ ∈ H∗(Mα) such that 〈γ, κ(f)〉 6= 0. Hence

DfZγ 6= 0, and we find that the annihilator of the (RW )∨-module generated by the

residues is exactly equal to the kernel of the Kirwan map.

In the symplectic case, the residue formula gave an effective method to compute the

residue, and hence the cohomology ring. In the hyperkähler case, we will develop an

algorithm to compute a complete set of cogenerators.

2It is possible to define an equivariant integration theory [HP05b], but we wish to work in ordinary
cohomology. An equivariant version of the residue formula was developed in [Mar08] as well as [Szi13].
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Remark 4.3.3. It is possible to define formal S1-equivariant integration theory on hy-

perähler quotients [HP05b]. However, due to the complicated structure of the fixed-point

set (as evidenced by the calculations in Chapter 3), these equivariant integrals can be

difficult to compute in general. Instead, we choose to work with ordinary integration.

The main feature of this approach is that much information about the cohomology of hy-

perkähler quotients can be deduced from the cohomology of simpler, compact symplectic

quotients.

4.3.2 Kähler Quotients as Integration Cycles

In this section we will show that a large set of hyperkähler residues may be calculated

directly from the residue formula. Suppose that V ⊂M is a G-invariant linear subspace

such that µc|V = 0 and that µr|V is proper. Assume furthermore that α is a regular value

of µr|V . Then define

Vα := V //
α

G. (4.49)

This is a natural compact subvariety of Mα, and hence defines a homology class [Vα] ∈
H∗(Mα). Now recall that H∗(Mα) is independent of α as long as α is generic.

Definition 4.3.4. A VGIT residue is a hyperkähler residue Zγ associated to a class

γ = [Vα], for some choice of V ⊂ M and α as above. The VGIT ring is the quotient

RW/I, where the ideal I is the annihilator of the (RW )∨)-module generated by the VGIT

residues.

In the above definition, VGIT is short for variation of GIT. The reason for this

terminology is the following proposition, which follows immediately from the definition.

Proposition 4.3.5. The VGIT ideal is equal to⋂
V⊂M,α

ker
(
κ : RW → H∗(Vα)

)
(4.50)

where the intersection runs over all V ⊂ M as above and α generic. As a consequence,

the ordinary Kirwan map RW → H∗(Vα) factors through the VGIT ring, i.e.

RW � RW/I � H∗(Vα), (4.51)

where I is the VGIT ideal.

The residues associated to the classes [Vα] may be computed by the linear residue

formula, Theorem 4.2.8. Hence the VGIT ideal and VGIT ring may be computed algo-
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rithmically. Moreover, there is a natural inclusion kerκHK ⊆ IV GIT , and hence a natural

surjection im(κHK) � RV GIT .

Conjecture 4.3.6. Let G act linearly on M = T ∗X as above, and assume that the

restriction of the real moment map to X is proper. Then the image of the hyperkähler

Kirwan map is equal to the VGIT ring.

Remark 4.3.7. The hypothesis that the restriction of the real moment map to X be

proper is essential. One may check explicitly that the Nakajima varieties associated to

the ADHM quiver (Figure 3.1) do not satisfy im(κHK) = RV GIT . However, because this

quiver has a vertex self-loop, it is impossible to find a Lagrangian subspace X ⊂M such

that the restriction of µr is proper.

This conjecture is motivated by the following results.

Theorem 4.3.8 (Proudfoot [Pro11]). Conjecture 4.3.6 is true for hypertoric varieties.

Theorem 4.3.9 (Konno [Kon00b]). Conjecture 4.3.6 is true for hyperpolygon spaces.

In Theorem 4.4.5 we compute the VGIT rings of rank 3 star quivers (for small values

of n) and find that they satisfy this conjecture.

4.3.3 Quiver Varieties

We expect that Conjecture 4.3.6 may be true for all acyclic quivers, but unfortunately

we do not have a general result.3 Instead, we will use abelianization to give an explicit

algorithm to compute a complete set of hyperkähler residues.

Let Mα = M///
α

G be a Nakajima quiver variety, T ⊂ G a maximal torus, and suppose

that we have chosen a circle action on M so that Mα is circle compact (see §3.2.1). Then

we may consider the S1-equivariant cohomology H∗S1(Mα), as well as the S1-equivariant

Kirwan map

κS1 : H∗(BG)⊗H∗(BS1)→ H∗S1(Mα). (4.52)

Now H∗(BS1) ∼= Q[u], and by Theorem 2.2.4 we have H∗S1(Mα) ∼= H∗(Mα)[u] as a

Q[u]-module. Hence we have a natural ring map

q : H∗S1(Mα) � H∗(Mα) (4.53)

which is given by quotienting by the ideal generated by u · 1 ∈ H∗S1(Mα). The main

technical tool we need is the following.

3But see §4.4 for some special cases.
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Theorem 4.3.10. [HP05b] The image of the S1-equivariant Kirwan map is isomorphic

to

H∗S1(M///
α

T )W/ann(e), (4.54)

where e is the class given by

e =
∏
α∈∆

α(u− α). (4.55)

The above theorem gives a complete solution to the problem of computing hyperkähler

residues of Nakajima quiver varieties.

Theorem 4.3.11. The following algorithm produces a complete list of hyperkähler residues

for any Nakajima quiver variety.

1. Compute H∗S1(M///T ) using the techniques of Chapter 2.

2. Compute a complete set of Weyl-invariant cogenerators of the above ring in dimen-

sions less than or equal to dimR Mα + deg(e).

3. Apply the differential operator De to the above set of cogenerators.

4. Compute the u-independent linear combinations of the above cogenerators.

Proof. Lemmas 4.1.8 and 4.1.9 ensure that the above procedure produces a complete

set of cogenerators for the ring H∗S1(M///
α

T )W/ 〈ann(e), u〉, and by Theorem 4.3.10 and

formality this is equal to the image of the hyperkähler Kirwan map.

4.4 Examples

4.4.1 Hypertoric Varieties

Example 4.4.1. We consider the hyperplane arrangement pictured in figure 4.1. The

normals are given by the column vectors of the matrix(
1 0 0 −1

0 1 −1 −1

)
(4.56)

The kernel is generated by the vectors (1, 0,−1, 1)T and (0, 1, 1, 0)T . Hence this arrange-

ment corresponds to the S1 × S1 representation

V = C(1, 0)⊕C(0, 1)⊕C(−1, 1)⊕C(1, 0). (4.57)
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λ2

λ1

Figure 4.1: The hyperplane arrangement corresponding to the blow-up of P2 at a point.

The moment map is given by

µ(x) =
1

2

(
|x1|2 − |x3|2 + |x4|2

|x2|2 + |x4|2

)
−

(
λ1

λ2

)
(4.58)

To compute the symplectic volume, we have to calculate

res

(
e+iλ1u1+iλ2u2

u2
1u2(u2 − u1)

)
= −θ(λ2)res

(
eiλ1u1

u3
1

)
+ θ(λ2)res

(
ei(λ1+λ2)u1

u3
1

)
= θ(λ1|λ2)

λ2
1

2
− θ(λ1 + λ2|λ2)

(λ1 + λ2)2

2

Thus we find that the symplectic volume is (proportional to)

Z(λ) =
1

2


(λ1 + λ2)2 − λ2

1, λ1 > 0, λ2 > 0

(λ1 + λ2)2, λ1 < 0, λ1 + λ2 > 0,

0, otherwise

(4.59)

Hence there are two Jeffrey-Kirwan residues, Z1 and Z2. The wall-crossing behavior of

the residue formula is pictured in Figure 4.2. Taking derivatives, we find

∂1 ∂2 ∂2
1 ∂12 ∂2

2

Z1 λ2 λ1 + λ2 0 1 1

Z2 λ1 + λ2 λ1 + λ2 1 1 1

(4.60)

Hence we find a single common relation in degree 4, ∂12 = ∂2
2 , and of course in degrees

≥ 6 every constant coefficient differential operator acts as 0. Hence the cohomology ring

of the corresponding hypertoric variety is given by

H∗(M) ∼=
C[u1, u2]

〈u1u2 − u2
2, u

3
1, u

2
1u2〉

(4.61)
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Z(λ) = 1
2
(λ1 + λ2)2 − 1

2
λ2

1 Z(λ) = 1
2
(λ1 + λ2)2

Z(λ) = 0 Z(λ) = 0

1

2

3

4 1

2

3

4

Figure 4.2: The three possible walls.

4.4.2 Polygon Spaces

We will show here that Theorem 4.2.8 gives a very straightforward calculation of the

cohomology rings of polygon spaces. These correspond to a star quiver with n incoming

arrows and dimension vector d = (2, 1, . . . , 1). Let x1, . . . , xn be coordinates on the

vector space X = Rep(Q,d), where each xi is a 2× 1 column vector. The action of Gd

on X is given by

xi 7→ gxih
−1
i (4.62)

where g ∈ SU(2) and hi ∈ S1. (We restrict to g ∈ SU(2) because the overall diagonal in

Gd acts trivially.) Let u0, · · · , un be coordinates on the maximal torus of SU(2)× (S1)n.

Then the weights of the above action are (ui ± u0) for i = 1, . . . , n. Hence the product

of all weights is ∏
β∈B

β =
n∏
i=1

(u2
i − u2

0). (4.63)
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Also, we have $2 = −u2
0. Hence we have to compute

Res

(
u2

0e
−iλ0u0−i

∑
j λjuj∏n

j=1(u2
j − u2

0)

)
. (4.64)

For each j, we have a pole at uj = ±u0. Taking the residues for j = n, we have

Res

(
u2

0e
−iλ0u0−i

∑
j λjuj∏n

j=1(u2
j − u2

0)

)
= θ(λn)Res

(
u2

0e
−i(λ0+λn)u0−i

∑
j 6=n λjuj

2u0

∏
j 6=n(u2

j − u2
0)

)
(4.65)

− θ(λn)Res

(
u2

0e
−i(λ0−λn)u0−i

∑
j 6=n λjuj

2u0

∏
j 6=n(u2

j − u2
0)

)
(4.66)

Next we take the residues at un−1 = ±u0, and so on. Continuing inductively, we obtain

∑
σ∈{+,−}n

(−1)σRes

(
u2

0e
−i(λ0+σ·λ)u0

2nun0

)
, (4.67)

where σ · λ =
∑

i σiλi.

Proposition 4.4.2. Let Xα be a polygon space. Then a cogenerator for its cohomology

ring is D2
λ0

∑
σ∈S(λ0 + σ · λ)n−1.

Example 4.4.3. Take α = (1, 1, 1, 2, 2). Then according to the above proposition, the

cogenerator for the cohomology ring of Xα is (up to an irrelevant overall constant)

λ2
0 + λ2

1 − 2λ1λ2 + λ2
2 − 2λ1λ3 − 2λ2λ3 + λ2

3 + λ2
4 − 2λ4λ5 + λ2

5 (4.68)

Taking partial derivatives, we find the relations ∂4+∂5 = 0 and ∂2
0−∂2

i = 0 for i = 1, . . . , 5.

Hence the Poincaré polynomial is 1 + 4t2 + t4 and the cohomology ring is

H∗(Xα) =
Q[u2

0, u1, . . . , u5]

〈u2
0 − u2

i , u4 + u5, deg 6〉
. (4.69)

4.4.3 Rank 3 Star Quivers

In this case, let u1, . . . , un be generators of (S1)n and let v1, v2 be generators of the

maximal torus in SU(3). Then $2 = (v1− v2)(2v1 + v2)(v1 + 2v2). The weights are given

by ui−v1, ui−v2, ui+v1 +v2 for each i. For each i, there are three possible residues with

respect to ui: ui → v1, ui → v2, and ui → −v1 − v2. The residue as un → v1 produces

the term

Res

(
$2e−iµ·v−iλ·u−iλnv1

(v1 − v2)(2v1 + v2)

)
. (4.70)
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The residue as un → v2 produces the term

Res

(
$2e−iµ·v−iλ·u−iλnv2

(v2 − v1)(v1 + 2v2)

)
. (4.71)

The residue as un → −v1 − v2 produces the term

Res

(
$2e−iµ·v−iλ·u+iλn(v1+v2)

(2v1 + v2)(v1 + 2v2)

)
. (4.72)

Iterating as in the previous case, we see that the residue will be a sum over disjoint subsets

S1, S2, S3 ⊂ [n], where i ∈ S1 indicates that we take the residue ui → v1, i ∈ S2 denotes

the residue ui → v2, and i ∈ S3 denotes the residue ui → −v1 − v2. The denominator of

such a term is

(−1)|S2|(v1 − v2)|S1|+|S2|(2v1 + v2)|S1|+|S3|(v1 + 2v2)|S2|+|S3|. (4.73)

The argument of the exponential of such a term is

(S1 · λ− S3 · λ)v1 + (S2 · λ− S3 · λ)v2. (4.74)

It remains to take the residues at v2 → v1, v2 → −2v1, and v2 → −1
2
v1, followed by

the remaining residue at v1 → 0.

Proposition 4.4.4. A cogenerator for the rank 3 star quiver is given by∑
S1tS2tS3=[n]

(R1(S1, S2, S3) +R2(S1, S2, S3) +R3(S1, S2, S3)) (4.75)

where

R1(S1, S2, S2) = θ(S1 · α + S2 · α− 2S3 · α)θ(S2 · α− S3 · α)

× Resv1→0Resv2→v1 (f(S1, S2, S2))
(4.76)

R2(S1, S2, S2) = θ(S1 · α + S3 · α− 2S2 · α)θ(S2 · λ− S3 · λ)

× Resv1→0Resv2→−2v1 (f(S1, S2, S2))
(4.77)

R3(S1, S2, S2) = θ(2S1 · α− S2 · α− 2S3 · α)θ(S2 · α− S3 · α)

× Resv1→0Resv2→−v1/2 (f(S1, S2, S2))
(4.78)
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and f(S1, S2, S3) is the meromorphic function

f(S1, S2, S3) =
exp (−i(µ1 + S1 · λ− S3 · λ)v1 − i(µ2 + S2 · λ− S3 · λ)v2)

(−1)|S2|(v1 − v2)|S1|+|S2|−2(2v1 + v2)|S1|+|S3|−2(v1 + 2v2)|S2|+|S3|−2
(4.79)

The above expression, though explicit, is rather difficult to use directly by hand,

but it is very easy to implement in computer algebra software. By varying the moment

map level α across all the chambers, we produce cogenerators for the VGIT ring. By

comparison with the Betti numbers from Theorem 3.3.27, we can then deduce Kirwan

surjectivity. Using our computer implementation, we find the following.

Theorem 4.4.5. For n = 4, 5, 6, the hyperkähler Kirwan map is surjective and its kernel

is equal to the VGIT ideal. Moreover, the cohomology ring is level. For n = 5 the

cohomology ring is

H∗(Mα) ∼= Q[v2
1 + v2

1 + (v1 + v2)2, v3
1 + v3

2 − (v1 + v2)3, u1, · · · , u5]/I (4.80)

where I is the ideal generated by all degree 6 polynomials in the generators as well as the

following degree 4 polynomials

4u2u3 + 4u2u4 + 4u3u4 + 4u2u5 + 4u3u5 + 4u4u5 + 3v2
1 + 3v2

2, (4.81)

3u1u2 + u2u3 + u2u4 − 2u3u4 + u2u5 − 2u3u5 − 2u4u5, (4.82)

3u1u3 + u2u3 − 2u2u4 + u3u4 − 2u2u5 + u3u5 − 2u4u5, (4.83)

− 2u2u3 + 3u1u4 + u2u4 + u3u4 − 2u2u5 − 2u3u5 + u4u5, (4.84)

− 2u2u3 − 2u2u4 − 2u3u4 + 3u1u5 + u2u5 + u3u5 + u4u5. (4.85)

Remark 4.4.6. The computer calculation can easily be extended to higher values of n as

well as higher ranks, but as the list of generators of the kernel of the Kirwan map grows

very quickly we have decided only to state the results for r = 3 and n = 5.



Chapter 5

Star Quivers and Integrable Systems

5.1 Flags and Stars

5.1.1 The Springer Resolution

We begin by recalling the Springer resolution, which is of fundamental importance in ge-

ometric representation theory [CG97]. Let G be a simply connected complex semisimple

group with Lie algebra g. The nilpotent cone N ⊂ g is a singular affine variety which

carries a natural Poisson structure induced by the Lie-Poisson structure on g. Let B be

the set of all Borel sub-algebras of g. Then we define a variety Ñ by

Ñ = {(x, b) ∈ N × B | x ∈ b}. (5.1)

Note that there is a natural projection map µ : Ñ → N .

Theorem 5.1.1. The variety Ñ is isomorphic to T ∗(G/B), where G/B is the flag variety

of G (for B a fixed Borel subgroup). The map µ : T ∗(G/B) → N is a resolution of

singularities. Moreover, the map µ is the moment map for the canonical G-action on

T ∗(G/B), and in particular, it is a Poisson map.

Definition 5.1.2. The map µ : T ∗(G/B)→ N is called the Springer resolution.

In the case of type A (i.e., sln), the Springer resolution may be constructed using

Nakajima quiver varieties.1 Consider the type A quiver pictured in Figure 5.1, and

let Xα be the Kähler quiver variety associated this quiver. There is a natural residual

action of U(r) given by the action on the left-most vertex. This action is Hamiltonian,

1In fact, Nakajima varieties provide a large class of conical symplectic resolutions, of which the
Springer resolution is a special case.

95



Chapter 5. Star Quivers and Integrable Systems 96

with moment map µ : Xα → ur. Similarly, the hyperkähler quotient Mα has a residual

hyperhamiltonian action of U(r), with real and complex moment maps given by

µr([x, y, x1, y1, · · · , xl, yl]) =
1

2
xx∗ − 1

2
y∗y (5.2)

µc([x, y, x1, y1, · · · , xl, yl]) = xy (5.3)

r r1 r2 · · · rl

y

x

y1

x1

y2

x2

yl

xl

Figure 5.1: Type A quiver for the Springer resolution.

Proposition 5.1.3. The moment map µ : Xα → ur is an embedding and identifies Xα

with a U(r)-coadjoint orbit of flag type (rl, rl−1, · · · , r1, r). The hyperkähler quotient Mα

is naturally identified with T ∗Xα. The complex moment map µc : Mα → glr takes values

in the nilpotent cone, and in the case of a complete flag (i.e. (1, 2, . . . , r)), it is the

Springer resolution for slr.

Proof. This is a standard exercise.

Remark 5.1.4. Note that since µc : Mα → glr is a moment map, it is in particular Poisson

with respect to the Lie-Poisson structure on glr. That is,

{µij, µkl} = δjkµil − δilµkj, (5.4)

where µij denotes the (i, j)th entry of the moment map µ, and {·, ·} is the Poisson bracket.

This observation will be crucial when we try to understand the Poisson geometry of star

quiver varieties in the sections that follow.

5.1.2 Star Quivers

Next we consider a more general class of star quivers than those studied in Chapter 3.

Definition 5.1.5. A generalized star quiver is a quiver Q consists of a single sink with

n incoming paths, such that the dimensions of the vertices are strictly increasing as one

moves toward the sink. We call the dimension of the sink the rank, and denote it by r. If

the dimension vectors of all of the incoming paths are complete, i.e. (r, r−1, r−2, . . . , 1)

we call the star quiver complete, otherwise we call the star quiver incomplete.
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r

r − 1 r − 2 · · · 1

· · ·

r − 1 r − 2 · · · 1

r − 1 r − 2 · · · 1

Figure 5.2: A complete star quiver.

It follows immediately from Proposition 5.1.3 that we have the following alternative

description of Xα and Mα.

Proposition 5.1.6. The Kähler quiver variety associated to a generalized star quiver

may be identified, via reduction in stages, with the Kähler quotient of a product of U(r)

coadjoint orbits by the diagonal SU(r)-action. Similarly, the hyperkähler quiver variety

associated to a star quiver may be identified with the hyperkähler quotient of a product of

cotangent bundles of flag varieties. In the case of a complete star quiver, Mα has complex

dimension (n− 2)r2 − nr + 2.

Remark 5.1.7. This identification allows for an easy proof of hyperkähler Kirwan surjec-

tivity for these spaces, see [HP05b, Remark 4.3].

5.1.3 Parabolic Bundles

Let X be a Riemann surface and E → X a rank r holomorphic vector bundle. Let

D =
∑n

i=1 ai be a fixed divisor, and assume that the ai are pairwise distinct. For each i,

fix a flag type n > n1 > · · · > nli > 0.

Definition 5.1.8. A parabolic structure on E is a choice of flag

Eai = E0
ai
⊃ E1

ai
⊃ · · · ⊃ Eli

ai
⊃ 0, (5.5)

at each of the points ai of the divisor. A parabolic Higgs field is a section

φ ∈ H0(X,EndE ⊗OX(D)⊗KX) (5.6)
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such that at each point ai of the divisor, we have

φi(E
j
ai

) ⊆ Ej
ai
, (5.7)

where φi is the residue of φ at the point z = ai. We say that φ is strictly parabolic if

φi(E
j
ai

) ⊆ Ej+1
ai

for all i = 1, . . . n, j = 0, . . . , li.

Theorem 5.1.9. Let Q be a generalized star quiver of type (r, n) and let D =
∑n

i=1 ai

be a divisor on P1. Then the Kähler quiver variety Xα is naturally identified with a

moduli space of parabolic structures on the trivial rank r vector bundle E → P1, and

the hyperkähler quiver variety Mα is naturally identified with a moduli space of strictly

parabolic Higgs bundles on P1, whose underlying bundle type is trivial.

Proof. Let E → X be a trivial bundle. Then we may choose some trivialization such that

E ∼= Cr × P1. Hence under this trivialization, the set of possible parabolic structures

is a product of flag varieties. The diagonal action of GL(r) corresponds to a change of

trivialization, and hence the space of parabolic structures is naturally identified with the

GIT quotient of a product of flag varieties by the diagonal GL(r)-action. By Proposition

5.1.6, this may be identified with a star quiver variety Xα (see Remark 2.2.19).

Now consider a product of cotangent bundles of flag varieties, M =
∏n

i=1 T
∗Fi. Let µi

denote the complex moment map on T ∗Fi. Let z be an affine coordinate on P1 (assume

that z = 0 is not a point in the divisor D). Then consider the glr-valued meromorphic

form

φ(z)dz =
n∑
i=1

µidz

z − ai
. (5.8)

Then φ(z)dz is well-defined as a section of EndE⊗K(D) on the vanishing set V (
∑

i µi) ⊂
M , and hence defines a Higgs field.2 Moreover, by Proposition 5.1.3, µi(xi, yi) is a nilpo-

tent matrix preserving the flag defined by xi ∈ Fi, and hence φ(z) is a strictly parabolic

Higgs field. The residual action of GL(r) corresponds to change of trivialization, so the

GIT quotient V (
∑

i µi)//GL(r) is a moduli space of strictly parabolic Higgs bundles.

But
∑

i µi is exactly the complex moment map for the diagonal GL(r)-action, and hence

this quotient may be identified with M///U(r) ∼= Mα.

Remark 5.1.10. This construction is a natural generalization of the rank 2 construction in

[GM13], wherein it was also shown that the stability condition on quiver representations

is equivalent to parabolic slope stability, for an appropriate choice of parabolic weights.

2The condition
∑
i µi = 0 is easily seen to be equivalent to the condition that φ(z)dz is regular at

z =∞.
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We suspect that this remains true in the higher rank case, but as we shall not need this

result, we make no attempt to prove it.

Remark 5.1.11. The moduli space of strictly parabolic Higgs bundles is a symplectic leaf

in the moduli space of parabolic Higgs bundles [LM10], and it is known to be completely

integrable. However, we take the viewpoint that star quivers should be regarded as “toy

models” of Hitchin systems, so we will instead prove integrability by direct calculation.

Remark 5.1.12. If we fix a line bundle L, then a Hitchin pair is a pair (E, φ) where E

is a vector bundle over a curve and φ ∈ H0(EndE ⊗ L).3 The moduli space of (stable)

Hitchin pairs carries a natural family of Poisson structures which are all completely

integrable with respect to the Hitchin map [Bot95, Mar94]. The construction of this

section can be generalized to give a construction of Hitchin pairs (over P1) associated

to the quiver pictured in Figure 5.3. However, it is not clear whether this construction

preserves Poisson structures.

r

r − 1

r − 1

· · ·

r − 1

r − 1

Figure 5.3: A quiver representing a space of Hitchin pairs.

5.2 Complete Integrability

5.2.1 The Hitchin Fibration

In this section, we describe the Hitchin map on Mα and show by direct calculation that

it is a coisotropic fibration.

Definition 5.2.1. The Hitchin base is

B =
r⊕
i=1

H0(P1, K(D)i), (5.9)

3Of particular interest is the case L = −KX , which corresponds to co-Higgs fields [Ray11]. These
may be identified with holomorphic bundles in the sense of generalized complex geometry [Gua11].
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where K is the canonical sheaf of P1. The Hitchin map h : H0(P1,EndE ⊗K(D))→ B

is the map

φ 7→ (Tr(φ),Tr(φ2), . . . ,Tr(φr)). (5.10)

Note that this map is invariant under φ 7→ g−1φg, and hence descends to a well

defined map on Mα, which we also denote by h.

Lemma 5.2.2. On Mα, the Hitchin map takes values in B0 ⊂ B, where

B0 =
r⊕
i=1

H0(P1, Ki ⊗O(D)i−1). (5.11)

Proof. Since the residue of φ is strictly parabolic at each of the marked points, it is in

particular nilpotent, and hence the poles of Tr(φi) have order at most i−1. Hence Tr(φi)

may be naturally identified with a section of K(D)i ⊗O(−D) ∼= KiO(D)i−1.

Proposition 5.2.3. We have dimB0 = 1
2

((n− 2)r2 − nr + 2). In the case of a complete

flag quiver variety Mα, we have dimMα = 2 dimB0.

Proof. The line bundle Ki ⊗O(D)i−1 has degree −2i+ n(i− 1), and hence

h0(Ki ⊗O(D)i−1) = (n− 2)i− n+ 1. (5.12)

Summing these from i = 2 to i = r, we obtain the result.

Next we will show that the Hitchin map defines a coisotropic fibration. For conve-

nience, in this section we will work on M =
∏n

i=1 T
∗Fi. Define the components Im of the

Hitchin map via

Im(dz)m = Tr((φ(z)dz)m) ∈ H0(P1, K(D)m ⊗O(D)m−1). (5.13)

By construction, the Im are rational functions in z, and hence we may expand them as

formal power series Im(z) =
∑

n I
n
mz

n. (By a change of coordinate if necessary, we can

assume that none of the ai is zero, so that φ(z) is regular at 0.) It will be convenient to

treat z as a formal parameter, so that Im(z) can be thought of as a generating function

for the coefficients Inm. 4 Trivially, we have the following.

Lemma 5.2.4. We have {I im, Ijn} = 0 for all i, j if and only if {Im(z), In(w)} = 0 as

an element of C[[z, w]], where the formal parameters z, w are Casimirs of the Poisson

bracket.
4We think of the coefficients Iim as giving coordinates on the Hitchin base B. Since they are the

Taylor coefficients of a rational function, only finitely many of them are algebraically independent.
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Next, we define a matrix-valued formal power series as follows:

∆(z, w) =
φ(z)

w − z
+

φ(w)

z − w
. (5.14)

This matrix encodes the Poisson structure, in the following sense.

Lemma 5.2.5. We have {φij(z), φkl(w)} = δjk∆il(z, w)− δil∆kj(z, w).

Proof. We simply compute

{φij(z), φkl(w)} =
∑
m,n

{(µm)ij, (µn)kl}
(z − am)(w − an)

(5.15)

=
∑
m,n

δmnδjk(µm)il − δmnδil(µm)kj
(z − am)(w − an)

(5.16)

=
∑
m

δjk(µm)il − δil(µm)kj
(z − am)(w − am)

(5.17)

= δjk∆il(z, w)− δil∆kj(z, w), (5.18)

as claimed.

Proposition 5.2.6. The components of the Hitchin map Poisson commute, hence the

Hitchin map h : Mα → B0 is a coisotropic fibration.

Proof. First, note that

Tr(φ(z)m) =
∑

i1,...,im

φi1i2(z)φi2i3(z) · · ·φimi1(z). (5.19)

Hence, taking the Poisson bracket {Im(z), In(w)}, expanding, and applying the Leibniz

rule, we have

{Im(z), In(w)} =
∑

a,i1,...,im
b,j1,...,jn

φi1i2(z) · · · ̂φiaia+1(z) · · ·φimi1(z)

× φj1j2(w) · · · ̂φjbjb+1
(w) · · ·φjmj1(w)

×
(
δia+1jb∆iajb+1

(z, w)− δiajb+1
∆jbia+1(z, w)

)
(5.20)

=
∑
a,b

Tr
(
φm−1(z)∆(z, w)φn−1(w)

)
−
∑
a,b

Tr
(
φn−1(w)∆(z, w)φm−1(z)

) (5.21)

= mnTr
(
∆(z, w)[φ(w)n−1, φ(z)m−1]

)
. (5.22)
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Now recall that ∆(z, w) = φ(z)/(w − z) + φ(w)/(z − w). This is a sum of two terms,

one commuting with φ(z) and the other commuting with φ(w), hence the above trace is

identically zero.

5.2.2 Spectral Curves

It remains to show that the generic fibers of h : Mα → B0 are Lagrangian subvarieties.

To do this, we will use the standard technique of spectral curves [Hit87a, BNR89]. Let

L→ K(D) be the pullback ofK(D) to the total space ofK(D). Then L has a tautological

section, which we denote by λ.

Definition 5.2.7. Let b ∈ B and denote the components of b by bi for i = 1, . . . , n.

Then we define the spectral curve Xb ⊂ K(D) to be the subvariety defined by

Xb = {(λ, z) ∈ K(D) | λr + b1(z)λr−1 + · · ·+ br(z) = 0}. (5.23)

Proposition 5.2.8. Suppose that n ≥ 3, and let b ∈ B0 be generic. Then the spectral

curve Xb is smooth and of genus g(Xb) = 1
2
((n− 2)r2 − nr + 2).

Proof. We will adapt Hitchin’s argument [Hit87a] to our setting. By the general Bertini

theorem [Har77, Chapter III], a generic spectral curve will be smooth except possibly at

the base points of the linear system defined by B0. By construction, B0 is the subspace

of ⊕ri=2H
0(P1, K(D)i) consisting of sections that vanish on D, so the base locus of B0 is

exactly the divisor D. Let f(λ, z) be the equation defining Xb ⊂ S. At any point ai ∈ D,

all of the coefficients of the characteristic polynomial vanish, so that λ = 0. At such a

point we have df = dbr, and hence df 6= 0 as long as br has only simple zeroes on D.

Since this is the generic behavior, we find that a generic spectral curve is smooth.

Let S be the complex surface S = P(O ⊕ K(D)), which is a compactification of

the total space of K(D). Then Xb ⊂ S, and there is a curve C ⊂ S isomorphic to P1

corresponding to the zero section of K(D). Note that as divisors on S, we have Xb ∼ rC.

From the basic theory of ruled surfaces [Har77, Chapter V], C.C = deg(K(D)) = n− 2,

and hence by the adjunction formula C.KS = −n. Applying the adjunction formula to

Xb, we find

2g(Xb)− 2 = Xb.Xb +Xb.KS = r2C.C + rC.KS = r2(n− 2)− rn, (5.24)

and hence g(Xb) = 1
2
((n− 2)r2 − nr + 2).
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Remark 5.2.9. For incomplete quivers, it is not necessarily the case that generic spectral

curves are smooth. In the rank 3 incomplete case studied in Chapter 3, one may check

explicitly that det(φ) vanishes to second order on D, and hence the spectral curve is

always singular on D. This complicates the situation, and for this reason we restrict our

attention to the complete flag case.

Theorem 5.2.10. Let Mα(r, n) be the complete flag star quiver of rank r with n incoming

paths. Then the Hitchin map h : Mα(r, n)→ B0 is a coisotropic fibration whose generic

fibers are Lagrangian subvarieties of Mα(r, n). In particular, Mα(r, n) is an algebraic

completely integrable system.

Proof. By Lemma 5.2.2 and Proposition 5.2.6, this is a coisotropic fibration whose base

is half the dimension of Mα(r, n), so we just have to show that dh generically has full

rank. Since Mα may be identified with a GIT quotient of Z ⊂
∏n

i=1 T
∗Fi, it suffices

to show that h : Z → B0 generically has full rank. Let b ∈ B0 be a generic point

such that the spectral curve Xb is smooth. Let p : Xb → P1 be the projection. By

standard arguments (and in particular, those of [LM10]), any line bundle L ∈ Jac(Xb)

determines a degree 0 vector bundle E := p∗L on P1, together with a canonical Higgs

field φ ∈ H0(P1,EndE ⊗K(D)). For a generic L, the induced bundle E will be trivial,

and choosing a trivialization we may write

φ(z)dz =
n∑
i=1

φidz

z − ai
. (5.25)

Since the coefficients of the characteristic polynomial vanish on D (since b ∈ B0 ⊂ B), the

residues φi are nilpotent. Hence by the Proposition 5.1.3, we may find points mi ∈ T ∗Fi
such that for each i, φi = µi(mi). Since φ is a section of EndE ⊗K(D), the sum of the

residues is 0, and hence we have (m1, · · · ,mn) ∈ Z. In particular, the fiber h−1(b) ⊂ Z

is non-empty.

This shows that the image of h : Z → B0 contains a Zariski open and hence dense

subset of B0. By Sard’s theorem, the image of h : Z → B0 must therefore contain at

least one regular value. Hence the set of z ∈ Z such that dh has full rank is non-empty,

and since this set is Zariski open, it is dense in Z.
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