Simultaneous test procedures in terms of *p*-value copulae

Thorsten Dickhaus, Humboldt-University Berlin (joint work with Jakob Gierl)

At least since Gabriel (1969), a broad class of multiple comparison procedures, socalled simultaneous test procedures (STPs), is established in the statistical literature. Elements of an STP are a testing family $(\mathcal{H}, \mathcal{T})$, consisting of a set of null hypotheses and corresponding test statistics, and a common critical constant c_{α} . The threshold c_{α} with which each of the test statistics has to be compared is calculated under the (joint) intersection hypothesis of \mathcal{H} . Under certain structural assumptions on $(\mathcal{H}, \mathcal{T})$, the so-constructed STP provides strong control of the family-wise error rate, FWER for short, at level α . More recently, Hothorn et al. (2008) developed a general method to construct STPs in the case of asymptotic (joint) normality of the family \mathcal{T} of test statistics, and provided numerical solutions to compute c_{α} in such cases.

Here, we propose to look at the problem from a different perspective. We will show that c_{α} can equivalently be expressed by a quantile of the copula of the family of *p*values associated with \mathcal{T} , assuming that each of these *p*-values is marginally uniformly distributed on the unit interval under the corresponding null hypothesis. This will offer the opportunity to exploit the rich and growing literature on copula-based modeling of multivariate dependency structures for multiple testing problems and in particular for the construction of STPs in non-Gaussian situations.

References

Gabriel, K. R. (1969). Simultaneous test procedures - some theory of multiple comparisons. The Annals of Mathematical Statistics **40**, 224-250.

Hothorn, T., Bretz, F., Westfall, P. (2008). Simultaneous inference in general parametric models. *Biometrical Journal* **50**, 3, 346-363.