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Abstract

Two non-isomorphic graphs are twins if each is isomorphic to a sub-
graph of the other. We prove that a rayless graph has either infinitely
many twins or none.

1 Introduction

Up to isomorphism, the subgraph relation ✓ is antisymmetric on finite graphs:
If a finite graph G is (isomorphic to) a subgraph of H, i.e. G ✓ H, and if also
H ✓ G, then G and H are isomorphic. For infinite graphs this need no longer be
the case, see Figure 1. Two non-isomorphic graphs G and H are weak twins if G
is isomorphic to a subgraph of H and vice versa, and strong twins if both these
subgraph embeddings are induced. When G and H are trees the two notions
coincide, and we just speak of twins.

... ...

Figure 1: Each of the two graphs is a subgraph of the other.

The trees in Figure 1 are twins, and by deleting some of their leaves we can
obtain infinitely many further trees that are twinned with them. On the other
hand, no tree is a twin of the infinite star. Bonato and Tardif [3] conjectured
that every tree is subject to this dichotomy: that it has either infinitely many
trees as twins or none. They call this the tree alternative conjecture.

In this paper we prove the corresponding assertion for rayless graphs, graphs
that contain no infinite path:

Theorem 1. The following statements hold with both the weak and the strong
notion of ‘twin’.

(i) A rayless graph has either infinitely many twins or none.
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(ii) A connected rayless graph has either infinitely many connected twins or
none.

We do not know of any counterexamples to the corresponding statements for
arbitrary graphs, rayless or not.

Note that the ‘strong twin’ version of Theorem 1 does not directly imply
the ‘weak twin’ version. Indeed, consider the complete bipartite graph K2,1
with one partition class consisting of two and the other of (countable-)infinitely
many vertices. By deleting any edge we obtain a weak twin of K2,1. However,
it is straightforward to check that K2,1 has no strong twin.

We have stressed in the theorem that for a connected rayless graph we may
restrict ourselves to twins that are also connected. This is indeed a stronger
statement: For example, an infinite star has disconnected weak twins—add
isolated vertices—but no connected ones. We do not know whether the same
can occur for strong twins.

Twins were first studied in [2]. The tree alternative conjecture was formu-
lated in [3], where it was proved in the special case of rayless trees. (Note that
Theorem 1 reproves this case.) Most of the work there was spent on showing that
the conjecture holds for rooted rayless trees, which motivated Tyomkyn [12] to
verify the conjecture for arbitrary rooted trees. Moreover, Tyomkyn established
the tree alternative conjecture for certain types of locally finite trees. (A graph
is locally finite if all its vertices have finite degree.) A proof of the conjecture
for arbitrary unrooted locally finite trees has remained elusive.

In [12], a slightly di↵erent approach is outlined as well. If a graph G has a
twin, then mapping G to that twin and back embeds it as a proper subgraph
in itself. Tyomkyn conjectures that, with the exception of the ray, every locally
finite tree that is a proper subgraph of itself has infinitely many twins.

In this paper we consider only embeddings as subgraphs or induced sub-
graphs, leading to weak or strong twins. It seems natural, however, to ask a
similar question for other relations on graphs, such as the minor relation or the
immersion relation. Does a graph always have either infinitely many ‘minor-
twins’ or none at all? Conceivably, the question of when a graph is a proper
minor of itself, as is claimed for countable graphs by Seymour’s self-minor con-
jecture, should play a role in this context. The self-minor conjecture is described
in Chapter 12.5 in [5]; partial results are due to Oporowski [8] and Pott [10]. In
related work, Oporowski [9] characterises the minor-twins of the infinite grid,
and Matthiesen [7] studies a complementary question with respect to the topo-
logical minor relation, restricted to rooted locally finite trees.

In the next section we introduce a recursive technique for handling rayless
graphs, which we will use in Section 3 to prove Theorem 1.

2 A rank function for rayless graphs

All our graphs are simple. For general graph theoretical concepts and notation
we refer the reader to [5].

Our proof of Theorem 1 is based on a construction by Schmidt [11] (see also
Halin [6] for an exposition in English) that assigns an ordinal rk(G), the rank
of G, to all rayless graphs G as follows:
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Definition 2. Let rk(G) = 0 if and only if G is a finite graph. Then recursively
for ordinals ↵ > 0, let rk(G) = ↵ if and only if

(i) G has not been assigned a rank smaller than ↵; and

(ii) there is a finite set S ✓ V (G) such that every component of G � S has
rank smaller than ↵.

It is easy to see that the graphs that receive a rank are precisely the rayless
ones. The rank function makes the class of rayless graphs accessible to induction
proofs. One of the first applications of the rank was the proof of the reconstruc-
tion conjecture restricted to rayless trees by Andreae and Schmidt [1]. Recently,
the rank was used to verify the unfriendly partition conjecture for rayless graphs,
see [4].

We shall need a few properties of the rank function that are either simple
consequences of the definition or can be found in [6]. Let G be an infinite rayless
graph, and let S be minimal among the sets as in (ii) of Definition 2. It is not
hard to see that S is unique with this property. We call S the kernel of G and
denote it by K(G). Furthermore, it holds that:

• if H is a subgraph of G, then rk(H)  rk(G); and

• if G is connected, then K(G) is non-empty; and

• rk(G�X) = rk(G) for any finite X ✓ V (G).

In particular, if C is a component of G�K(G), then G[C [K(G)] has smaller
rank than G.

To illustrate the definition of the rank, let us note that an infinite star has
rank 1, and its kernel consists of its centre. The same holds for the graphs in
Figure 1. On the other hand, the disjoint union of infinitely many infinite stars
(or in fact, of any graphs of rank 1) has rank 2 and an empty kernel.

3 The proofs

In this section we prove the ‘strong twin’ version of Theorem 1. All proofs will
apply almost literally to the case of weak twins instead of strong twins. For
that reason we will often drop the qualifiers ‘strong’ and ‘weak’.

Let G,H be two rayless graphs and let X ✓ V (G) and Y ✓ V (H) be
finite vertex subsets. We call a homomorphism � : G ! H a strong embedding
of (G,X) in (H,Y ) if it is injective, �(G) is an induced subgraph of H, and
�(X) ✓ Y . Alternatively, we shall say that � : (G,X) ! (H,Y ) is a strong
embedding. Observe that � preserves edges as well as non-edges. We call (G,X)
and (H,Y ) isomorphic if there is an isomorphism � : (G,X) ! (H,Y ), i.e. if �
is a graph-isomorphism between G and H with �(X) = Y . We say that (G,X)
and (H,Y ) are strong twins if they are not isomorphic and there exist strong
embeddings � : (G,X) ! (H,Y ) and  : (H,Y ) ! (G,X); note that �(X) = Y
and  (Y ) = X in this case. For (G,X) and (H,Y ) to be weak twins we only
require � and  to be injective homomorphisms with �(X) = Y and  (Y ) = X.
Let us point out that rayless graphs G and H are (strong resp. weak) twins if
and only if the tuples (G, ;) and (H, ;) are (strong resp. weak) twins.

3



As we have noted, a subgraph of a rayless graphs does not have larger rank
than the graph itself. Moreover, if a subgraph G0 of a rayless graph G has the
same rank as G, then K(G0) ✓ K(G) since K(G) \ V (G0) is a set as in (ii) of
Definition 2. We thus have:

Lemma 3. Let G and H be rayless graphs, and let there be injective homo-
morphisms � : G ! H and  : H ! G. Then �(K(G)) = K(H) and
 (K(H)) = K(G).

In particular, the lemma implies that if (G,X) and (H,Y ) are twins, then
(G,X [K(G)) and (H,Y [K(H)) are twins too.

Let G and H be rayless graphs, and let X ✓ V (G) and Y ✓ H be finite
vertex sets. We write X̄ as a shorthand for X[K(G), and define Ȳ analogously.
Assume there are (strong) embeddings � : (G,X) ! (H,Y ) and  : (H,Y ) !
(G,X) and set ◆ :=  � �. Since, by Lemma 3, ◆ induces an automorphism on
(the subgraph induced by) the finite set X̄ there exists a k with ◆k � X̄ = idX̄ .
By replacing � with � � ◆k�1, we may assume that

� : (G,X) ! (H,Y ) and  : (H,Y ) ! (G,X) are embeddings
so that the restriction of ◆ =  � � to X̄ coincides with idX̄ . (1)

Assume now that (G,X) and (H,Y ) are isomorphic by virtue of an isomor-
phism �. In that case, abusing symmetry and notation, let us write (G,X) '⌘

(H,Y ), where ⌘ denotes the isomorphism X ! Y induced by �. Denote by CG

the set of all subgraphs G[C [ X̄] of G, where C is a component of G� X̄. For
A 2 CG set

IG(A) := {D 2 CG : (D, X̄) 'id (A, X̄)}.

Lemma 4. Let G and H be rayless graphs, and let X ✓ V (G) and Y ✓ V (H)
be finite. The following statements are equivalent.

(i) (G,X) and (H,Y ) are isomorphic.

(ii) There is a bijection ↵ : CG ! CH and an isomorphism ⌘ : G[X̄] ! G[Ȳ ]
with ⌘(X) = Y so that (A, X̄) '⌘ (↵(A), Ȳ ) and |IG(A)| = |IH(↵(A))| for
all A 2 CG.

Moreover, if (i) and (ii) hold, then ↵, ⌘, and the isomorphism � : (G,X) !
(H,Y ) can be chosen so that � � X̄ = ⌘ and �(A) = ↵(A) for every A 2 CG.

Proof. First assume that (i) holds and let � : (G,X) ! (H,Y ) the isomorphism
certifying this fact. Put ⌘ := � � X̄. Observe that, by Lemma 3, for every
A 2 CG there is a B 2 CH with �(A) = B; set ↵(A) := B. Clearly, ↵ is a bi-
jection and (A, X̄) '⌘ (↵(A), Ȳ ). It remains to show that |IG(A)| = |IH(↵(A))|
for all A 2 CG. Indeed, for every C 2 IG(A) we have ↵(C) 2 IH(↵(A)): Since
(A, X̄) 'id (C, X̄), by virtue of an isomorphism � say, � � � � ��1 is an iso-
morphism certifying (↵(A), Ȳ ) 'id (↵(C), Ȳ ). Hence we obtain |IH(↵(A))| �
|IG(A)| and analogously |IG(A)| � |IH(↵(A))|.

Now assume that (ii) holds. Then for every A 2 CG there is an isomorphism
�A : A ! ↵(A) that witnesses (A, X̄) '⌘ (↵(A), Ȳ ). Now the function � : G !
H defined by � � A := �A for every A is an isomorphism of (G,X) and (H,Y )
satisfying � � X̄ = ⌘ and �(A) = ↵(A) for every A 2 CG.
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We call the tuple (G,X) connected if G�X is connected.

Lemma 5. Let (G,X) and (H,Y ) be strong twins, where G and H are rayless
graphs, and X ✓ V (G) and Y ✓ V (H) finite. Then (G,X) has infinitely many
strong twins. If both (G,X) and (H,Y ) are connected, then (G,X) has infinitely
many connected strong twins.

Before we prove the lemma let us remark that it immediately implies the
strong version of Theorem 1 if we set X = Y = ;.

Proof of Lemma 5. We proceed by transfinite induction on the rank of G. For
rank 0 the statement is trivially true as finite graphs do not have twins. We
may thus assume that G has rank  > 0 and that the lemma is true for rank
smaller than .

Assume there exists a C0 2 CG so that (C0, X̄) has a connected twin. Then,
as C0 has rank smaller than , the inductive hypothesis provides us with in-
finitely many connected twins (Ci,Xi), i > 0, of (C0, X̄). By applying (1)
to (C0, X̄) and (Ci,Xi) we may assume that the restrictions to X̄ and Xi,
respectively, of the mutual embeddings are inverse isomorphisms. Hence, by
identifying Xi with X̄ by this isomorphism we may assume that the twins have
the form (Ci, X̄) and that the corresponding embeddings induce the identity
on X̄. Denote by T the set of C 2 CG for which either (C, X̄) 'id (C0, X̄), or
for which (C, X̄) is a twin of (C0, X̄) by virtue of mutual embeddings that each
induce the identity on X̄. For every i 2 N, define Gi to be the graph obtained
from G by replacing every C 2 T by a copy of Ci.

The construction ensures two properties. First, there are strong embeddings
(G,X) ! (Gi,X) and (Gi,X) ! (G,X) for every i. So, if infinitely many of
the (Gi,X) are non-isomorphic, we have found infinitely many twins of (G,X).
Second, for j 6= k it follows that |IGk(Cj)| = 0 6= |IGj (Cj)|. Consequently,
Lemma 4 implies

(Gj , X̄) 6'id (Gk, X̄). (2)

Assume that for distinct i, j, k the tuples (Gi,X), (Gj ,X) and (Gk,X) are
isomorphic. Thus, by Lemma 4 there are isomorphisms ⌘ between X̄ ✓ V (Gi)
and X̄ ✓ V (Gj) and ⌘0 between X̄ ✓ V (Gi) and X̄ ✓ V (Gk) so that (Gi, X̄) '⌘

(Gj , X̄) and (Gi, X̄) '⌘0 (Gk, X̄). Now, if ⌘ = ⌘0, then the resulting isomor-
phism between Gj and Gk would induce the identity on X̄, which is impossible
by (2). As there are only finitely many automorphisms of the finite set X̄, we
deduce that each (Gi,X) is isomorphic to only finitely many (Gj ,X). There-
fore we can easily find among the (Gi,X) infinitely many that are pairwise
non-isomorphic.

Finally, we claim that if (G,X), i.e. G � X, is connected, then so is each
(Gi,X), i.e. Gi �X. Indeed, by construction there is an embedding (G,X) !
(Gi,X) that restricts to the identity on X̄ and whose image meets all compo-
nents of Gi � X̄. As G�X is connected, as well as each component of Gi � X̄,
we deduce that Gi �X is connected.

Thus, we may assume from now on that

for each C 2 CG, (C, X̄) has no connected twin. (3)

By symmetry, the same holds for (H,Y ).
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Let � : (G,X) ! (H,Y ) and  : (H,Y ) ! (G,X) be strong embeddings,
and recall that by (1) we may assume that ◆ :=  � � induces the identity map
on X̄. By Lemma 4 and symmetry, we may assume that for ⌘ := � � X̄ there
are A 2 CG and B 2 CH with (A, X̄) '⌘ (B, Ȳ ) so that |IG(A)| > |IH(B)|.

Observe that by Lemma 3

for every C 2 CG there is a (unique) D 2 CG with ◆(C) ✓ D. (4)

Furthermore, we point out that ◆ is a strong self-embedding of (G,X), and also
of (G, X̄).

We define a directed graph � on CG as vertex set by declaring (C,D) to be
an edge if ◆(C) ✓ D for C,D 2 CG. We do allow � to have loops and parallel
edges (which then, necessarily, are pointing in opposite directions). Note that
by (4) every vertex in � has out-degree one. Define A to be the set of those
A0 2 IG(A) for which the unique out-neighbour does not lie in IG(A).

Suppose that distinct A1, A2 2 IG(A) are mapped by � into the same B0 2
CH . If A1 (and then also A2) is finite, then |V (B0)| > |V (Ai)| for i = 1, 2
since the injectivity of � implies �(A1) \ �(A2) = Ȳ . Consequently, we obtain
B0 /2 IH(B). Let now A1 and A2 be infinite. Unless rk(B0) > rk(A1) = rk(A2)
it follows that �(K(Ai)) ✓ K(B0) for i = 1, 2. Since A1 � X̄ and A2 � X̄
are connected the kernels K(Ai � X̄) are non-empty (but finite). Again from
�(A1) \ �(A2) = Ȳ we obtain that K(B0) has larger cardinality than either of
K(A1) and K(A2), which implies B0 /2 IH(B). Therefore, we have in all cases
that B0 /2 IH(B). Since (3) and (4) necessitate that �(A0) is contained in an
element of IH(B) for every A0 2 IG(A) \ A we deduce that |A| � |IG(A)| �
|IH(B)|. Thus, it holds that

A 6= ;, and if IG(A) is infinite, then we have |A| = |IG(A)|. (5)

By construction, the set A is independent in �. Moreover,

there is no directed path in � starting in A and ending in IG(A),
and there is no directed cycle containing any A0 2 A. (6)

To prove (6), suppose that C1, . . . , Ck is a directed path in � with C1 2 A
and Ck 2 IG(A) (possibly even Ck 2 A). Since repeated application of ◆ maps
every (C1, X̄) into any (Ci, X̄) and likewise (Ci, X̄) into (Ck, X̄) 'id (C1, X̄),
we deduce that (Ci, X̄) 'id (Cj , X̄) for i, j 2 {1, . . . , k}, as they cannot be
twins by (3) (recall that ◆ � X̄ = idX̄ by (1)). However, (C1, X̄) 'id (C2, X̄)
violates C1 2 A. The same arguments hold if C1, . . . , Ck is a directed cycle that
meets A.

Define A� to be the set of all C 2 CG from which there is a nontrivial
directed path in � ending in IG(A) (in particular, IG(A) \ A ✓ A�). Setting
A+ := CG \ (A [ A�) we see with (6) that (A�,A,A+) partitions CG. By
definition, the out-neighbour of an A0 2 A does not lie in A, and by (6) the
out-neighbour does not lie in A� either. Hence, we have ◆(A0) ✓

S
A+. On

the other hand, the definition of A� implies that the out-neighbour of every
A+ 2 A+ is contained in A+. Thus it follows that ◆(A+) ✓

S
A+. In summary,

we obtain:

(A�,A,A+) partitions CG and ◆
⇣[

A [
[

A+
⌘
✓

[
A+. (7)
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We claim that there exists a strong self-embedding � : (G,X) ! (G,X) that
induces the identity on

S
IG(A) \ A (in particular on X̄) and satisfies

�(G) \
[

A = X̄. (8)

On X̄ we define � to be the identity. For every other vertex v 2 V (G) we
consider the unique C 2 CG containing v. If C 2 A� we set �(v) := v, and
if C 2 A [ A+ we put �(v) := ◆(v). Note that by (4) it holds that for every
C 2 CG we have � � C = idC or � � C = ◆ � C. It is immediate from (7) that (8)
holds. Moreover, since the identity as well as ◆ are strong self-embeddings it
follows from (7) that � is one, too.

If IG(A) is infinite, then by (5) we change � on each component in IG(A)\A
so as to obtain a strong self-embedding ' whose image avoids

S
IG(A) \A� X̄.

Then � := '2 is a strong self-embedding that induces the identity on X̄ and
satisfies

�(G) \
[

IG(A) = X̄. (9)

Let us now construct infinitely many strong twins of (G,X). Assume first
that IG(A) is a finite set. Add a disjoint copy Ã of A to G and identify every
vertex in X̄ with its copy in Ã. The resulting graph G1 is clearly a supergraph of
G. But by (8) we can also embed (G1,X) in (G,X): extend � to an embedding
of (G1,X) in (G,X) by mapping Ã � X̄ to A0 � X̄ for some A0 2 A. Here,
we use that A 6= ;, by (5). Note that |IG1(A)| = |IG(A)| + 1. Now we repeat
this process, with G1 in the role of G, so as to obtain G2, and so on. Since
|IGi(A)| 6= |IGj (A)| for all i 6= j, we can deduce from Lemma 4, as in the proof
of (3), that each (Gi,X) is isomorphic to only finitely many (Gj ,X). Therefore
we can find among the (Gi,X) infinitely many twins of (G,X).

So, consider the case when IG(A) contains infinitely many elements A1, A2, . . ..
Set Gi := G � (

S
IG(A) \ {A1, . . . , Ai} � X̄) for i 2 N. Since, by (9), � can

be used to embed (G,X) in (Gi,X) we can again find infinitely many twins of
(G,X)—note that |IGi(A)| takes di↵erent (finite) values.

Finally, observe that in both cases, all the strong twins we constructed are
connected if (G,X) is.
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