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Abstract

We prove Diestel’s conjecture that the square G2 of a 2-connected
locally finite graph G has a Hamilton circle, a homeomorphic copy of the
complex unit circle S1 in the Freudenthal compactification of G2.

1 Introduction

The n-th power Gn of a graph G is the graph on V (G) in which two vertices
are adjacent if and only if they have distance at most n in G. A Hamilton cycle
in a graph is a cycle containing all its vertices. Although Hamilton cycles are a
central notion in graph theory and there is a vast literature about them, very
few natural sufficient conditions are known for their existence. The following
classical theorem of Fleischner [18] is perhaps the deepest known sufficiency
result:

Theorem 1 (Fleischner, 1974). If G is a finite 2-connected graph, then its
square G2 has a Hamilton cycle.

Thomassen [30] generalised Theorem 1 to locally finite graphs with one end:

Theorem 2 (Thomassen, 1978). If G is a 2-connected locally finite 1-ended
graph, then G2 contains both a Hamilton ray and a Hamilton double ray.

A double ray, i.e. a two-way infinite path, is an infinite cycle in the algebraic
sense of simplicial homology: if we orient it either way, the boundaries of its
edges sum to zero. Thus in this sense Theorem 2 extends Theorem 1. Yet it
is clear that no graph with more than two ends can contain a Hamilton double
ray: since such a graph has a finite set of vertices separating it into more than
two infinite components, no double ray can visit all its vertices. Hence there is
no hope of generalising Thomassen’s theorem, with cycles taken to be double
rays, further to arbitrary 2-connected locally finite graphs.

However, things look better if we reinterpret Theorem 2 geometrically. In
the case of a 1-ended graph G, a double ray is an infinite cycle also in the
geometric sense proposed by Diestel [10, 11]: its closure in the Freudenthal
compactification |G| of G is a topological circle, a subspace homeomorphic to
the circle S1. A Hamilton circle of G, then, is a circle in |G| that contains every
vertex of G.

In three seminal papers [14, 15, 16], Diestel and Kühn established that this
geometric notion of a cycle can serve as a basis for a homology of locally finite
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graphs. This has since been shown by various authors [3, 4, 5, 6, 23] to outper-
form both the simplicial homology of G (in which all cycles are finite) and the
so-called open homology alluded to above (in which all double rays are cycles):
in the context of graph homology, at least, topological circles appear to be the
‘right’ analogue of the cycles in finite graphs.

Motivated by this development, Diestel [12] suggested an ambitious pro-
gramme to use topological paths and circles as a basis also for a translation
of mainstream ‘extremal’ finite graph theory to locally finite graphs. As a
benchmark test for the feasibility of such a programme, he conjectured that
the notion of a Hamilton circle should make it possible to unify Fleischner’s
and Thomassen’s theorems into a general theorem for arbitrary locally finite
graphs: that the square of any 2-connected locally finite graph has a Hamilton
circle [10].

Our aim in this paper is to prove Diestel’s conjecture:

Theorem 3. If G is a locally finite 2-connected graph, then G2 has a Hamilton
circle.

One of the ideas used for the proof of Theorem 3 led to a short proof of
Theorem 1, which will be published separately [20].

As an intermediate step, we obtain a result which may be of independent
interest. A topological Euler tour of G is a continuous map σ : S1 → |G| that
traverses every edge of G exactly once. Topological Euler tours are known to
exist when expected, e.g. when every vertex and every end of G has even degree
[6, 14]. A topological Euler tour is injective at ends if it traverses every end
of G exactly once. As a lemma for the proof of Theorem 3, we shall prove the
following:

Theorem 4. If a locally finite multigraph has a topological Euler tour, then it
also has one that is injective at ends.

Theorem 4 might help generalise other sufficient conditions for the existence
of Hamilton cycles in finite graphs to Hamilton circles in locally finite graphs;
see Section 10 for details.

We shall also generalise to locally finite graphs the well known fact, proved
by Karaganis [26] and Sekanina [29], that the third power of any connected finite
graph has a Hamilton cycle:

Theorem 5. If G is a connected locally finite graph, then G3 has a Hamilton
circle.

It is a well known conjecture (apparently first stated in [28], see [2] for more)
that every finite connected Cayley graph has a Hamilton cycle. Although it is
not true that every locally finite connected Cayley graph has a Hamilton circle
(see Section 9), Theorem 5 (or Theorem 3) implies the following:

Corollary 6. Every finitely generated group Γ has a finite generator set S such
that the Cayley graph of Γ with respect to S has a Hamilton circle.

This paper is structured as follows. After providing the definitions and some
basic results required in our proofs (Sections 2 and 3), we prove Theorem 5 in
Section 4. The proof of Theorem 3 is sketched in Section 5 and completed in
Sections 6 and 7. (Theorem 4 is proved in Section 6.) Section 8 offers some
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conjectures about Hamilton circles in infinite graphs that are not locally finite.
Corollary 6 motivates some further problems, which we discuss in Section 9. We
wind up in Section 10 with some concluding remarks.

2 Definitions

Unless otherwise stated, we will be using the terminology of [11] for graph
theoretical concepts and that of [1] for topological ones. Let G = (V, E) be
a locally finite multigraph — i.e. every vertex has a finite degree — fixed
throughout this section.

An x-edge is an edge incident with the vertex x.
For any v ∈ V , let G[v]i be the subgraph of G induced by the vertices at

distance at most i from v.
A shortcut at a vertex x is the operation of replacing two edges ux, xv with

a u-v–edge; the new edge shortcuts the edges ux, xv.
If H ⊆ G, then contracting H in G is the operation of replacing H in G

with a new vertex z, and making z incident with all vertices of G − H sending
an edge to H . If G′ is the graph resulting from G after contracting H to z, and
R ⊆ G′, then dcz(R) is the subgraph of G resulting from R, after deleting z, in
case z ∈ V (R), and replacing each edge xz ∈ E(R) with an arbitrarily chosen
x-H–edge; you can think of dcz(R) as the result of decontracting z in R.

If C ⊆ G, denote by Ĉ the union of C with all edges incident with C in G,
including their endpoints. If G ⊇ H and C is a component of G−H , then Ĉ is an
H-bridge in G (in the literature an edge in E(G)−E(H) with both endvertices
in H is usually also a bridge, but in this paper bridges always contain more than
one edge). Its feet are the vertices in V (Ĉ) − V (C). An H-path in G is a path
having precisely its endvertices (but no edge) in common with H .

A normal spanning tree of G is a rooted spanning tree T of G such that any
two vertices that are adjacent in G are comparable in the tree-order of T .

A multiedge is the set of (parallel) edges between two fixed vertices of a
multigraph. A double edge is a multiedge containing precisely two edges; a
single edge is a multiedge containing precisely one edge. A simple multigraph is
a multigraph all multiedges of which are either double or single edges.

If P is a path, e ∈ E(P ) and x, y ∈ V (P ), then xPe is the shortest subpath
of P connecting x to an endvertex of e, xPy is the subpath of P connecting x
to y, x̊P ẙ = xPy − {x, y}, etc.

A trail in a multigraph is a walk in which no edge appears more than once.
A 1-way infinite path is called a ray, a 2-way infinite path is a double ray.

A tail of the ray R is a final subpath of R. Two rays R, L in G are equivalent
if no finite set of vertices separates them; we denote this fact by R ≈G L, or
simply by R ≈ L if G is fixed. The corresponding equivalence classes of rays are
the ends of G. We denote the set of ends of G by Ω = Ω(G). A ray belonging
to the end ω is an ω-ray.

Let G bear the topology of a 1-complex1. To extend this topology to Ω,
let us define for each end ω ∈ Ω a basis of open neighbourhoods. Given any
finite set S ⊂ V , let C = CG(S, ω), or just C(S, ω) if G is fixed, denote the

1Every edge is homeomorphic to the real interval [0, 1], the basic open sets around an inner
point being just the open intervals on the edge. The basic open neighbourhoods of a vertex x

are the unions of half-open intervals [x, z), one from every edge [x, y] at x.
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component of G − S that contains some (and hence a tail of every) ray in ω,
and let Ω(S, ω) denote the set of all ends of G with a ray in C. As our basis of
open neighbourhoods of ω we now take all sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ E′(S, ω) (1)

where S ranges over the finite subsets of V and E′(S, ω) is any union of half-
edges (z, y], one for every S–C edge e = xy of G, with z an inner point of e. Let
|G| denote the topological space of G∪Ω endowed with the topology generated
by the open sets of the form (1) together with those of the 1-complex G.

It can be proved (see [13]) that in fact |G| is the Freudenthal compactification
[19] of the 1-complex G.

A circle in |G| is the image of a homeomorphism from S1, the unit circle in
R2, to |G|. A Hamilton circle of G is a circle that contains every vertex of G
(and hence, also every end, as it is closed). An arc in |G| is a homeomorphic
image of the real interval [0, 1] in |G|.

A subset D of E is a circuit if there is a circle C in |G| such that D = {e ∈
E|e ⊆ C}. Call a family (Di)i∈I of subsets of E thin, if no edge lies in Di for
infinitely many i. Let the sum Σi∈IDi of this family be the set of all edges that
lie in Di for an odd number of indices i, and let the cycle space C(G) of G be
the set of all sums of (thin families of) circuits.

A topological Euler tour of G, or Euler tour for short, is a continuous map
σ : S1 → |G| such that every inner point of an edge of G is the image of exactly
one point of S1 (thus, every edge is traversed exactly once, and in a “straight”
manner). Call G eulerian if it has a topological Euler tour. A map σ : S1 → |G|
is injective at ends if every end in Ω(G) has exactly one preimage under σ.

3 Basic Facts

3.1 Infinite cycles and paths

The following two lemmas are perhaps the most fundamental facts about the
cycle space of an infinite graph. Both can be found in [11, Theorem 8.5.8].
Let G be an arbitrary connected locally finite multigraph fixed throughout this
section (the following results have been proved for simple graphs only, but they
can be easily generalised to multigraphs.

Lemma 1. Every element of C(G) is a disjoint union of circuits.

Lemma 2. Let F ⊆ E(G). Then F ∈ C(G) if and only if F meets every finite
cut in an even number of edges.

The next lemma comes from [14, Theorem 7.2].

Lemma 3. The following three assertions are equivalent:

• G is eulerian;

• E(G) ∈ C(G);

• Every finite cut of G is even.
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A continuous map from the real unit interval [0, 1] to a topological space X
is a (topological) path in X . The following lemma can be found in [21]. It will
be used in Section 4.

Lemma 4. A topological path that connects some vertex or end of a basic open
neighbourhood U of an end ω ∈ Ω(G), to a vertex or end outside U , must
traverse some edge xy with x ∈ U, y /∈ U .

The union of a ray R with infinitely many disjoint finite paths having pre-
cisely their first vertex on R is a comb; the last vertices of those paths are the
teeth of this comb, and R is its spine. The following very basic lemma can be
found in [11, 8.2.2].

Lemma 5. If U is an infinite set of vertices in G, then G contains a comb with
all teeth in U .

We will make use of the compactness theorem for propositional logic (see
[8]):

Theorem 7. Let K be an infinite set of propositional formulas, every finite
subset of which is satisfiable. Then K is satisfiable.

3.2 Homeomorphisms between the end-space of a graph

and a subgraph

If H is a spanning subgraph of some graph G, then there is usually no need
to distinguish between vertices of H and vertices of G. For ends however, the
situation is more complicated. In what follows, we develop some tools that will
in some cases help us work with the ends of H as if they were the ends of G.

For any two multigraphs H ⊆ G note that any two equivalent rays in H are
also equivalent rays in G, which allows us to define a mapping πHG by

πHG : Ω(H) → Ω(G)

ω 7→ ω′ ⊇ ω.

Lemma 6. Let H, G be locally finite connected multigraphs such that H ⊆ G,
V (H) = V (G), and for any two rays R, L in H, if R ≈G L then R ≈H L. Then
πHG is a homeomorphism between Ω(H) and Ω(G).

Proof. Clearly, πHG is injective. Let us show that it is surjective. For any
ω ∈ Ω(G), pick a ray R ∈ ω. Since H is connected, we can apply Lemma 5 to
obtain a comb in H with teeth in V (R). The spine of this comb is a ray L in
H such that L ≈G R. Thus its end is mapped to ω by πHG.

Since H ⊆ G, if S is a finite subset of V (G) and ω ∈ Ω(H) then CH(S, ω)
is a subgraph of CG(S, ω), from which it follows easily that πHG is continuous.
Moreover, Ω(H) is compact, because it is closed in |H | and |H | is compact
(see [11, Proposition 8.5.1]). It is an elementary topological fact ([1, Theorem
3.7]) that a continuous bijection from a compact space to a Hausdorff space is a
homeomorphism, which implies that πHG is indeed a homeomorphism between
Ω(H) and Ω(G).
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Lemma 7. Let H, G be locally finite connected multigraphs such that H ⊆ G,
V (H) = V (G), and for any two rays R, L in H, if R ≈G L then R ≈H L. Let
(vi)i∈N be a sequence of vertices of V (G). Then vi converges to ω ∈ Ω(H) in
|H | if and only if vi converges to πHG(ω) in |G|.

Proof. Define a mapping π̂HG : V (H) ∪ Ω(H) → V (G) ∪ Ω(G) that maps ev-
ery end ω ∈ Ω(H) to πHG(ω), and every vertex in V (H) to itself. Easily
by Lemma 6, π̂HG is bijective and continuous. Moreover, V (H) ∪ Ω(H) is
closed, thus compact, so like in the proof of Lemma 6, π̂HG is a homeomor-
phism between V (H)∪Ω(H) and V (G)∪Ω(G), from which the assertion easily
follows.

For any two connected multigraphs G, H such that V (G) = V (H), we will
write |H | ≅ |G| if there is a homeomorphism π : Ω(H) → Ω(G), such that for
any sequence (vi)i∈N of vertices of V (G), vi converges to ω ∈ Ω(H) in |H | if and
only if vi converges to π(ω) in |G|.

If H ⊆ G are fixed and e = uv ∈ E(G) − E(H), then a detour for e (in H)
is a path in H with endvertices u, v.

Lemma 8. Let H ⊆ G be locally finite multigraphs such that V (H) = V (G)
and G is connected. Suppose that for each edge e ∈ E(G) − E(H), a detour
dt(e) for e has been specified. If the set {dt(e)|e ∈ E(G) − E(H)} is thin, i.e.
no edge appears in infinitely many of its elements, then |H | ≅ |G|.

Proof. Clearly, H is connected. Pick any two rays R, L in H , such that R ≈G L.
By Lemmas 6 and 7, it suffices to show that R ≈H L.

Since R ≈G L, there is an infinite set P of disjoint R-L–paths in G. For each
P ∈ P , replace all edges e of P not in E(H) with dt(e), to obtain a connected
subgraph P ′ of H containing the endvertices of P . Let dt(P ) be an R-L–path
in P ′. The set of all these paths {dt(P )|P ∈ P} is clearly thin, from which it
easily follows that R ≈H L.

4 The Third Power of a Locally Finite Graph is

Hamiltonian

Karaganis [26] and Sekanina [29] have proved that the third power of a connected
finite graph is hamiltonian. Extensions of this fact to infinite graphs have been
achieved by Sekanina [29], who showed that the third power of a connected,
locally finite, 1-ended graph has a spanning ray, and by Heinrich [25], who
specified a class of non-locally-finite graphs whose third power has a spanning
ray. With Theorem 5, which we prove in this section, we generalise to locally
finite graphs with any number of ends.

Proof of Theorem 5. We will say that an edge e = uv of some graph G crosses
a subgraph H of G, if u ∈ V (H) and v /∈ V (H). An x–branch of a tree T with
root v, for some vertex x ∈ V (T ), is a component of T −x that does not contain
v; a subgraph of T is a branch, if it is an x–branch for some x ∈ V (T ).

Let T be a normal spanning tree of G, with root v (every countable connected
graph has a normal spanning tree, see [11, Theorem 8.2.4]), and let Ti = T [v]i.

We will prove the assertion using Theorem 7. To this end, define for each
edge e ∈ E(T 3) a logical variable the truth-values of which encode the presence
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or not of e, and let V be the set of these variables. For every vertex x ∈ V (G),
write a propositional formula with variables in V , expressing the fact that exactly
two x-edges are present, and let P1 be the set of these formulas. For every branch
B of T , write a propositional formula with variables in V expressing the fact
that at most two edges that cross B are present, and let P2 be the set of these
formulas. Finally, for every finite cut F of T 3, write a propositional formula
with variables in V , expressing the fact that an even, positive number of edges
in F are present, and let P3 be the set of these formulas. Let P = P1 ∪P2 ∪P3.

In order to meet the condition of Theorem 7 we have to show that for every
finite P ′ ⊆ P , there is an assignment of truth-values to the elements of V
satisfying all elements of P ′. This is indeed true: choosing i so large that T 3

i

contains all vertices and all finite cuts that come up in P ′ and applying the
following lemma to Ti, yields a Hamilton cycle of T 3

i which encodes such an
assignment:

Lemma 9. If T is a finite tree with root v and |T | ≥ 3, then T 3 has a Hamilton
cycle H, that contains a v-edge e(H) ∈ E(T ), and for every branch B of T , H
contains precisely two edges that cross B.

Proof (sketch). We will use induction on the height h of T . The assertion is
clearly true for h = 1. If h > 1, then apply the induction hypothesis on each
non-trivial v–branch, delete e(Hv) for each resulting Hamilton cycle Hv, and
use some edges of T 3 as shown in Figure 1, to construct the desired Hamilton
cycle H of T 3. It is easy to see that no branch of T is crossed by more than two
edges of H , if this is true for the Hamilton cycles Hv of the v–branches.

v

Figure 1: Using the induction hypothesis to construct a Hamilton cycle of T . The
wavy curves represent Hamilton cycles of the v-branches supplied by the induction
hypothesis, and for each such Hamilton cycle H , e(H) is represented by a dashed line.
The thick cycle represents H .

So by Theorem 7, there is an assignment of truth-values to the elements
of V , satisfying all elements of P . Let F be the set of edges that are present
according to this assignment. We will prove that F is the circuit of a Hamilton
circle of T 3.

By Lemma 2 and the formulas in P3 we obtain F ∈ C(T ), thus by Lemma 1,
F is a disjoint union of circuits. Let C ⊆ F be a circuit, and suppose, for
contradiction, that there is a vertex u ∈ T not incident with C. Choose an i ∈ N

so that Ti meets both u and C. If V (C) ⊆ V (Ti), then V (C) defines a finite
cut which is not met by F , because otherwise a formula in P1 is contradicted;
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this, however, contradicts a formula in P3. If V (C) 6⊆ V (Ti), let B be the
(non-empty) set of components B of T − Ti such that B ∩ C 6= ∅, and let
X = V (C)∪

⋃
B∈B V (B) (note that any such B is a branch of T ). Since u /∈ X ,

E(X, X ′ := V (T ) − X) is a non-empty cut D, which is clearly finite. Now for
every B ∈ B, there is a formula in P2 asserting that there are at most two edges
crossing B, and since (by Lemma 4 and Lemma 2) C already contains two such
edges, F contains no X ′-B–edge. Moreover, F contains no X ′-C–edge, because
of the formulas in P1, thus D ∩ F = ∅, contradicting a formula in P3.

Thus F is the circuit of a Hamilton circle H of T 3. Applying Lemma 8 on
T, T 3, using a path of length at most 3 as a detour for each edge in E(T 3)−E(T ),
we obtain |T 3| ≅ |T |, and similarly |G3| ≅ |G| (these sets of detours are thin
because the graphs are locally finite). Easily by Lemma 7, |T | ≅ |G|, thus H is
also a Hamilton circle of G3.

5 Outline of the Proof of Theorem 3

Before giving an outline of the proof of Theorem 3, let me compare it with
the proof of Theorem 2 and a proof of Theorem 1 given by Řı́ha ([32] or [11])
which is shorter than its original proof (in fact, Řı́ha proves a stronger assertion
than that of Theorem 1, see Section 7.1). The descriptions that follow are
approximate, omitting much information not needed for the comparison.

Řı́ha’s proof uses induction; he finds a special cycle C, and then applies
the induction hypothesis to every component of G − C, to obtain Hamilton
cycles yielding a set of C–paths in G2, called basic paths, so that each vertex of
G−C lies in exactly one of the paths. Basic paths have the property that their
endedges are original edges of G; let us call these endedges bonds. This property
makes it possible to recursively merge pairs of incident basic paths into longer
basic paths by shortcutting incident bonds, and he repeats this operation as
often as possible without disconnecting the graph. Then, some edges of C are
replaced by double edges, so that the resulting multigraph is eulerian. Finally,
it is shown that every Euler tour J of this multigraph can be transformed into a
Hamilton cycle of G2 by replacing some subtrails of length two of J with edges
of G2 having the same endvertices; we call this process the hamiltonisation of
J .

Thomassen follows a similar plan in his proof of Theorem 2 (which appeared
before Řı́ha’s proof). The cycle C is replaced by a ray R such that all compo-
nents of G − R are finite, and the finite theorem is applied on each of them to
give a set of R–paths in G2 with the same properties as the basic paths in Řı́ha’s
proof. Then, some edges of R are duplicated so that the resulting multigraph
is eulerian. Next, some double edges are deleted, which splits R in finite paths,
but does not disconnect the graph; let us call these paths segments. Again,
some bonds are shortcutted, and it is then shown that every Euler tour J of
this multigraph can be hamiltonised. Rather than doing the hamiltonisation on
the whole graph simultaneously, it is shown that no matter how the restriction
of an Euler tour J to some segment and its neighbouring edges looks like, it is
possible to locally modify J there, using edges of G2, so that it traverses each
vertex of the segment exactly once. An example is shown in Figure 2.

Trying to imitate these proofs for arbitrary locally finite graphs, we face three
major problems. The first one regards Euler tours. In the sketched proofs, an
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Figure 2: An example of a local hamiltonisation. In the upper figure, the restriction
of the Euler tour on the segment (horizontal path) is indicated; it consists of three
paths. In the figure beneath, these paths have been transformed into disjoint paths in
the square of the graph that span all vertices (dashed lines).

Euler tour was transformed into a Hamilton circle by performing “leaps” over
one vertex using an edge of G2. Doing so for an arbitrary Euler tour of a locally
finite graph, we cannot avoid running through some end more than once. But
a Hamilton circle must, by definition, traverse each end exactly once, thus if we
want to gain one from an Euler tour using this method, the Euler tour itself
should be injective at ends. So we have to ask, which eulerian graphs admit an
Euler tour that is injective at ends. The answer is given by Theorem 4: all of
them.

The second problem is, what the analogue of R or C should be. In a graph
with many ends there is no ray that leaves only finite components behind like the
one used by Thomassen. Instead, we will use a complicated structure looking
like a spanning tree of G containing two rays to each end, which spans the whole
graph. Again, we will make the graph eulerian by duplicating edges, and we
will split into finite segments. Like in Thomassen’s proof, we want to make sure
that we can change the chosen Euler tour locally on each segment W , so that it
traverses each vertex exactly once. But in order to be able to perform shortcuts
with edges incident with W , as we did in Figure 2, we need an analogue of
bonds: original edges of G, not affected by shortcuts performed while treating
other segments. Indeed, we will make sure that the first edge of each segment
W will not be shortcutted while treating W , so that other segments intersecting
with W could shortcut it.

The third, and most serious problem, is that if we perform too many short-
cuts we run the risk of changing the end topology of the graph. This problem
appears even in the case of 1-ended graphs. Suppose, for example, that after
performing the first steps of Thomassen’s proof on some graph G having only
one end ω, to find the ray R and the basic paths, we get the graph shown in
Figure 3. If we shortcut every pair of incident bonds in this graph, we will
end up with a 2-ended graph G′, because the basic paths will merge into a ray
non-equivalent with R. We could still continue with the plan of finding an Euler
tour and transforming it to a Hamilton circle H of G′, but even if this worked
H would not be a Hamilton circle of G: it would traverse ω twice.

...

R

Figure 3: Performing all shortcuts between bonds would create a new end.
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Thomassen overcomes this difficulty by avoiding some shortcuts, at the cost
of making the hamiltonisation of the Euler tour more difficult. See for example
Figure 4, where vertex x is incident with two double edges on R, and two bonds.
A possible restriction of an Euler tour on this segment is given, and the reader
will confirm that it can only be locally hamiltonised in the way shown. Having
two vertices like x on one segment can be fatal, as shown in Figure 5, where
the Euler tour cannot be hamiltonised at all. But even one vertex like x on a
segment is enough to cause problems; as already mentioned, we would like to
hamiltonise each segment so that its first edge is not shortcutted. This, however,
is not possible in Figure 4. Thus on the one hand we should avoid shortcuts
because they are dangerous for the end topology, and on the other we need them
in order to get rid of vertices like x. An equilibrium is needed, which I could
not find.

x

x

Figure 4: A difficult case: the lower figure shows the only possible hamiltonisation of
the trails shown in the upper figure.

Figure 5: A case where no hamiltonisation is possible.

There is however an elegant solution to the problem, and it is achieved by
imposing constraints on the Euler tour. These constraints specify trails of length
2 which the Euler tour must traverse. Technically, this is done by constructing
an auxiliary graph, where each such trail has been replaced with an edge with
the same endpoints. This auxiliary graph is eulerian if the original one is, and
choosing an Euler tour of the auxiliary graph, and then replacing the added
edges with the trails they replaced, we obtain an Euler tour of the original
graph that indeed traverses the wanted trails. This is exemplified by Figure 6,
which shows the auxiliary graph corresponding to the graph of Figure 5. Note
that the problematic set of paths in Figure 5 could not result from an Euler
tour of a graph containing the graph in Figure 6. The idea of imposing such
constraints on the Euler tour is used in [20] to obtain a short proof of Theorem 1.

The proof of Theorem 3 is structured as follows. We start by constructing the
“scaffolding”, that is, the analogue of R in Thomassen’s proof, in Section 7.2.
It consists of a set of ladder-like structures like the one shown in Figure 7
called rope-ladders, that are irregularly attached on each other, and a set of
finite structures called ear decompositions that are attached on the rope-ladders.
Unlike R, this scaffolding spans all vertices of our graph.
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Figure 6: Applying constraints for an Euler tour of the graph of Figure 5. The dashed
lines are edges of the original graph not in the auxiliary graph, while the continuous
curved lines are edges of the auxiliary graph not in the original one.
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Figure 7: A rope-ladder. The horizontal paths are equivalent rays; usually their first
vertices do not coincide as they do here.

Next, we turn this scaffolding into an eulerian multigraph G6≬ by replacing
some edges with double edges. Doing this is not as straightforward as in the
finite case, and it will require its own section, Section 7.3. In Section 7.4,
we will split G6≬ in segments, called larvae, as follows. We consider each Π
shaped subpath P of a rope-ladder like the thick path in Figure 7, called a pi,
consisting of the two subpaths of the horizontal rays between two consecutive
“rungs”, and the rung on their right, and distinguish three cases. If one of
the endedges of P became a double edge in G6≬ — we have made sure that
at most one did — we delete it, and consider the rest of P (or rather, the
multigraph that replaced P in G6≬) as a larva. If not, then we look at a special
vertex in P carefully chosen while constructing the scaffolding, denoted by yi

j

and called an articulation point, and if one of the multiedges of P incident with
the articulation point is double we delete it, and consider the two remaining
subpaths of P as larvae. If both multiedges incident with the articulation point
are single, we consider the two maximal subpaths of P ending at the articulation
point as larvae (Figure 8). The first pi of each rope-ladder, however, does
not follow these rules, which is the reason for the anomaly regarding y0

0 in
Figure 7 (the articulation point corresponding to the first pi lies in the second
one, which contains two articulation points, while each subsequent pi contains
one articulation point). An ear decomposition is treated in a similar way. In all
cases, we make sure that the first multiedge of every larva is a single edge.

Having divided the whole graph into larvae, we impose the aforementioned
constraints on the Euler tour (in the same section). These constraints are so
effective, that no shortcuts like the ones in the proofs of Řı́ha and Thomassen
are needed, with the exception of the articulation points. The reason we need
shortcuts there is the following. It is no problem if two larvae W, W ′ intersect
at the vertex where W ′ starts, since the hamiltonisation of the neighbourhood
of W ′ will be done in such a way that its first edge is not affected, and then W
will be able to shortcut this edge (as in Figure 2). If larvae intersect otherwise
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Figure 8: Splitting the graph into larvae. Every arrow indicates a larva.

however, there could be a conflict between their hamiltonisations. As shown in
Figure 8, it could happen that two larvae intersect at their last vertex, which
is, in that case, an articulation point. In order to avoid a conflict, we make
sure that if two larvae end at an articulation point y, then y has degree 2; if
this is the case, then any Euler tour will traverse y only once, and therefore
no conflict will arise during the hamiltonisation. Articulation points already
existed in Řı́ha’s proof: there, C contains a vertex with the property that it
sends no edge to the rest of the graph, and this vertex had a similar function.
In infinite graphs however, it is not possible to pick articulation points without
unwanted neighbours, but instead we will, in Section 7.5, perform shortcuts at
the articulation points to rid them of unwanted incident edges.

After doing all these changes, we are left with an auxiliary graph on V (G),
where we will, in Section 7.6, pick the Euler tour that is injective at ends. Then,
based on the fact that the Euler tour complies with the constraints we imposed
on it, and that the auxiliary graph bears the same end topology as the original
one, we will show in Section 7.6 that it is possible to hamiltonise it to obtain a
Hamilton circle of G2.

Summing up, the proof of Theorem 3 consists of the following steps:

1. constructing the scaffolding;

2. making it eulerian;

3. splitting it into larvae;

4. imposing constraints on the Euler tour;

5. cleaning up the articulation points;

6. picking an Euler tour and hamiltonising it.

6 General Results

6.1 End-devouring rays

The following lemmas are needed for the construction of the scaffolding. The
graphs in Lemma 10 need not be locally finite, but the reader will lose nothing
by assuming that they are. Our definition of Ω(G) for arbitrary graphs remains
that of Section 2.

If G is a graph and ω ∈ Ω(G), we will say that a set K of ω-rays devours the
end ω if every ω-ray in G meets an element of K. An end devoured by some
countable set of its rays will be called countable.

12



Lemma 10. For every graph G and every countable end ω ∈ Ω(G), if G has a
set K of k ∈ N pairwise disjoint ω-rays, then it also has a set K ′ of k pairwise
disjoint ω-rays that devours ω. Moreover, K ′ can be chosen so that its rays have
the same starting vertices as the rays in K.

Proof. We will perform induction on k. For k = 1 this is easy; the desired ray
can for example be obtained by imitating the construction of normal spanning
trees in [11, Theorem 8.2.4]. For the inductive step, let K = {R0, R1, . . . , Rk−1}
be a set of disjoint ω-rays in G. We want to apply the induction hypothesis to
G−R0, but we have to bear in mind that after deleting R0 the Ri do not have
to be equivalent. However, it is easy to find a finite set S ⊂ V such that any
two tails of elements of K that lie in the same component of G − R0 − S are
equivalent, and we can even choose S so that each Rj leaves S only once, because
otherwise we can add an initial subpath of Rj to S. Applying the induction
hypothesis to every component of G − R0 − S that contains a tail of some Ri,
we obtain a new set of rays R′

1, R
′
2, . . . , R

′
k−1

so that any ray equivalent to some
Ri in G−R0 −S meets some R′

j , and for each j, R′
j starts at the first vertex of

Rj not in S. We can now prolong each R′
j using the subpath of Rj that lies in

S, to achieve that R′
j and Rj start at the same vertex. Then, let R′

0 be a ray
in G −

⋃
{R′

1, R
′
2, . . . , R

′
k−1

} meeting all rays equivalent with R0 in that graph
and starting at the first vertex of R0. We claim that K ′ = {R′

0, R
′
1, . . . , R

′
k−1

}
meets every ω-ray in G.

Indeed, suppose that L ∈ ω, L ∩
⋃

K ′ = ∅, and let P be a set of infinitely
many disjoint L-R0–paths in G. Now either infinitely many of these paths avoid
{R′

1, R
′
2, . . . , R

′
k−1

}, or infinitely many meet the same R′
i before meeting R0. In

the first case, L is equivalent with R0 in G −
⋃
{R′

1, R
′
2, . . . , R

′
k−1

}, and thus
meets R′

0, whereas in the second case, L is equivalent with some R′
i in G−R0−S

and thus meets some R′
j ; in both cases the definition of L is contradicted, so

our claim is true.

Lemma 11. If G is locally finite, ω ∈ Ω, and K is a set of ω-rays devouring ω
in G, then every component of G −

⋃
K sends finitely many edges to K.

Proof. If such a component sends infinitely many edges to K then, easily, by
Lemma 5 it contains a comb whose spine is equivalent with the rays in K,
contradicting the assumption that K meets every ω-ray.

It would be interesting to decide whether Lemma 10 remains true for infinite
K:

Problem 1. Let G be a graph, ω a countable end of G, and K an infinite set of
pairwise disjoint ω-rays. Prove that there is a set K ′ of pairwise disjoint ω-rays
that devours ω such that the set of starting vertices of rays in K ′ equals the set
of starting vertices of rays in K.

6.2 End-faithful topological euler tours

In this section we prove Theorem 4.

Proof of Theorem 4. By Lemma 3 every finite cut of G is even. Then, G has a
finite cycle C, because otherwise every edge would form a cut. Let σ0 : S1 → C
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be a continuous function that maps a closed interval of S1 to each vertex and
edge of C (think of the edges as containing their endvertices).

We will now inductively, in ω steps, define a topological Euler tour σ of G
that is injective at ends. After each step i, we will have defined a finite set
of edges Fi, which will be the union of a set of disjoint finite circuits, and a
continuous surjection σi : S1 → F̄i where F̄i is the subspace of |G| consisting
of all edges in Fi and their incident vertices. In addition, we will have chosen
a set of vertices Si incident with Fi, and for each v ∈ Si a closed interval Iv

of S1 mapped to v by σi (These intervals will be used in subsequent steps to
accommodate the rest of the graph). Then, at step i+1, we will pick a suitable
set of finite cycles in E(G) − Fi, put them in Fi to obtain Fi+1, and modify σi

to σi+1. We might also add some vertices to Si to obtain Si+1.
Formally, let F0 = E(C), S0 = ∅ and σ0 as defined above. Let e1, e2, . . . be

an enumeration of the edges of G. Then, perform ω steps of the following type
(skip 0). At step i, let for a moment Si = Si−1 and consider the components
of G − Fi−1. For each of them, say D, there is, by construction, at most one
vertex v ∈ Si incident with D. If there is none, just pick a vertex v incident
with both D and Fi−1 such that the distance between v and ej is minimal, put
v in Si and let Iv be any of the closed intervals of S1 mapped to v by σi−1. As
Fi−1 is a union of disjoint finite circuits, any finite cut in G−Fi−1 is even, since
this was true for G and any finite cycle meets a finite cut in an even number of
edges. Thus, every edge of D is contained in a finite cycle in D. Now choose a
finite cycle CD in D incident with v. Then, to define σi, map Iv continuously
to CD, mapping an initial and a final closed subinterval of Iv to v, and a closed
subinterval of Iv to each vertex and edge of CD, and let all those subintervals
have equal length. Redefine Iv to be one of those subintervals that were mapped
to v.

We claim that the images σi(x) of each point x ∈ S1 converge to a point
in |G|. Indeed, since |G| is compact, it suffices to show that (σi(x))i∈N cannot
contain two subsequences converging to different points. It is easy to check that
if (σi(x))i∈N contains a subsequence converging to a vertex or an inner point of
an edge, then (σi(x))i∈N also converges to that point. So suppose it contains
two subsequences converging to two ends ω, ω′, and find a finite edge set F
separating those ends. Note that F ⊂ Fj for j large enough, so denote by D, D′

the components of G − Fj that contain rays of ω, ω′ respectively. But if x is
mapped on a point p by σj+1, then for all steps succeeding j + 1, x will be
mapped on a point belonging to the component of G−Fj that contains p. Thus
(σi(x))i∈N cannot meet both D, D′ for i > j, a contradiction that proves the
claim.

So we may define

σ : S1 → |G|,

x 7→ lim
n→∞

σn(x)

In order to prove that σ is continuous, we have to show that the preimage of
any basic open set of |G| is open. This is obvious for basic open sets of vertices
and inner points of edges. For every ω ∈ Ω, the sequence of basic open sets of
ω that arise after deleting Fi for any i ∈ N is, clearly, converging, so it suffices
to consider the basic open sets of that form, and it is easy to see that their
preimages are indeed open.
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Thus σ is continuous. By the choice of v it traverses every edge, so it is an
Euler tour.

We now claim that every end ω ∈ Ω has at most one preimage under σ.
Since at every step i, there is only one vertex v in Si meeting the component of
G−Fi that contains rays of ω, Iv is the only interval of S1 in which ω could be
accommodated. Since Iv gets subdivided after every step our claim is true and
thus σ is injective at ends.

An open Euler tour of a locally finite multigraph G is a continuous mapping
from the real unit interval [0, 1] to |G| that traverses every edge of G exactly
once. By the next corollary, Theorem 4 can be extended to open Euler tours;
this will be used in Section 7.6 to obtain a corollary of Theorem 3, but not for
the proof of Theorem 3 itself.

Corollary 8. Let G be a locally finite multigraph, let x, y ∈ V ∪Ω, and suppose
that a finite cut in G is odd if and only if it separates x from y. Then, G has
an open Euler tour with endpoints x, y that is injective at ends.

Proof (sketch). We will only treat the case when x is a vertex and y an end;
the other cases are similar. Let R be a path in G starting at x and devouring
y, which exists by Lemma 10. By Lemma 11, every component of G − R sends
finitely many edges to R. For each such component C, let C̃ be the multigraph
resulting from G after contracting V −C to a single vertex vC . It is easy to check
that every finite cut in C̃ is even, so applying Theorem 4 we obtain an Euler tour
σC of C̃ that is injective at ends. We now use this fact to construct an auxilliary
multigraph from G as follows. For every component C of G−R, decontracting
vC divides σC into a finite number of arcs with endpoints in Ĉ ∩ R; remove C
from G, and for any such arc P add an edge eP , called an arc-edge, joining the
endvertices of P . Doing so for all components C yields a new multigraph G′

having only one end — that of R. By a result of Erdős et al. [17], a locally
finite connected 1-ended graph H has a 1-way infinite trail starting at x and
containing all edges of H if x is the only vertex of odd degree in H . Easily,
every vertex of G′ has the degree it had in G, thus x is the only vertex of odd
degree in G′ and we can apply this result. Writing the resulting 1-way infinite
trail as a mapping σ : [0, 1] → |G′|, and replacing in σ each arc-edge eP with P ,
yields the required open Euler tour.

7 Proof of Theorem 3

7.1 A stronger assertion

Řı́ha’s [32] proof of Theorem 1 mentioned in Section 5 proves in fact a slightly
stronger assertion:

Theorem 9. Let G be a finite 2-connected graph, let y∗ ∈ V (G) and let e∗ =
y∗x∗ ∈ E(G). Then, G2 has a Hamilton cycle that contains e∗ and a y∗-edge
e′ ∈ E(G) with e′ 6= e∗.

Rather than Theorem 1, we will generalise this stronger assertion:

15



Theorem 10. Let G = (V, E) be an infinite 2-connected locally finite graph, let
y∗ ∈ V and let e∗ = y∗x∗ ∈ E. Then, G2 has a Hamilton circle that contains
e∗ and a y∗-edge e′ ∈ E with e′ 6= e∗.

7.2 Constructing the scaffolding

In this section we construct the “scaffolding” G♯ mentioned in Section 5. The
scaffolding will be made of two ingredients: rope-ladders and ear decompositions.
Let us see the definition of the latter and some motivation.

An ear decomposition of a finite H–bridge B in G, where H ⊆ G, is a
connected subgraph of B spanning V (B − H) and containing some vertices of
B ∩H that consists of a sequence C1, C2, . . . , Cn of paths called ears, Ci having
the distinct endvertices pi, qi, so that

• C1 is an H-path, i.e. C1 ∩ H = {p1, q1};

• Ci ∩ (H ∪
⋃

j<i Cj) = {pi, qi} for every i;

• Ci is not an H-path for i > 1, and

• for every i, Ci contains a vertex y(Ci) 6= pi, qi all of whose neighbours in
G lie in H ∪

⋃
j≤i Cj (thus |Ci| ≥ 3).

The endedges of Ci are its bonds, and y(Ci) is its articulation point. An ear
decomposition is what we get from the special cycle C in the proof of Řı́ha (see
Section 5) if we try to make a constructive proof out of Řı́ha’s inductive one.
To see this, recall that in that proof after choosing C we applied the induction
hypothesis to every component D of G − C. To be more precise, the induction
hypothesis is in fact not applied to D, but to an auxiliary graph D̃ resulting
from G after contracting G−D to a vertex z. If we wish to yield a constructive
proof, we can start the procedure again with D̃ instead of G: we can choose a
special cycle C′ ∋ z in D̃, as we chose C in G, and so on. Now if we decontract
z, C′ will look like an arc of an ear decomposition. The special cycle C in Řı́ha’s
proof contained a special vertex, and articulation points play the role of that
vertex.

The role of the ear decompositions in our proof will be to take care of finite
pieces of G that are not in any rope-ladder. The following lemma is similar to
a lemma of Řı́ha [32].

Lemma 12. If G ⊇ H is a 2-connected graph, B is a finite H–bridge, and x is
a foot of B, then B has an ear decomposition such that x lies in C1.

Proof. Pick an H-path C in B starting at x, and let D be a component of
B − (C ∪ H); if there is no such component, then we can let C1 = C, pick
any inner vertex of C1 as y(C1), and choose C1 as an ear decomposition of B.
Suppose that C, D have been chosen so that |V (D)| is minimal. Clearly, D has
at least one neighbour u on C − H . If it has more than one, then let P be
a subpath of C − H whose endvertices u, v are neighbours of D, such that no
inner vertex of P is a neighbour of D, and let C1 be the path resulting from C
after replacing P with a v-u–path through D. If u is the only neighbour of D on
C −H , then let v be a neighbour of D in H , and replace one of the subpaths of
C connecting u to H with a v-u–path through D so that the resulting path C1
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meets x. In both cases, C1 contains a vertex y ∈ D, and we can let y(C1) = y,
because if y had a neighbour in B − (C1 ∪ H), it would lie in a component
D′ ( D of B − (C1 ∪ H), contradicting the choice of C, D.

Now for i = 2, 3, . . ., suppose that C1, C2, . . . , Ci−1 have already been defined
and satisfy the conditions imposed by the definition of an ear decomposition
on its ears. If there is a vertex u of B − H not contained in

⋃
j<i Cj , let

H ′ = H ∪
⋃

j<i Cj , and repeat the above procedure for the H ′–bridge B′ that
contains u, but this time letting a foot of B′ in H ′ − H play the role of x (this
makes sure that Ci is not an H–path), to define the path Ci. If there is no such
vertex u, then C1, C2, . . . , Ci−1 is the wanted ear decomposition.

Let us now turn our attention to rope-ladders. Rope-ladders are in a way
similar to ear decompositions; Their pis (see Figure 7) play a similar role as
the ears of an ear decomposition, although there are important differences. For
example, we cannot guarantee that all neighbours in G of an articulation point
lie in its pi, but instead we will, as explained in Section 5, perform shortcuts
so as to rid articulation points of unwanted neighbours. In order to be able
to perform these shortcuts without changing the end topology, we have to pick
articulation points far enough from each other. But this will be an easy task,
because we can choose the pis to be arbitrarily long.

By a result of Halin [24, Theorem], if G is a locally finite 2-connected graph,
then there are for any v ∈ V (G) and any ω ∈ Ω(G) two independent ω-rays
starting at v. If x, y ∈ V (G), then by applying this result on ω and an imaginary
vertex joined to both x, y with an edge, we obtain the following:

Lemma 13. In a locally finite 2-connected graph G, there are for any x, y ∈
V (G) and any ω ∈ Ω(G) two disjoint ω-rays starting at x, y respectively.

Let ω be any end of G. By Lemma 13, there are two disjoint ω-rays starting
at y∗ and x∗ (recall that y∗, x∗ are the special vertices in the assertion of The-
orem 10), and by Lemma 10 there is a pair {R0, L} of disjoint rays starting at
y∗, x∗ respectively that devours ω. Let L0 = y∗x∗L, and let r0

0 , l
0
0 = y∗. Choose

a sequence (y0
j )j∈N of vertices of R0, and a sequence (P 0

j )j∈N of pairwise disjoint

R0-L0 paths, P 0
j having the endpoints r0

j+1, l
0
j+1, so that y0

0 is the first vertex

on R0 after r0
1 , and for each j > 0 the following conditions are satisfied (see

Figure 7):

• y0
j lies on ẙ0

j−1R
0;

• r0
j+1 lies in ẙ0

j R0ẙ0
j+1, and l0j+1 lies in l̊0jL

0;

• Every (R0 ∪ L0)–bridge that has y0
j−1 as a foot, has all other feet in

r̊0
j−1R

0r̊0
j+1 ∪ l̊0j−1L

0̊l0j+1 − y0
0

(The last condition makes sure that the articulation points are “far” from
each other.) All these conditions are easy to satisfy, if we choose the y0

j and P 0
j

in the order P 0
0 , y0

1 , P
0
1 , y0

2 , P
0
2 , . . .: recall that by Lemma 11 every (R0 ∪ L0)–

bridge has only finitely many feet, so each time we want to choose a new y0
j or

P 0
j , we just have to go far enough along R0 and L0.

Let RL0 be the subgraph of G consisting of RL0
− := R0 ∪ L0 ∪ {P 0

j |j ∈ N}

and the ears of a fixed ear decomposition of every finite RL0
−–bridge, which

exists by Lemma 12. Let R̊L0 = RL0 and let G♯
0 = RL0.
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The construction of G♯
0 was the first step in an infinite procedure the aim

of which is to define G♯. Each step i of this procedure will be similar to the
construction of G♯

0: we will choose rays Ri, Li in G − G♯
i−1

, and add them

together with some Ri-Li–paths and some ear decompositions to G♯
i−1

to obtain

G♯
i . The endpoints of Ri, Li will be distinct vertices of G♯

i−1
.

Formally, let (xi)i∈N be an enumeration of V := V (G), and perform ω steps
of the following type, skipping step 0. At step i, let Ci be the component of
G − G♯

i−1
containing xj , where j is the smallest index so that xj /∈ G♯

i−1
; if

no such j exists, then stop the procedure and set G♯ = G♯
i−1

. If the path Qj

has not been defined yet, then let it be any xj-R̊Ll–path in Ĉi, where l is the
greatest index for which such a path exists. Let v = v(i) be the last vertex of

Qj not in G♯
i−1

, and w = w(i) the vertex after v on Qj (thus w ∈ G♯
i−1

).

Intuitively, we want to have xj in G♯
i , but this might be impossible if xj is

“far” from G♯
i−1

, in which case we just try to make sure that G♯
i is closer to xj

than G♯
i−1

was. In order to make “closer” precise, we define the path Qj , and
in each subsequent step we eat up part of Qj till we reach its endpoint xj ; later

we will formally prove that this does work. The condition that Qj meet G♯
i−1

at R̊Ll is needed in order to guarantee that G♯ has the same end topology as
G. To see why this condition should help retain the topology, it is useful to
compare with the construction of a normal spanning tree. Recall that as seen
in Section 4, a normal spanning tree of a locally finite graph G has the same
end topology as G. A normal spanning tree can be constructed by starting
with the root and no edges, and stepwise attaching new vertices to the already
constructed tree, but each new vertex has to be attached as high as possible on
the existing tree (see [11]). The constuction of G♯ imitates this, in the sense
that rope-ladders are stepwise attached on each other, and the aforementioned
condition on Qj expresses the fact that new rope-ladders should be attached
“as high as possible”.

We claim that:

Claim. There are disjoint rays Ri ≈ Li in Ĉi so that: the first vertex of Ri is
w and the first vertex of Li lies in G♯

i−1
, the pair {Ri, Li} devours some end of

G, and either v ∈ Ri ∪ Li or v lies in a finite component of Ci − Ri ∪ Li.

Proof. Contracting G − Ci to one vertex z, we obtain a 2-connected graph, in
which we can apply Lemma 13 and Lemma 10 to get disjoint rays R′ ≈ L′,
starting at v and z respectively, that devour some end of Ci (Ci is infinite

because at the end of each step i we add all finite components to G♯
i). By

Lemma 11, Ci has finitely many feet, thus R′, L′ also devour some end of G.
If L∗ := dcz(L

′) does not start at w, then Ri := wvR′, Li := L∗ satisfy the

conditions of the claim. If L∗ does start at w , then let P be a G♯
i−1

-(R′ ∪L∗)–
path in G − w. If the endpoint u of P lies on L∗ (respectively R′), then let
R = wvR′, L = PuL∗ (respectively R = PuR′, L = L∗). In the first case (if
u ∈ L∗), v ∈ R ∪ L holds so we can choose Ri = R, Li = L.

In the second case, we can suppose that R′, L′, P have been chosen so that
the path W := wvR′u is minimal. Now if v lies in R or in a finite component of
Ci − R ∪ L we can again choose Ri = R, Li = L. Otherwise, we may contract
G♯

i−1
∪ R ∪ L to a vertex z′, and as above, find disjoint rays R′′ ≈ L′′, starting

at v and z′ respectively, that devour some end of G. We distinguish two cases:
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If L∗∗ := dcz′(L′′) meets W , let r (respectively l) be the last vertex of R′′

(L∗∗) on W (note that r 6= u). Now if r ∈ lWu, let Ri = RuWrR′′ and
Li = wWlL∗∗, whereas if l ∈ rWu, let Ri = RuWlL∗∗ and Li = wWrR′′.
Depending on whether l = w or not, Ri, Li either contradict the minimality of
W , or contain v and thus satisfy all conditions of the Claim.

If L∗∗ does not meet W , then there are three subcases. In the first subcase,
L∗∗ starts at L. Then, let v′ be the last vertex on W meeting R′′, and choose
Li = LL∗∗, Ri = RuWv′R′′. In the second subcase, L∗∗ starts at R, and we can
choose Li = RL∗∗, Ri = wvR′′, and in the third subcase, L∗∗ starts at G♯

i−1
,

and we can choose Li = L∗∗, Ri = wvR′′. Depending on whether v = v′ or not,
Ri, Li either contain v and thus satisfy all conditions of the Claim, or contradict
the minimality of W .

With Ri =: ri
0R

i, Li =: li0L
i having been chosen as in the Claim, pick a

sequence (yi
j)j∈N of vertices of Ri, and a sequence (P i

j )j∈N of pairwise disjoint

Ri-Li paths in Ci, P i
j having the endpoints ri

j+1, l
i
j+1, so that yi

0 is the first vertex

on Ri after the endpoint of P i
0, and for each j > 0 the following conditions are

satisfied:

• yi
j lies on ẙi

j−1R
i;

• ri
j+1 lies in ẙi

jR
iẙi

j+1, and lij+1 lies in l̊ijL
i;

• Every (G♯
i−1

∪ Ri ∪ Li)–bridge in G that has yi
j−1 as a foot, has all other

feet in r̊i
j−1R

ir̊i
j+1 ∪ l̊ij−1L

i̊lij+1 − yi
0

Such a choice is possible because by Lemma 11 every (G♯
i−1

∪Ri∪Li)–bridge

in G has finitely many feet, and there are only finitely many (G♯
i−1

∪ Ri ∪ Li)–

bridges in G with feet on both G♯
i−1

and Ri ∪ Li (again, we choose the yi
j and

P i
j in the order P i

0 , y
i
1, P

i
1, y

i
2, P

i
2, . . .).

Let RLi be the graph consisting of RLi
− := Ri ∪ Li ∪ {P i

j |j ∈ N} and the

ears of a fixed ear decomposition of every finite RLi
−–bridge in G. We call RLi

a rope-ladder (RL0 is also a rope-ladder). Let R̊Li = RLi−{ri
0, l

i
0}. Recall that

one of Ri, Li contains an edge incident with w. Call this edge the anchor of RLi,
unless w = yk

j for some j, k, in which case let the other edge of Ri ∪Li incident

with G♯
i−1

be the anchor of RLi (by the choice of the articulation points, it
cannot be the case that both these edges are incident with some articulation
point). Note that by the choice of Qj and of the yi

j , the anchor of RLi is incident

with RLl, where l is the highest index so that Ci has a foot on RLl. We will
say that RLi is anchored on RLl. Call the edge e∗ = y∗x∗ the anchor of RL0.

Define the relation ≺ between rope-ladders, so that R ≺ R′ if R′ is anchored
on R, and let � be the reflexive transitive closure of ≺. Clearly, � is a partial
order.

For every i ≥ 0, j ≥ 1, call the cycle in RLi
− containing P i

j , P
i
j−1 a window

of RLi, and denote it by W i
j . Moreover, let Πi

0 denote the path ri
0R

iP i
0L

ili0,

and for any j ≥ 1, let Πi
j = W i

j − Πi
j−1. For every i, j ∈ N, call Πi

j a pi, let

y(Πi
j) = yi

j , and call yi
j an articulation point. The bonds of a pi are its endedges.

The bonds of W i
j are the bonds of Πi

j and the bonds of RLi are the bonds of
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Πi
0 (that is, the endedges of RLi). Call the edges of RL0

− incident with y∗ the
bonds of RL0. Recall that ears also have bonds and articulation points. The
following assertion is true by construction:

Observation 1. If RLi sends a bond to R̊Lj, then RLj � RLi.

For suppose that RLi sends a bond to R̊Lj but RLj 6� RLi. Since RLj must
have been constructed before RLi, we have j < i, and thus RLi 6� RLj. Let k
be the greatest index such that RLk � RLi and RLk � RLj (this is well-defined
as RL0 � RLi, RLj). Clearly, RLk 6= RLi, RLj. Now if RLi, RLj lie in the
same RLk-bridge C in G, then by the choice of the paths Qj, R � RLi, RLj

holds where R is the first rope-ladder constructed in C, and R contradicts the
choice of RLk. Thus RLi, RLj lie in distinct RLk-bridges, contradicting the
fact that RLi sends a bond to R̊Lj.

Similarly, we can prove that:

Observation 2. If an ear decomposition sends edges to R̊Li and R̊Lj then
either RLj � RLi or RLi � RLj.

For every i, let the anchor of Πi
0 be the anchor of RLi. For every Πi

j with
j > 0, pick one of its bonds and call it its anchor. For any ear of an ear
decomposition, pick one of its bonds that is not incident with any yi

j and call it
its anchor.

Define the relation ≺ between pis and ears (we are using, with a slight
abuse, the same symbol for two relations) so that Π ≺ Π′ if either Π = Πi

j

and Π′ = Πi
j+1 for some i, j, or Π′ = Πi

0 and RLi sends a bond to an inner
vertex of Π for some i, or Π′ is an ear and it sends a bond to an inner vertex
of Π (consider y∗ to be an inner vertex of Π0

0). Let � be the reflexive transitive
closure of ≺. Clearly, � is a partial order.

Define G♯
i as the union of G♯

i−1
with RLi and an ear decomposition of every

finite (G♯
i−1

∪ RLi)–bridge.

We can now define G♯ :=
⋃

i∈N
G♯

i . In the rest of the paper we will be
working with this graph instead of G , but in order to be able to do so we have
to show that it does not differ from G too much.

Let us prove that V (G♯) = V . By the definition of xj , any vertex v ∈ V
will at some step n either lie in G♯

n, thus also in G♯, or be chosen as xj . By
the choice of Ri, Li, either v(i) ∈ Ri ∪ Li or v(i) lies in a finite component of

Ci − Ri ∪ Li. In both cases, v(i) ∈ G♯
i . Thus, at most |Qj | steps after step n

(when the path Qj was defined) xj will lie in G♯
i , which implies that V (G♯) = V .

Our next aim is to prove that |G♯| ≅ |G|, and we will do so using Lemma 7.
Suppose there are rays Q, T in G♯ such that Q 6≈G♯ T but Q ≈G T . They could
not belong to the end of Ri for any i, because then they would have to meet
RLi infinitely often, and thus, clearly, be equivalent in G♯. Thus there is a j so
that G♯

j separates a tail of Q from a tail of T in G♯ (just choose j large enough

so that G♯
j contains some finite Q-T –separator). We will show that this is not

possible. Indeed, since Q ≈G T , there is a component C of G − G♯
j containing

tails of both Q, T . Clearly, Q has some vertex in C that lies on some RLi
−,

and the same holds for T . So pick k, l ∈ N so that q ∈ V (Q) ∩ C ∩ RLk
− and

t ∈ V (T ) ∩ C ∩ RLl
−. If R is the first rope-ladder constructed in C, then by

the choice of the paths Qi, R � L holds for any rope-ladder L meeting C, in
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particular R � RLk, RLl. Thus, we can find a t-R̊–path P1 in G♯ that uses only
vertices of rope-ladders RLi such that R � RLi � RLl, and a q-R̊–path P2 in
G♯, that uses only vertices of rope-ladders RLi such that R � RLi � RLk. But
P1, P2 and R̊ lie in C, contradicting the fact that G♯

j separates Q from T in G♯.

Thus no such rays Q, T exist and by Lemma 7, |G| ≅ |G♯|.

7.3 Making the graph eulerian

The next step is to replace some edges of G♯ with double edges, in order to turn
it into an eulerian simple multigraph G≬, but so that no anchor is replaced with
a double edge. Rather than constructing the simple multigraph explicitly, we
will show its existence using Theorem 7. In order to meet its condition, we will
show that:

Claim. For every i ∈ N there is an eulerian simple multigraph G
≬
i on V , so

that any two vertices are neighbours in G
≬
i if and only if they are neighbours in

G♯, and furthermore no anchor that lies in G♯[y∗]i — that is, the subgraph of
G♯ induced by the vertices of distance at most i from y∗ — is replaced with a

double edge in G
≬
i .

Proof. If C is a cycle of length at least 3 in the simple multigraph G, then
switching C is the operation of replacing in G each single edge of C with a
double edge, and each double edge containing an edge of C with a single edge.
Note that switching a cycle in a simple multigraph does not affect vertex degrees.

In order to prove the Claim, begin by doubling all edges of G♯. Then, for
every ear decomposition C1, C2, . . . , Ck meeting G♯[y∗]i, recursively, for j =
k, k − 1, . . . , 0, if the anchor of Cj is now a double edge, find a cycle containing
Cj and avoiding

⋃
i>j Ci and all other ear decompositions in G♯, and switch this

cycle. After doing so for all ear decompositions, recursively for j = l, l−1, . . . , 0,
where l is the greatest index such that the anchor of RLl lies in G♯[y∗]i, if
the anchor of RLj is a double edge, switch a cycle comprising Πj

0 and a path

in G♯
j−1

that has the same endvertices as Πj
0 and contains no edge of an ear

decomposition (for j = 0 switch Π0
0 if its anchor is double). After the end of

this recursion, switch every window whose anchor is a double edge and lies in
G♯[y∗]i.

Let G
≬
i be the resulting simple multigraph. Note that G

≬
i resulted from a

simple multigraph where all multiedges are double, after switching a finite set

of cycles. Since switching a cycle does not affect the parity of a finite cut, G
≬
i

is eulerian by Lemma 3. It is easy to see that G
≬
i satisfies all conditions of the

Claim.

In order to apply Theorem 7, define for every edge e ∈ G♯ a logical vari-
able v(e), the truth-values of which encode the two possible multiplicities of e,
and let V be the set of these variables. For every finite cut F of G♯, write a
propositional formula with variables in V , expressing the fact that the sum of
the multiplicities of the edges in F is even. Moreover, for every anchor e in G♯,
write a propositional formula with the only variable v(e), expressing the fact
that e is not replaced with a double edge.

Our last Claim implies that every finite set of these propositional formulas
is satisfieable, so by Theorem 7 there is an assignment of truth-values to the
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elements of V satisfying all these propositional formulas. This assignment en-
codes an assignment of multiplicities to the edges of G♯, which defines a simple
multigraph G≬ which is eulerian (by Lemma 3), and in which all anchors of G♯

form single edges.
Let G6≬ be the simple multigraph resulting from G≬ after deleting each double

edge that has the same endvertices as a bond in G♯. Obviously, |G≬| ≅ |G♯|
holds, and we claim that furthermore |G6≬| ≅ |G≬|. In order to prove this
assertion, we will specify a thin set of detours for the deleted edges and apply
Lemma 8.

If e = pq is a deleted bond of a rope-ladder RLi, let RLj be the rope-ladder
with the least index so that e meets R̊Lj, and suppose that p lies in R̊Lj and q
in R̊Li. We claim that there is a p-q–path dt(e) in G6≬ that satisfies the following
conditions:

(i). dt(e) is contained in the union of the rope-ladders R such that RLj � R �
RLi;

(ii). dt(e) avoids all pis of RLj below the first one that sends an edge to the

component C of G♯ − G♯
j that contains R̊Li.

To prove this, note that as each pi lost at most one bond and no other edges,
R̊Ll∩G6≬ is connected for every l, and so if RLl is anchored on RLk, then for any
vertex r in R̊Ll there is an r-R̊Lk–path in RLl ∩G6≬ that contains the anchor of
RLl. As RLj � RLi by Observation 1, we can use this fact recursively to obtain
a q-RLj–path P in G6≬ ∩G♯

i that is contained in the union of the rope-ladders R
such that RLj � R � RLi, and thus avoids the pis of RLj below the first one
that sends an edge to C. Since p lies in a pi that sends an edge to C (namely,
pq), and each pi lost at most one bond, we can prolong P by a path in RLj ∩G6≬

to obtain the desired path dt(e).
If e is a deleted bond of an ear of an ear decomposition D, let i be the greatest

index such that R̊Li meets D and let j be the least index such that R̊Lj meets
D. Then, Observation 2 yields RLj � RLi, and we can, by a similar argument
as in the previous case, find a p-q–path dt(e) in G6≬ contained in the union of D
with the rope-ladders R such that RLj � R � RLi which avoids the pis of RLj

below the first one that meets the (G♯
j−1

∪RLj
−)-bridge in G♯ that contains D.

Finally, if e is a deleted bond of a window W , then let dt(e) = W − e.
We claim that the set {dt(e)|e ∈ E(G≬) − E(G6≬)} is thin. To prove this,

it suffices to show that for any fixed edge f there are only finitely many rope-
ladders and ear decompositions that can contribute a dt(e) containing f . This is
clear if f lies in an ear decomposition D, as a detour dt(e) can only go through
f in that case if e ∈ D (see (i)), so suppose that f ∈ Πl

m for some l, m. Let
us start by showing that there are finitely many rope-ladders that contribute
a dt(e) containing f . By (i) there are two kinds of rope-ladders R that have a
deleted bond e such that dt(e) containins f : the ones for which e meets R̊Ll

(i.e. the rope-ladder containing f), and the ones for which e meets some rope-
ladder L � RLl, L 6= RLl. By (ii), the rope-ladders of the first kind belong

to components of G♯ − G♯
l that send an edge to some Πl

k with k ≤ m. Since
the graph is locally finite, there are only finitely many such components, and by
Lemma 11 each of them sends finitely many edges to RLl. As these edges are the
only candidates for e, there are only finitely many rope-ladders of the first kind.
Let R be a rope-ladder of the second kind, let e be its deleted bond, and let
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RLk be the rope-ladder on which RLl is anchored (RLl 6= RL0 by the definition
of the second kind). Then by (i), R̊ and R̊Ll lie in the same component C of

G♯ − G♯
k, and as e has to be one of the edges between C and G♯

k, which again
by Lemma 11 are only finitely many, there are only finitely many rope-ladders
of the second kind that can contribute a dt(e) containing f .

It remains to show that there are finitely many ear decompositions that
contribute a dt(e) containing f . To see this, note that by the definition of dt(e)

any such ear decomposition D must lie in a (G♯
l−1

∪RLl
−)-bridge in G♯ that has

feet in both G♯
l−1

∪
⋃

k≤m Πi
k and RLl

−, and by the construction of G♯ there

are only finitely many such bridges; indeed, any such bridge lies in the G♯
l−1

-

bridge in G in which RLl lies, and this bridge has finitely many feet on G♯
l−1

by Lemma 11. Again, every (G♯
l−1

∪ RLl
−)-bridge in G♯ sends finitely many

edges to (G♯
l−1

∪ RLl
−) by Lemma 11, and as D must send an edge to G♯

l−1
∪

⋃
k≤m Πl

k by the definition of dt(e), there are finitely many ear decompositions
that contribute a dt(e) containing f .

This proves our claim that the set {dt(e)|e ∈ E(G≬)−E(G6≬)} is thin, which
by Lemma 8 implies that |G6≬| ≅ |G≬| ≅ |G♯|.

7.4 Splitting into finite multigraphs

7.4.1 Larvae and caterpillars

While constructing G♯ we defined many terms like pi, window, rope-ladder, etc.
that were subgraphs of G♯. We will use those names and symbols for G6≬ as well,
but now we will mean the simple multigraphs in G6≬ that replaced the subgraphs
of G♯ that used to bear these names and symbols; thus when referring to G6≬,
we will use Πi

j to denote the subgraph of G6≬ spanned by the multiedges whose

endvertices were joined by an edge of Πi
j in G♯, a bond (respectively anchor) is

a multiedge whose endvertices where joined by a bond (resp. anchor) in G♯, and
so on. Moreover, xy denotes from now on the multiedge with endvertices x, y.

According to our plan, as stated in Section 5, we want to split the graph in
larvae; let us introduce them formally. A larva is a pair (s, P ), where P is a
multipath — i.e. a simple multigraph obtained from a path after replacing some
of its edges with double edges — in G6≬, s is one of its endvertices, called its
mouth, and the multiedge of P incident with s is a single edge (if it exists). For
every larva W = (s, P ), we label the vertices of P with xi = xi(W ), so that
P = x0(= s)x1x2 . . . xn. Moreover, let ei = ei(W ) denote the multiedge xi−1xi,
and if ei is a double edge denote its edges by e−i , e∩i , otherwise let e−i be its only
edge. Let P (W ) = P . Whenever we use an expression assuming a direction on
P or W , we consider x0 to be its first vertex and xn its last. In order to simplify
the notation, we will also write sPy for the larva (s, sPy).

Recall that we want to impose some constraints on the Euler tour that is
supposed to produce a Hamilton circle of G. This is done separately for each
larva following the pattern of Figure 6: metamorphosing the larva W =: (s, P ),
is the operation of replacing, in P and in G6≬, the edges e∩j+1, e

−
j , for every j

such that ej+1 is a double edge, with an xj−1xj+1 edge fj (Figure 9). The
edge fj is called a representing edge and it represents the edges e∩j+1, e

−
j . Note

that e∩j+1, e
−
j , fj form a triangle. The caterpillar of W is the graph X resulting
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from P after metamorphosing W . Note that X is connected. Each time we
metamorphose a larva, we will assume that for each deleted edge e, a detour
dt(e) ⊆ X for e is automatically specified. These detours will be used after
we are done metamorphosing larvae in order to show, using Lemma 8, that the
end-topology did not change.

xj−1 xj−1

xj+1 xj+1

xj xj

ej

fj

je∩+1

−

ej+1
−

Figure 9: Replacing e∩i+1 and e−i with a new edge fj .

If P has length at least 2 and the last multiedge ek of P is a single edge,
then completely metamorphosing W is the operation of metamorphosing W and
then replacing e−k , e−k−1

with an xk−2xk edge fk−1, also called a representing
edge. If W is completely metamorphosed, then its pseudo-mouth is its last
vertex. The two-headed caterpillar of W is the graph X resulting from P after
completely metamorphosing W . A two-headed caterpillar has a big advantage
in comparison to a caterpillar: the additional constraint (on the Euler tour),
allows it to be hamiltonised so that its last edge, as well as its first, is not
shortcutted, and so its pseudo-mouth is allowed to meet other larvae (even if it
is not an articulation point). This advantage however, comes at a high price: a
two-headed caterpillar is a disconnected graph, with two components. For this
reason, each time we completely metamorphose a larva W to obtain X , we will
specify some detour dt(X) for X , that is, a path connecting the two components
of X (note that the last two vertices of P (W ) lie in distinct components of X ,
and in fact dt(X) will always be a path connecting those vertices). We assume
that for each edge e deleted while completely metamorphosing W to get X , a
detour dt(e) for e in X ∪ dt(X) is automatically specified.

We now divide the graph into larvae, and either metamorphose or com-
pletely metamorphose each of them. (According to the sketch of the proof in
Section 5, we first split the graph into larvae and then impose the constrains on
the Euler tour, but in fact these two steps will be performed simultaneously, the
constrains being imposed by metamorphosing or completely metamorphosing
the larvae.) Formally, we will specify a set of edge-disjoint larvae W so that
G6≬ =

⋃
W∈W P (W ), and the following conditions are satisfied:

Condition 1. If W, W ′ ∈ W, then W, W ′ are edge-disjoint, and if x is a vertex
lying in both W and W ′ then one of the following is the case:

• x is the mouth of W or W ′;

• x is the pseudo-mouth of W or W ′; or

• x is an articulation point, both W, W ′ end at x, and the last multiedges of
both W, W ′ are single (none of W, W ′ will be completely metamorphosed
in this case).
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Condition 2. For every x ∈ V −y∗, there is an element W (x) of W containing
x so that x is neither the mouth nor the pseudo-mouth of W (x) (by Condition 1,
there is at most one W ∈ W with this property, unless x is an articulation point;
if there are more than one then we just pick one and call it W (x)).

In the rest of this section we will construct a simple multigraph G∢ on V by
performing operations of the following kinds on G6≬:

• replacing two incident edges e, f with an edge forming a triangle with e, f ;

• switching a window (we defined switching in the beggining of Section 7.3);

• adding a double edge from G≬ − G6≬;

• deleting a double edge.

Note that metamorphosing or completely metamorphosing a larva is a set
of operations of the first kind. Each time we delete an edge, we will specify a
detour in G∢, so as to be able to use Lemma 8 to prove that we did not change
the end topology. The fact that we only use the above operations will imply
that the graph remains eulerian after all changes.

Define W to be the set of larvae that we will metamorphose or completely
metamorphose in what follows. For any pi or ear Π, denote by a(Π) the end-
vertex of Π incident with its anchor, and by b(Π) the other endvertex of Π
(a(Π0

0) = b(Π0
0) = y∗).

In Section 5, and in particular in Figure 8, the rules according to which we
split the graph in larvae were roughly given. The idea behind these rules is to
keep the graph induced by V (R̊Li

−) connected for every i, so as to guarantee
that the end topology remains the same. If however, we apply those rules to
Πi

0, then we could disconnect part of it from the rest of RLi
−. To avoid this, we

will treat pis of the form Πi
0 differently.

So we will construct G∢ in two phases, in the first of which we will take care
of the pis of the form Πi

0, and in the second of the rest of the graph. At any
point of the construction it will be an easy check — left to the reader — that
Condition 1 holds for all larvae defined up to that point. Moreover, each pi or
ear Π will be considered at some point, and then every vertex in Π−{a(Π), b(Π)}
will be put in some larva in W without being its mouth or its pseudo-mouth.
As a(Π), b(Π) lie in some other pi or ear as well, this is enough to guarantee
that Condition 2 will be satisfied.

7.4.2 The first phase

For the first phase, perform ω steps of the following kind. In step i, if Πi
0 has

already been handled, that is, divided into larvae, in some previous step, or if
one of its bonds e is not present in G6≬ — that is, if there is no edge in G6≬

connecting the endpoints of e — proceed with the next step. Otherwise, if zw
is a bond of Πi

1 that is not present in G6≬, then add a z-w double edge. We
consider two cases.

In the first case, called Case I, both multiedges e = ri
1y, e′ incident with

y := yi
0 in Πi

1 are single or both are double edges. If they are both double, then
switch W i

1. No matter if we switched W i
1 or not, metamorphose the larvae (ri

1, e)
(this is a trivial larva) and li0Π

i
0l

i
1Π

i
1y (Figure 10; recall that by the definition of
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G6≬, any bond present in it is a single edge). Then, if the multiedge d = li1l
′ of

P i
0 incident with li1 is double, delete d and metamorphose the larva ri

0Π
i
0l

′; pick
a detour dt(d) for d in the union of the three resulting caterpillars (that is, the
caterpillars of (ri

1, e), li0Π
i
0l

i
1Π

i
1y and ri

0Π
i
0l

′). If d is single and there is a double
edge f on P i

0 , delete f and metamorphose the larvae li1P
i
0f and ri

0Π
i
0f ; pick a

detour dt(f) in the union of the four resulting caterpillars. If there is no double
edge on P i

0, let r′ be the neighbour of ri
1 on P i

0 , metamorphose the larva li1P
i
0r

′

and completely metamorphose the larva ri
0Π

i
0r

′ (Figure 11); a detour for the
two-headed caterpillar X of ri

0Π
i
0r

′ can be found in the union of the resulting
caterpillars. It is easy to confirm that the following is true:

Observation 3. No detour specified in Case I meets any pi Π 6= Πi
0 for which

Π � Πi
0 holds.

Recall that whenever we metamorphose a larva we assume that for each
deleted edge a detour is chosen that lies in the resulting caterpillar. Obser-
vation 3 refers to these detours as well as the ones explicitely specified above.
Observation 3 and other observations of this kind that will follow will help prove
that the set of detours that will be defined in this section is thin.

P i
0

li0

ri
0

li1

Π
i
0

d
l′

e e′
y
i
0
=

y

Π
i
1

ir1

Figure 10: Splitting into larvae: Case I, and d is double. The dashed lines indicate
larvae, and arrows show away from the mouth.

P i
0

li0

ri
0

li1

Π
i
0

d

e e′
y
i
0
=

y

Π
i
1

r′

ir1

Figure 11: Splitting into larvae: Case I, and no double edge on P i
0 . The line with

arrows at both ends indicates a larva that will be completely metamorphosed.

In the second case, called Case II, one of e, e′ is single and the other is
double. We want to choose and metamorphose some larvae, so as to obtain an
R̊Li

−–path Ai with one endpoint at y in the union of the resulting caterpillars,
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which path will help us delete an edge in RLi
− without putting the end topology

at risk; Ai will help by being part of a detour for the deleted edge.
Since y has even degree in G6≬, there is at least one single bond (other than e)

incident with y. Pick such a bond b, so that the pi or ear Π0 of which b is a bond
is minimal with respect to �. Note that b cannot be the anchor of Π0, since y
is an articulation point. Let Π1 be the pi or ear that contains a(Π0) as an inner
vertex. Metamorphose the larva (a(Π0), Π0), and let A0 be a y-a(Π0)–path in
the resulting caterpillar (A0 will be an initial subpath of Ai). If Π1 lies in RLi

−,

then we can choose Ai = A0, which is indeed an R̊Li
−–path in that case. If

not, then we will go on recursively, trying in each step j to extend the already
chosen initial subpath Aj−1 of Ai, by attaching a path in V (Πj), where Πj will
be a pi or ear containing the endpoint of Aj−1, to reach a pi or ear Πj+1 � Πj .
As we shall see, we will, sooner or later, land on RLi

−.
Formally, for j = 1, 2, . . . perform a step of the following kind. Suppose that

Πj , Aj−1 have been defined. If a bond b of Πj is not present in G6≬, that is,
there is no edge in G6≬ between the endvertices of b, then metamorphose the
larva a(Πj)Πjb, and let Aj be the concatenation of Aj−1 with an Aj−1-a(Πj)–
path in the resulting caterpillar — as we shall see, Πj could not have been
handled while constructing an Ak for some k < i. Let Πj+1 be the pi or ear
that contains a(Πj) as an inner vertex (note that a(Πj) 6= y, since no anchors
are sent to an articulation point). If both bonds of Πj are present in G6≬, then
they are both single edges and we distinguish two cases.

In the case that y(Πj) is incident with a double edge f on Πj , delete f
and metamorphose the larvae a(Πj)Πjf and b(Πj)Πjf . Let W be the one of
these two larvae that meets Aj−1, and let Aj be the concatenation of Aj−1

with a path in the caterpillar of W connecting Aj−1 to the mouth s of W (note
that y 6= b(Πj), because otherwise we would have chosen Πj rather than Π0;
thus s 6= y). Let Πj+1 be the pi or ear containing s as an inner vertex (thus
Πj+1 � Πj). A detour for f will be specified (much) later.

In the case that y(Πj) is incident with no double edge on Πj , metamorphose
the larvae a(Πj)Πjy(Πj) and b(Πj)Πjy(Πj). Let Aj be the concatenation of
Aj−1 with an Aj−1-a(Πj)–path in the union of the resulting caterpillars. Let
Πj+1 be the pi or ear that contains a(Πj) as an inner vertex.

In all cases, if Πj+1 lies in RLi
− we stop the recursion and let Ai = Aj , which

is by construction an R̊Li
−–path with precisely one endpoint at y. We call it

the apophysis of RLi. If Πj+1 does not lie in RLi
−, we proceed with the next

step. Clearly Πj+1 � Π0, and furthermore Πi
0 � Πj+1, because otherwise the

G♯
i–bridge in which Π0 lies meets both yi

0 and G♯
i−1

, contradicting the choice
of yi

0. Since there are only finitely many pis or ears Π with Πi
0 � Π � Π0, the

procedure will stop after k ∈ ω steps, with Πk+1 lying in RLi
−.

With a similar argument we see that as promised above Πj could not have
been handled while constructing an Ak for some k < i. For if Ak uses Πj , then
as Ak has to reach Πk

0 or Πk
1 � Πi

0, it has to go through Πi
0 (recall that Πj lies in

a (G♯
i−1

∪RLi
−)-bridge that meets y = yi

0, and thus has all feet in Πi
0∪Πi

1). But
then, Πi

0 would have been handled before beginning with the construction of
Ai, and we would have proceeded to step i + 1 without ever trying to construct
Ai. This implies in particular that Ai, Ak are disjoint if i 6= k.

The following observation will be useful in Section 7.5 where we will “clean
up” the articulation points.
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Observation 4. If Ai contains an edge f incident with an articulation point
yk

l 6= y, then either f lies in RLk or it represents two edges that lie in RLk.

Indeed, if Observation 4 is false, then pick the least j such that Aj contains
an edge f contradicting it. Since by construction all edges added to Aj in step j
either lie in Πj or represent edges of Πj , f is the last edge of Aj and its incident
vertex in Πj+1 is an articulation point yk

l . But then, Aj yields a path (after
replacing representing edges with the edges they represent) in G♯ that lies in a

(G♯
k−1

∪ RLk
−)-bridge and connects yk

l to RLi � RLk, contradicting the choice

of yk
l .

We now divide Case II into three subcases, depending on where the endpoint
y′ 6= y of Ai lies. In all cases, our aim is to split Πi

0 ∪ Πi
1 in a set of larvae Wi,

so that (in addition to Conditions 1 and 2) the following two conditions are
satisfied (note that these conditions are also satisfied in Case I):

Condition 3. The union of Ai with the graph induced by V (Πi
1 ∪ Πi

0 − b(Πi
0))

after metamorphosing all larvae in Wi is connected.

Condition 4. ri
2, l

i
2 lie in the same larva in W. If some pi Πk

j was handled

while constructing Ai, then rk
j+1, l

k
j+1 lie in the same larva in W.

First we consider the case y′ ∈ Πi
1−ri

1 (Figure 12). If e is double, then switch
the window W i

1 . Now e is single and e′ double; delete e′. Then, metamorphose
the trivial larva (ri

1, e), and the larva li0Π
i
0l

i
1Π

i
1e

′. Pick a detour dt(e′) for e′ in the
union of Ai with the resulting caterpillar. Next, handle Πi

0 like in Case I: if the
multiedge d = li1l

′ of P i
0 incident with li1 is double, delete it and metamorphose

the larva ri
0Π

i
0l

′; pick a detour dt(d) for d in the union of the resulting caterpillars
and Ai. If d is single, and there is a double edge f on P i

0 (Figure 12), delete f and
metamorphose the larva li1P

i
0f and the larva ri

0Π
i
0f ; pick a detour dt(f) in the

union of the resulting caterpillars and Ai. If there is no double edge on P i
0, let

r′ be the neighbour of ri
1 on P i

0 , metamorphose the larva li1P
i
0r

′ and completely
metamorphose the larva ri

0Π
i
0r

′; a detour for the resulting two-headed caterpillar
can again be found in the resulting caterpillars and Ai.

P i
0

li0

ri
0

li1

Π
i
0

d

e e′
y

Π
i
1f

y′

Ai

ir1

Figure 12: Splitting into larvae: Case II, y′
∈ Πi

1 − ri
1, and there is a double edge f

on P i
0 .

In the case that y′ ∈ l̊i0Π
i
0 l̊

i
1, switch W i

1 if needed so as to make e single and
e′ double; delete e′. Then metamorphose the trivial larva (ri

1, e), and the larva
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ri
0Π

i
0l

i
1Π

i
1e

′ (Figure 13). Pick a detour dt(e′) for e′ in the union of the resulting
caterpillars. Then, if the first multiedge h = li1l

′′ of li1Π
i
0y

′ is double, delete it
and metamorphose the larva li0Π

i
0l

′′; pick a detour dt(h) for h in the resulting
caterpillars and Ai. If h is single, and there is a double edge f on li1Π

i
0y

′, delete
it and metamorphose the larva li1Π

i
0f and the larva li0Π

i
0f ; pick a detour dt(f)

in the resulting caterpillars and Ai. If there is no double edge on li1Π
i
0y

′, let z
be the neighbour of y′ on li1Π

i
0y

′, metamorphose the larva li1Π
i
0z (unless li1 = z)

and completely metamorphose the larva li0Π
i
0z (Figure 13); a detour for the

resulting two-headed caterpillar can again be found in the resulting caterpillars
and Ai.

P i
0

li0

ri
0

li1

ir1

Π
i
0

d

e e′
y

Π
i
1

y′

Ai

z

Figure 13: Splitting into larvae: Case II, y′
∈ l̊i0Π

i
0̊l

i
1, and no double edge on li1Π

i
0y

′.

Finally, if y′ ∈ r̊i
0Π

i
0 l̊

i
1, switch W i

1 if needed so as to make e double and e′

single; delete e. Metamorphose the larva li0Π
i
0l

i
1Π

i
1y. If the multiedge d = li1l

′

of P i
0 incident with li1 is double, delete it and metamorphose the larva ri

0Π
i
0l

′;
pick a detour dt(d) for d in the resulting caterpillars and Ai. If d is single, and
there is a double edge f on li1Π

i
0y

′, delete it and metamorphose the larva li1P
i
0f

and the larva ri
0Π

i
0f ; pick a detour dt(f) in the resulting caterpillars and Ai.

If there is no double edge on li1Π
i
0y

′, let z be the neighbour of y′ on li1Π
i
0y

′,
metamorphose the larva li1P

i
0z and completely metamorphose the larva ri

0Π
i
0z;

a detour for the latter larva can again be found in the resulting caterpillars and
Ai. A detour dt(e) for e can always be found in the resulting caterpillars and
Ai.

It is easy to confirm that the following is true:

Observation 5. No detour specified in Case II meets any pi Π 6= Πi
0 for which

Π � Πi
0 holds.

Now is the time to specify a detour dt(d) for each edge d we deleted during
the construction of Ai. It will suffice to construct paths D1, D2 each connecting
a distinct endpoint of d to RLi

− ∪ Ai. Then, since D1, D2 can only meet RLi
−

in Πi
0 or Πi

1 by the construction of RLi, we can, by Condition 3, find a path D
with vertices in V (Πi

0 ∪ Πi
1 ∪ Ai) connecting the endpoints of D1, D2, and set

dt(d) = D1 ∪ D ∪ D2.
Deleting d separated the pi or ear on which it lies in two subpaths Q1, Q2,

which have already been metamorphosed, and one of them, say Q1, meets Ai,
so we can choose D1 to be a d-Ai–path in the corresponding caterpillar. In
order to choose D2, we imitate the procedure we used to construct Ai: we split
the pi or ear on which Q2 lands in one or two larvae, unless it has already been
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handled (that is, split in larvae), making the same distinction of cases as we did
for Πj while constructing Ai, and prolong our current path by a path in the
new caterpillars that brings us a bit closer to RLi

− (or Ai). We repeat until we
meet RLi

− ∪ Ai; we will meet it sooner or later, by the argument that showed
that Ai has to meet RLi

−.
While constructing dt(d), we might delete other double edges. But then, we

just repeat the procedure recursively to find detours for them as well. Since,
easily, any deleted edge lies in a pi or ear Π for which Πi

0 � Π � Π0 holds
(Π0 was defined while constructing Ai), this will happen only finitely often. All
these detours are chosen in already metamorphosed parts of the graph, and are
thus immune to further changes. Note that Condition 4 still holds. Moreover,
the following is true:

Observation 6. If a detour for an edge deleted while constructing Ai meets
some pi or arc Π, then Πi

0 � Π � Π0 holds.

The first phase is now completed.

7.4.3 The second phase

We proceed to the second phase. Let (πi)i∈N be an enumeration of the pis that
were not handled above, so that i ≤ j if πi � πj . For i = 1, 2, . . ., if a bond b of
Π := πi is not present in G6≬, metamorphose the larva a(Π)Πb. If not and both
multiedges on Π incident with y := y(Π) are single, metamorphose the larvae
a(Π)Πy and b(Π)Πy. Otherwise, delete a double edge f incident with y, and
metamorphose the larvae a(Π)Πf and b(Π)Πf . Note that in this case, Π = Πk

l

for some k and l > 0, and Πk
l−1

has already been handled. By Condition 4 and
by the way the pis in this phase are handled, a(Π) and b(Π) lie in the same
larva W of Πk

l−1
. Pick a detour dt(f) for f in the union of the caterpillar of W

with the caterpillars of the larvae of Π. Clearly, the following is true:

Observation 7. dt(f) does not meet any pi Π 6= Πk
l−1

for which Π � Πk
l−1

holds.

Having handled all pis, we go on to the ear decompositions. For every ear
decomposition D with ears C1, C2, . . . , Ck, recursively for i = k, k − 1, . . . , 1, if
Ci has not been handled yet (while constructing some apophysis), then we want
to split Ci into larvae, so that we can move from any vertex of Ci towards some
RLn

−, without using an edge incident with some yj
l ; more precisely, we will split

Ci into larvae, metamorphose them, and perhaps make some shortcuts, so that
after all changes have been made to Ci, the following condition is satisfied:

Condition 5. For every x ∈ V (Ci), there is a path that connects x to some pi
or ear Π � Ci, Π 6= Ci, and contains no edge incident with any yj

l .

We consider two cases. For the first case, if Ci ∩ G6≬ does not meet any yj
l ,

then we treat it similarly with a pi in (πi)i∈N: if a bond b of Ci is not present
in G6≬, we metamorphose the larva a(Ci)Cib. If not and both multiedges on Ci

incident with y := y(Ci) are single, we metamorphose the larvae a(Ci)Ciy and
b(Ci)Ciy. Otherwise, we delete a double edge f incident with y, and metamor-
phose the larvae a(Ci)Cif and b(Ci)Cif ; a detour for f will be specified later.
Clearly, Condition 5 is now satisfied.
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In the second case, when Ci ∩ G6≬ meets yj
l for some j, l, note that both

bonds of Ci must be present in G6≬, as by definition the anchor of Ci does not
meet yj

l . Now if both multiedges on Ci incident with y := y(Ci) are single,
metamorphose the larvae a(Ci)Ciy and b(Ci)Ciy. Otherwise, as the bonds of
Ci are single edges, and y is incident with a double edge, there is in a(Ci)Ciy
a vertex incident with a single as well as a double edge in Ci; let u be the first
vertex in a(Ci)Ciy with that property. All vertices have even degree in the cur-
rent simple multigraph; indeed, we started with the eulerian simple multigraph
G6≬, and the operations we have been performing (see list after Condition 2)
preserve the parities of the vertex degrees. Thus u has an odd number of edges
outside Ci. By the definition of the articulation points, and as the ear decom-
position D meets yj

l , all these edges lie in RLj
− ∪

⋃
n≤i Cn–bridges. Thus u has

an odd number of edges in some RLj
−∪

⋃
n≤i Cn–bridge B in the current simple

multigraph; clearly, all vertices of B lie in
⋃

n>i Cn, so B is finite. Again since
all vertices have even degree, in particular those in B, by the “hand-shaking”
lemma B has at least one foot v 6= u in RLj

− ∪
⋃

n≤i Cn; let P be a u-v–path in
B. We consider three subcases:

If v /∈ Ci, then there is no double edge in a(Ci)Ciu by the choice of u, so
let u′ be the neighbour of u on a(Ci)Ciu, metamorphose the larva a(Ci)Ciu

′

and completely metamorphose the larva yj
l Ciu

′ (we will specify a detour for the
two-headed caterpillar later). We claim that Condition 5 is now satisfied for
Ci. Indeed, V (Ci) is divided in a caterpillar X and a two-headed caterpillar Y ,
and if x ∈ V (Ci) − {a(Ci), b(Ci)} lies in X , then there is an x-a(Ci)–path in
X , whereas if x lies in Y , then by the construction of a two-headed caterpillar,
either there is an x-u–path in Y avoiding yj

l , which can be extended by P to an

x-v–path, or there is an x-u′–path in Y avoiding yj
l , which can be extended by

a u′-a(Ci)–path in X to an x-a(Ci)–path.
If v ∈ Ci, and there is no double edge in vCiu, then it follows from the

definition of u that u ∈ yj
l Civ. Let u′ be the neighbour of u on vCiu, completely

metamorphose the larva yj
l Ciu

′ and metamorphose the larva a(Ci)Ciu
′ (even if

u′ = v). By a similar argument as in the previous subcase, we see that again
Condition 5 is satisfied.

If v ∈ Ci, and there is a double edge f in vCiu, delete f and metamorphose
the larvae W1 := a(Ci)Cif and W2 := yj

l Cif . To see that Condition 5 is
satisfied, note that if x is a vertex in W2, then there is in the caterpillar of W2

a path connecting x to P that avoids yj
l , and there is in the caterpillar of W1 a

path connecting the endpoint of P to a(Ci).
In the last subcase, if in addition v = yj

l then let X be the caterpillar

containing v, and shortcut the edges of P ,X incident with yj
l ; call the new edge

a shortcutting edge. Note that this change does not affect the satisfaction of
Condition 5 by the ears in

⋃
n>i Cn; neither does it affect any apophysis by

Observation 4. Moreover, we claim that the shortcutted edges did not lie in
any detour. Indeed, there are two kinds of vulnerable detours: those defined
while constructing Aj , and those defined while handling the ears of D. For
the former, note that by the choice of Π0 in the construction of Aj , we have
Π0 � Ci because Ci is a candidate for Π0, and by Observation 6 no detour of
the first kind was affected. For the latter, note that we have not yet specified
any detours for deleted edges in D, apart from those automatically specified
when metamorphosing a larva. But if yj

l lies in a larva W = (s, P ) in D, then
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it is easy to check that yj
l = s by construction, and since s has degree 1 in P

and in the caterpillar of W , no such detour goes through yj
l . Thus our claim is

true.
We need to specify detours for the edges of D that we deleted and for the two-

headed caterpillars. For every deleted edge e (respectively two-headed caterpil-
lar X), pick paths P1, P2 in the new graph, each connecting a distinct endvertex
of e (a vertex of a distinct component of X) to V − V (

⋃
D), which exist by

Condition 5. Let Π be the lowest pi with respect to � that
⋃

D sends a bond
to, and let Π′ be a pi for which Π′ ≺ Π holds (unless Π = Π0

0, in which case let
Π′ = Π). By Condition 3 and the way we handled the pis in the second phase, a
path P3 connecting the endpoints of P1, P2 can be chosen in the new graph that
does not meet any pi lower than Π′ with respect to �. Let dt(e) (respectively
dt(X)) be the path P1 ∪ P2 ∪ P3.

This completes the second phase. Denote the resulting simple multigraph by
G∢. Let G1 := (V, E(G∢)∪E(G6≬)). Easily, by Lemma 8, |G1| ≅ |G6≬|. The set
{dt(e)|e ∈ E(G1)−E(G∢)} is thin (if e ∈ E(G1)−E(G∢) is one of the parallel
edges belonging to a double edge e′, then take dt(e) to equal dt(e′) in case only
the latter has been defined), since each time we chose some dt(e) we specified a
pi Π0, such that no pi Π′ � Π0 could meet dt(e) (see Observations 3 and 5 to 7
and the relevant remark in the previous paragraph), and no pi can have been
specified as Π0 infinitely often. Thus, again by Lemma 8, |G∢| ≅ |G1| ≅ |G6≬|.

By Condition 4 and by the way that the pis in the second phase were handled,
we obtain:

Observation 8. V (Ai ∪ RLi − b(Πi
0)) induces a connected subgraph of G∢ for

every i.

(Where we assume that Ai is the empty graph if it has not been defined.)

7.5 Cleaning up the articulation points

Keeping to our plan, we now rid the articulation points of unwanted edges.
For every i, j ∈ N, let F be the set of edges incident with yi

j in G∢ that have

an endvertex outside V (RLi ∪ Ai). By the construction of G♯ and G∢, every
element of F is or represents a bond, and as double bonds were deleted while
constructing G6≬, there is no pair of parallel edges in F . Now let f1, f2, . . . fk be
an enumeration of F , and for l = 1, 2, . . . , ⌊k

2
⌋, shortcut f2l−1 with f2l. Call the

new edges shortcutting edges (recall that we have already defined another kind
of shortcutting edges in Section 7.4.3). We are left with a simple multigraph
Gy, where each yi

j is incident with at most one edge not in Ri; indeed, even if

Ai exists, |F | is even in that case because of parity reasons.
Nothing needs to be done at articulation points of ears, because they do

not have any unwanted edges by construction. Again, we claim that we didn’t
change the end topology.

Let G2 := (V, E(G∢) ∪ E(Gy)). Applying Lemma 8 to G2, G
∢, using as a

detour dt(e) for each edge e in E(G2)−E(G∢) the two edges of G∢ shortcutted
to give e, we prove that |G2| ≅ |G∢|.

We want to specify a detour for each deleted edge and apply Lemma 8. For
each edge e = uv ∈ E(G2) − E(Gy), either e is a bond, or it represents a bond
of Π where Π is either Πl

0 for some l, or an ear. Let yi
j be the articulation point
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where e was shortcutted, and suppose that u = yi
j. Note that by Observation 4

(Section 7.4.2) no edge of an apophysis was shortcutted.
In the case that Π = Πl

0 for some l, we have RLi � RLl by Observation 1,
thus there is a finite sequence of rope-ladders R1, R2, . . . , Rk such that RLi =
Rk ≺ Rk−1 ≺ . . . ≺ R1 = RLl. Let P0 be the trivial path v. For j =
1, 2, . . . , k − 1, there is by Observation 8 a path Pj in G∢ connecting the last
vertex of Pj−1 (which lies in Rj by induction) to the anchor aj of Rj (which
lies in Rj+1 by the definition of ≺) such that all vertices of Pj other than aj

lie in R̊j and its apophysis. Let P = P0 ∪ P1 ∪ . . . ∪ Pk. We claim that P ,
which was defined as a path in G∢, is also a path in Gy. Thus we need to prove
that no edge of P was shortcutted. We only shortcutted edges that meet two
rope-ladders or a rope-ladder and an ear decomposition, and any such edge in
P either lies in an apophysis, and is thus not shortcutted as mentioned above,
or is or represents an anchor, in which case it meets no articulation point by
the definition of anchor. This proves our claim that P is a path in Gy; let a be
its endvertex in RLi.

As, clearly, a is a foot of a G♯
i-bridge in G that also has the articulation

point yi
j as a foot, a lies in Πi

j ∪ Πi
j+1 by the construction of G♯. Thus, by the

construction of G∢, there is an a-u–path Q in G∢ containing only vertices of
Πi

j−1Π
i
j , Π

i
j+1 and Ai and, easily, Q is also a path in Gy. Thus we may choose

dt(e) := P ∪ Q as a detour for e. Call P the P -part of dt(e) and call Q the
Q-part of dt(e).

In the case that Π is an ear, by recursively applying Condition 5 we obtain
a v-RLi

−–path containing no edge incident with a yj
l . As in the first case, we

can augment this path by a path containing only vertices of Πi
j−1, Π

i
j , Π

i
j+1 and

Ai to obtain a detour dt(e).
We claim that the set {dt(e)|e ∈ E(G2) − E(Gy)} is thin. We have to show

that for any edge f there are only finitely many edges e such that dt(e) contains
f . It is not hard to see that there can only be finitely many such e that are or
represent bonds of ear decompositions. If there are infinitely many such e that
are or represent bonds of rope-ladders, then either there are infinitely many e
such that the P -part of dt(e) contains f , or infinitely many e such that the
Q-part of dt(e) contains f . Again, it is not hard to see that the latter cannot
be the case. To see that the former cannot be the case either, note that if the
P -part of dt(e) contains f , then e is incident with a vertex that lies in a pi that
is lower with respect to � than the pi containing both vertices of f . Clearly,
there are only finitely many such pis, and as each of them contains finitely many
vertices of finite degree, there can only be finitely many such e. This completes
the proof that the set {dt(e)|e ∈ E(G2) − E(Gy)} is thin, thus by Lemma 8,
|Gy| ≅ |G2| ≅ |G∢|.

We further claim that Gy is eulerian. Let G3 = (V, E(G≬)∪E(Gy)). Easily,
by Lemma 8, |G3| ≅ |G≬|, and since |Gy | ≅ |G∢| ≅ |G6≬| ≅ |G≬|, we have
|Gy| ≅ |G3|. We know that G≬ is eulerian, thus, by Lemma 3 and the definition
of the cycle space, E(G≬) is the sum of a thin family F of circuits in G≬. Since
|G≬| ≅ |G3| and |G≬| ⊆ |G3|, every element of F is also a circuit in G3. Now let
T := E(Gy)△E(G≬), where △ denotes the symmetric difference. Clearly, T can
be expressed as the sum of a thin set of finite cycles, since in order to get Gy

from G≬ we performed a number of operations each of which consisted in either
replacing a path of length 2 with an edge forming a triangle with the path, or
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deleting a double edge, or switching a window (see the list of allowed operations
after Condition 2), and no edge participated in more than two such operations.
But then, E(Gy) = T△E(G≬) holds, which means that E(Gy) is the sum of the
thin family F ∪ T of circuits in G3, thus an element of the cycle space of G3.
By Lemma 1, E(Gy) is a set of disjoint circuits in G3, and since |Gy| ≅ |G3|,
these circuits are also circuits in Gy, thus Gy is eulerian by Lemma 3.

7.6 The hamiltonisation

By Theorem 4 we obtain an Euler tour σ of Gy that is injective at ends. Replace
every shortcutting edge in σ by the two edges it shortcuts; formally, this is
done by modifying σ on the interval of S1 mapped to the shortcutting edge, so
that this interval is mapped continuously and bijectively to the two shortcutted
edges. Then, replace every representing edge in the resulting mapping by the
two edges it represents, to obtain a mapping σ′ : S1 → G≬≬, where G≬≬ is the
simple multigraph resulting from G≬ after doubling all single edges; σ′ is clearly
injective at ends.

A pass (of σ′) through some vertex x, is a trail uexe′v traversed by σ′.
Lifting a pass P = uexe′v is the operation of replacing P in σ′ with a u-v–edge
if u 6= v, or replacing P in σ′ with the trivial trail u if u = v (again, this is
done by modifying σ′ on the interval of S1 mapped to P , so that this interval
is either mapped continuously and bijectively to the u-v–edge or mapped to u).
As e, e′ are edges of G≬≬, uv is an edge of G2 in the first case. Our plan is to
perform some lifts so as to transform σ′ into a Hamilton circle of G2, so we will
first mark some passes for later lifting, then show that no two passes share an
edge and thus we can do lift them all at once without creating any edge not in
G2.

For every x ∈ V −{y∗}, let i be the index of x in P (W (x)) (see Condition 2
for the definition of W (x)), and mark all passes of σ′ through x that do not
contain e−i (W (x)). Moreover, mark all passes of σ′ through y∗ that do not
contain e∗ (recall that e∗, the special edge in the assertion of Theorem 10, is an
anchor, thus it has not been deleted). We claim that for every edge e traversed
by σ′, at most one of the two passes that contain e was marked, which implies
that no two marked passes share an edge.

In order to prove this claim, suppose that e is an edge with endvertices x, v
and that the (unique) pass through x containing e has been marked. If x = y∗,
then easily e = e−1 (W ), where W = W (v), thus the pass through v = x1(W )
containing e has not been marked. If x 6= y∗, then let W = W (x) and suppose
that x = xi(W ). Again we will show that the pass through v containing e has
not been marked.

If e lies in P (W ), then e 6= e−i because the pass through x containing e has
been marked. Moreover, e 6= e∩i+1, because if e∩i+1 exists, then e−i , e∩i+1 had been
represented in G∢, and thus e∩i+1 lies in the pass through x = xi that contains

e−i . If e = e∩i , then by the same argument, it lies in the pass through xi−1 that
contains e−i−1

, which, according to our rules for marking, has not been marked.

If e = e−i+1
, again the pass through xi+1 that contains e cannot be marked,

unless xi+1 is the pseudo-mouth of W ; but if xi+1 = v is the pseudo-mouth
of W , then e, e−i where represented in G∢, so they both lie in the pass of σ′

through x = xi. But, according to our marking rules, this pass cannot have
been marked, contradicting our assumption.
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If e does not lie in P (W ), let W ′ be the larva in W in which e lies. If
x is an articulation point and it is the last vertex of both W, W ′, then both
e, ei(W ) are single edges by the construction of G∢, and they are the only edges
incident with x in Gy by Condition 1 and the construction of Gy . But then,
they both lie in the pass through x, contradicting the fact that this pass has
been marked. If x is the mouth of W ′, then v = x1(W

′), e = e−
1

(W ′), and the
pass through v containing e has not been marked (even if W (v) 6= W ′, as v is
an articulation point in that case). The only case left, by Condition 1, is when
x is the pseudo-mouth of W ′, because by Condition 2, x is neither the mouth
nor the pseudo-mouth of W = W (x); then, x = xk(W ′) where k = |P (W ′)|,
v = xk−1(W

′) and e = e−k (W ′). But e−k (W ′), e−k−1
(W ′) where represented in

G∢, so they lie in the same pass through v, which, according to our marking
rules, was not marked.

Thus our claim is proved, and so we can lift all marked passes at once without
creating any edge not in G2. This transforms σ′ to a mapping τ : S1 → |G2|. It
is not hard to see that no pass of σ′ through some vertex v 6= y∗ containing an
edge incident with y∗ could have been marked (see the beginning of the proof of
our claim), and hence τ(S1) contains e∗, and the other edge in τ(S1) incident
with y∗ is also in E(G).

By Lemma 8 we easily have |G2| ≅ |G|, and as |G| ≅ |G♯| and, trivially,
|G♯| ≅ |G≬≬|, it follows that τ is continuous and injective at ends. Since for
any vertex v ∈ V , all passes through v but for precisely one pass were marked
and eventually lifted, τ traverses each vertex in V exactly once. In particular,
τ does not contain any pair of parallel edges, and we can therefore replace each
edge in τ that is parallel to an edge e in G with e, to obtain a Hamilton circle
of G2. This completes the proof of Theorem 10, which implies Theorem 3.

A finite graph G is Hamilton-connected, if for every two vertices x, w there
is an x-w–path containing all the vertices of G. Řı́ha [32] proved that the
square of a 2-connected finite graph G is Hamilton-connected, and this fact also
generalises to locally finite graphs. Indeed, if x, w are vertices of a 2-connected
locally finite graph G, then adding a new vertex y∗ to G, joining it to x and w
by edges, and applying Theorem 10 yields a Hamilton circle from which we can
delete y∗ and its incident edges to obtain an x-w–arc in |G| containing all the
vertices of G. It is natural to ask if this remains true if we allow x, w to be ends
of G, and indeed it does:

Corollary 11. Let G be a 2-connected locally finite graph, and let x, w ∈ V ∪Ω;
then there is in |G2| an x-w–arc containing all the vertices and ends of G.

Corollary 11 can be proved by modifying the proof of Theorem 3, so rather
than proving it formally I will only point out the required modifications.

We proved Corollary 11 for the case that x, w ∈ V above, so we may assume
that w is an end. If x is a vertex then choose y∗ = x. No further changes need
to be made to the construction of the scaffolding G♯, but instead of making it
eulerian we have to give it the property that a finite cut is odd if and only if
it separates x from w. This can be achieved by first making all cuts even, as
we did in Section 7.3, and then choosing a ray or double ray R from x to w
that contains no anchor, and replacing all single edges of R with double edges
and vice-versa to obtain the new G≬. The procedure of splitting into larvae and
cleaning-up articulation points remains unchanged, but instead of proving that
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Gy is eulerian, which we did at the end of Section 7.5, we have to show that a
finite cut in Gy is odd if and only if it separates x from w. In order to do so,
add a new copy of E(R) to both G≬ and Gy to obtain auxiliary multigraphs

Ġ≬ and Ġy . Then note that Ġ≬ is eulerian, and imitate the proof at the end of
Section 7.5 to prove that Ġy is also eulerian, from which it follows that Gy has
the required property. Finally, instead of applying Theorem 4 we have to apply
Corollary 8, but the rest of the proof remains unchanged.

8 Non-Locally-Finite Graphs

In this paper we proved that a locally finite graph has a Hamilton circle if it is
the square of a 2-connected or the cube of a connected graph. We can also ask
if this remains true for countable non-locally-finite graphs, using our definitions
of Section 2 also for such graphs:

Conjecture 1. If G is a countable 2-connected graph then |G2| contains a
Hamilton circle.

For the case that G2 is 1-ended, Conjecture 1 has already been posed by
Nash-Williams [27].

Conjecture 2. If G is a countable connected graph then |G3| contains a Hamil-
ton circle.

A necessary condition for a graph G, finite or infinite, to have a Hamilton
circle is that G be 1-tough — a graph G is k-tough if for any finite non-empty

set S of vertices of G, the number of components of G − S is at most |S|
k

. It is
easy to check that the graphs in Conjectures 1 and 2 do fulfill this condition:
if G is connected then G3 is 1-tough, and if G is 2-connected then G2 is even
2-tough.

Let me remark that, in contrast to a locally finite graph, if G is non-locally-
finite then the end-spaces of different powers of G may differ. For example, if
T is the ω-regular tree, then Ω(T 2) contains the ends of T as well as a set of
new ends, one for each vertex of T , but Ω(T 3) consists of one end only. Thus,
although Gk ⊆ Gk+1 holds for every k, it is not clear whether Gk+1 must be
hamiltonian if Gk is.

9 Infinite Cayley Graphs

As mentioned in the introduction, it is a well known conjecture that every
finite connected Cayley graph has a Hamilton cycle. In view of Corollary 6
it is thus natural to ask if every connected locally finite Cayley graph has a
Hamilton circle, however regular trees are easy counterexamples. As mentioned
in Section 8, a necessary condition for a graph G, finite or infinite, to have a
Hamilton circle is that G be 1-tough. Thus, an easy way to obtain infinite Cayley
graphs with no Hamilton circle is by amalgamating more than k groups over a
subgroup of order k. It would be interesting to decide if all non-hamiltonian
connected locally finite Cayley graphs can be obtained this way:
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Problem 2. Let G be a connected Cayley graph of a finitely generated group Γ.
Prove that G has a Hamilton circle unless there is a k ∈ N such that Γ is the
amalgamated product of more than k groups over a subgroup of order k.

The following problem could be used as a first step towards the solution of
the previous one:

Problem 3. Does every connected 1-ended locally finite Cayley graph have a
Hamilton circle?

10 Final Remarks

We saw that Fleischner’s Theorem holds for locally finite graphs. What about
generalising other sufficient conditions for the existence of a Hamilton cycle?
In general, as in our case, it is a hard task, and it is not clear why it should
be possible. See for example [7, 9], where Tutte’s Theorem [31], that a finite
4-connected planar graph has a Hamilton cycle, is partly generalised. However,
if instead of a Hamilton circle we demand the existence of a closed topological
path that traverses each vertex exactly once, but may traverse ends more than
once, the task becomes much easier. Usually, one only has to apply the sufficient
condition for finite graphs on a sequence of growing finite subgraphs of a given
infinite graph G and use compactness, to obtain such a topological path in |G|.
The difficult problem is how to guarantee injectivity at the ends. Here we used
Theorem 4 to overcome this difficulty. A general approach suggests itself: try to
reduce the existence of a Hamilton cycle in a finite graph to the existence of a
suitable Euler tour in some auxiliary graph, and then try to generalise the proof
to the infinite case using Theorem 4. Some open problems where this approach
could be pursued are given in [22].

The following easy corollary of Theorem 4 is perhaps an argument in favour
of this approach:

Corollary 12. If G is a locally finite eulerian graph then its line graph L(G)
has a Hamilton circle.

Proof. If R is a ray in G, then E(R) is the vertex set of a ray l(R) in L(G). It
is easy to confirm that the map

π : Ω(G) → Ω(L(G))

ω 7→ ω′ ∋ l(R), R ∈ ω

is well defined, and it is a bijection.
Now let σ be an Euler tour of G, that is injective at ends and maps a closed

interval on each vertex of G. Let σ′ : S1 → |L(G)| be a mapping defined as
follows:

• σ′ maps the preimage under σ of each edge e ∈ E(G) to e ∈ V (L(G));

• for each interval I of S1 mapped by σ to a trail xeye′w, σ′ maps the
subinterval I ′ of I mapped to y, continuously and bijectively to the edge
ee′ ∈ E(L(G));

• σ′ maps the preimage under σ of each end ω ∈ Ω(G) to π(ω).
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Then “contract” in σ′ each interval mapped to a vertex to a single point,
to obtain the mapping τ : S1 → |L(G)|. Since, in locally finite graphs, every
finite vertex set is incident with finitely many edges, and every finite edge set is
covered by a finite vertex set, Ω(G) and Ω(L(G)) have the same topology. Thus
τ is continuous and injective, and since S1 is compact and |L(G)| Hausdorff, a
homeomorphism. Clearly, it traverses each vertex of |L(G)| exactly once.
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