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Abstract

We show that every connected graph has a spanning tree that dis-
plays all its topological ends. This proves a 1964 conjecture of Halin
in corrected form, and settles a problem of Diestel from 1992.

1 Introduction

In 1931, Freudenthal introduced a notion of ends for second countable Haus-
dorff spaces [16], and in particular for locally finite graphs [17]. Indepen-
dently, in 1964, Halin [19] introduced a notion of ends for graphs, taking his
cue directly from Carathéodory’s Primenden of simply connected regions of
the complex plane [4]. For locally finite graphs these two notions of ends
agree.

For graphs that are not locally finite, Freudenthal’s topological definition
still makes sense, and gave rise to the notion of topological ends of arbitrary
graphs [13]. In general, this no longer agrees with Halin’s notion of ends,
although it does for trees.

Halin [19] conjectured that the end structure of every connected graph
can be displayed by the ends of a suitable spanning tree of that graph. He
proved this for countable graphs. Halin’s conjecture was finally disproved in
the 1990s by Seymour and Thomas [23], and independently by Thomassen
[26].

In this paper we shall prove Halin’s conjecture in amended form, based
on the topological notion of ends rather than Halin’s own graph-theoretical
notion. We shall obtain it as a corollary of the following theorem, which
proves a conjecture of Diestel [11] of 1992 (again, in amended form):
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Theorem 1. Every graph has a tree-decomposition (T,V) of finite adhesion
such that the ends of T define precisely the topological ends of G.
See Section 2 for definitions.

The tree-decompositions constructed for the proof of Theorem 1 have
several further applications. In [5] we use them to answer the question to
what extent the ends of a graph - now in Halin’s sense - have a tree-like
structure at all. In [6], we apply Theorem 1 to show that the topological
cycles of any graph together with its topological ends induce a matroid.

This paper is organised as follows. In Section 2 we explain the problems
of Diestel and Halin in detail, after having given some basic definitions. In
Section 3 we continue with examples related to these problems. Section 4
only contains material that is relevant for Section 5 in which we prove that
every graph has a nested set of separations distinguishing the vertex ends
efficiently. In Section 6, we use this theorem to prove Theorem 1. Then we
deduce Halin’s amended conjecture.

2 Definitions

Throughout, notation and terminology for graphs are that of [12] unless
defined differently. And G always denotes a graph.

A vertex end in a graph G is an equivalence class of rays (one-way infinite
paths), where two rays are equivalent if they cannot be separated in G by
removing finitely many vertices. Put another way, this equivalence relation
is the transitive closure of the relation relating two rays if they intersect
infinitely often.

Let X be a locally connected Hausdorff space. Given a subset Y ⊆ X,
we write Y for the closure of Y , and F (Y ) := Y ∩ X \ Y for its fron-
tier. In order to define the topological ends of X, we consider infinite se-
quences U1 ⊇ U2 ⊇ ... of non-empty connected open subsets of X such that
each F (Ui) is compact and

⋂
i≥1 U i = ∅. We say that two such sequences

U1 ⊇ U2 ⊇ ... and U ′1 ⊇ U ′2 ⊇ ... are equivalent if for every i there is some
j with Ui ⊇ U ′j . This relation is transitive and symmetric [16, Satz 2].
The equivalence classes of those sequences are the topological ends of X
[13, 16, 22].

For the simplical complex of a graph G, Diestel and Kühn described the
topological ends combinatorically: a vertex dominates a vertex end ω if for
some (equivalently: every) ray R belonging to ω there is an infinite fan of
v-R-paths that are vertex-disjoint except at v. In [13], they proved that the
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topological ends are given by the undominated vertex ends. Hence in this
paper, we take this as our definition of topological end of G.

We denote the complement of a set X by X{. For an edge set X, we
denote by V (X), the set of vertices incident with edges from X. For a vertex
set W , we denote by sW , the set of those edges with at least one endvertex
in W .

For us, a separation is just an edge set. A vertex-separation in a graph
G is an ordered pair (A,B) of vertex sets such that there is no edge of G
with one endvertex in A\B and the other in B \A. A separation X induces
the vertex-separation (V (X), V (X{)). Thus in general there may be several
separations inducing the same vertex-separation. The boundary ∂(X) of
a separation X is the set of those vertices adjacent with an edge from X
and one from X{. The order of X is the size of ∂(X). A separation X is
componental if there is a component C of G−∂(X) such that sC = X. Two
separations X and Y are nested if one of the following 4 inclusions is true:
X ⊆ Y , X{ ⊆ Y , Y ⊆ X or Y ⊆ X{. If there is a vertex in ∂(Y ) \ V (X),
then it is incident with an edge from Y \X and an edge from Y { \X. Thus
if additionally, X and Y are nested, then either X{ ⊆ Y or Y ⊆ X{. We
shall refer to the four sets ∂(Y ) \ V (X), ∂(Y ) \ V (X{), ∂(X) \ V (Y ) or
∂(X) \ V (Y {) as the links of X and Y .

A vertex end ω lives in a separation X of finite order if V (X) contains
one (equivalently: every) ray belonging to ω. Similarly, we define when a
vertex end lives in a component. A separation X of finite order distinguishes
two vertex ends ω and µ if one of them lives in X and the other in X{. It
distinguishes them efficiently if X has minimal order amongst all separations
distinguishing ω and µ.

A tree-decomposition of G consists of a tree T together with a family of
subgraphs (Pt|t ∈ V (T )) of G such that every vertex and edge of G is in at
least one of these subgraphs, and such that if v is a vertex of both Pt and Pw,
then it is a vertex of each Pu, where u lies on the v-w-path in T . Moreover,
each edge of G is contained in precisely one Pt. We call the subgraphs Pt, the
parts of the tree-decomposition. Sometimes, the “Moreover”-part is not part
of the definition of tree-decomposition. However, both these two definitions
give the same concept of tree-decomposition since any tree-decomposition
without this additionally property can easily be changed to one with this
property by deleting edges from the parts appropriately. The adhesion of a
tree-decomposition is finite if adjacent parts intersect only finitely. Given a
directed edge tu of T , the separation corresponding to tu consists of those
edges contained in parts Pw, where w is in the component of T−t containing
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u.

In [2, 21, 25], tree-decompositions of finite adhesion are used to study the
structure of infinite graphs. In [11, Problem 4.3], Diestel wanted to know
whether every graph G has a tree-decomposition (T, Pt|t ∈ V (T )) of finite
adhesion that somehow encodes the structure of the graph with its ends.

Let us be more precise: Given a vertex end ω, we take O(ω) to consist
of those oriented edges tu of T such that ω lives in its corresponding separa-
tion. Note that O(ω) contains precisely one of tu and ut. Furthermore this
orientation O(ω) of T points towards a node of T or to an end of T . We say
that ω lives in the part for that node or that end, respectively.

A vertex end ω is thin if every set of vertex-disjoint rays belonging to
ω is finite; otherwise ω is thick. Diestel asked whether every graph has a
tree-decomposition (T, Pt|t ∈ V (T )) of finite adhesion such that different
thick vertex ends live in different parts and such that the ends of T define
precisely the thin vertex ends. Here the ends of T define precisely a set W
of vertex ends of G if in every end of T there lives a unique vertex end and
it is in W and conversely every vertex end in W lives in some end of T .

Unfortunately, that is not true: In Example 3.1, we construct a graph
such that each of its tree-decompositions of finite adhesion has a part in
which two (thick) vertex ends live. Moreover, in Example 3.5, we construct
a graph that does not have a tree-decomposition of finite adhesion such that
the ends of its decomposition tree define precisely the thin vertex ends.

Hence the remaining open question is whether there is a natural sub-
class of the vertex ends (similar to the class of thin vertex ends) such that
every graph has a tree-decomposition of finite adhesion such that the ends
of its decomposition tree define precisely the vertex ends in that subclass.
Theorem 1 above answers this question affirmatively.

It is impossible to construct a tree-decomposition as in Theorem 1 with
the additional property that for any two topological ends ω and µ, there is
a separation corresponding to an edge of the tree that separates ω and µ
efficiently, see Example 3.6.

A recent development in the theory of infinite graphs seeks to extend
theorems about finite graphs and their cycles to infinite graphs and the
topological circles formed with their ends, see for example [1, 3, 14, 15, 18,
24], and [10] for a survey. We expect that Theorem 1 has further applications
in this direction aside from the one mentioned in the Introduction.

A rooted spanning tree T of a graph G is end-faithful for a set Ψ of
vertex ends if each vertex end ω ∈ Ψ is uniquely represented by T in the
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sense that T contains a unique ray belonging to ω and starting at the root.
For example, every normal spanning tree is end-faithful for all vertex ends.
Halin conjectured that every connected graph has an end-faithful tree for
all vertex ends. At the end of Section 6, we show that Theorem 1 implies
the following nontrivial weakening of this disproved conjecture:

Corollary 2.1. Every connected graph has an end-faithful spanning tree for
the topological ends.

One might ask whether it is possible to construct an end-faithful span-
ning tree for the topological ends with the additional property that it does
not include any ray to any other vertex end. However, this is not possible
in general. Indeed, Seymour and Thomas constructed a graph G with no
topological end that does not have a rayless spanning tree [23].

3 Example section

Throughout this section, we denote by T2 the infinite rooted binary tree,
whose nodes are the finite 0-1-sequences and whose ends are the infinite
ones. In particular, its root is denoted by the empty sequence φ.

Example 3.1. In this example, we construct a graph G such that all its
tree-decompositions of finite adhesion have a part in which two vertex ends
live. We obtain G from T2 by adding a single vertex vω for each of the
continuum many ends ω of T2, which we join completely to the unique ray
belonging to ω starting at the root. Note that the vertex ends of G are the
ends of T2. For a finite path P of T2 starting at φ, we denote by A(P ), the
set of those vertex ends of G whose corresponding 0-1-sequence begins with
the finite 0-1-sequence which is the last vertex of P .

Lemma 3.2. The set of vertex ends of G that live in a finite order separation
Z of G is open and closed in the end-topology of T2 restricted to the set of
vertex ends 1.

Proof. The set of vertex ends of G that live in a finite order separation of
G are finite unions of sets of the form A(P ), so they are open and closed in
the end-topology of T2.

Suppose for a contradiction that there is a tree-decomposition (T, Pt|t ∈
V (T )) of G of finite adhesion such that in each of its parts lives at most one
vertex end.

1A basis of this topology is given by the sets of vertex ends living in sets of the form
A(P ).
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Lemma 3.3. For each k ∈ N, there is a separation Xk corresponding to a
directed edge tkuk of T together with a finite path Pk of T of length k starting
at φ satisfying the following.

1. uncountably many vertex ends of A(Pk) live in Xk;

2. Xk+1 ⊆ Xk;

3. Pk ⊆ Pk+1;

4. If vω ∈ ∂(Xk), then ω does not live in Xk+1.

Proof. We start the construction with picking P0 = φ and X0 such that un-
countably many vertex ends live in it. Assume that we already constructed
for all i ≤ k separations Xi and Pi satisfying the above. Let Qk and Rk be
the two paths of T2 starting at φ of length k+ 1 extending Pk. Then A(Pk)
is a disjoint union of A(Qk) and A(Rk). For Pk+1 we pick one of these two
paths of length k + 1 such that uncountably many vertex ends of A(Pk+1)
live in Xk;

Let Sk be the component of T − tk containing uk. Let Fk be the set
of those directed edges of Sk directed away from uk. Note that if some
separation X corresponds to some ab ∈ Fk, then X ⊆ Xk. Actually, we
will find tk+1uk+1 in Fk. We colour an edge of Fk red if uncountably many
vertex ends of A(Pk+1) live in the separation corresponding to that edge.
If ab ∈ Fk is not red, then in its separation does not live any vertex-end of
A(Pk+1) by Lemma 3.2.

Suppose for a contradiction that there is a constant c such that for each
r, there are at most c red edges of Fk with distance r from tkuk in T . Let
W be the subforest of T consisting of the red edges. Note that W is a tree
with at most c vertex ends. If no vertex end of A(Pk+1) lives in parts of
nodes of W , then all vertex ends of A(Pk+1) that live in Xk live in ends of
W . If a vertex end lives in an end τ of W , then the vertex dominating it
must eventually be contained in the separators on the rooted ray to τ . Since
W has only countably many ends, we get the desired contradiction.

So it remains to consider the case that a vertex end ω of A(Pk+1) lived
in a part of a node t of W . Then ω is in the closure of the set of all vertex
ends of A(Pk+1) that live in separations of red outedges of t by Lemma 3.2
applied to the inedge of t. Applying Lemma 3.2 to each outedge, we deduced
that there must be infinitely many outedges in which vertex ends of A(Pk+1)
live. So there are infinitely many red edges at a fixed distance from tkuk,
which is a contradiction.
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Hence there is some distance r such that there are at least |∂(Xk)| + 1
red edges of Fk with distance r from tkuk in T . Each vertex end ω with
vω ∈ ∂(Xk) can live in at most one separation corresponding to one of these
edges. Hence amongst these red edges we can pick tk+1uk+1 such that no
such ω lives in its corresponding separation Xk+1. Clearly, Xk+1 and Pk+1

have the desired properties, completing the construction.

Lemma 3.4. Let Xk and Pk be as in Lemma 3.3. Then Pk ⊆ V (Xk).

Proof. By 1, uncountably many vertex ends of A(Pk) live in Xk. Thus
infinitely many of their corresponding vertices vω are in V (Xk). Since only
finitely many of these vertices can be in ∂(Xk), one of these vertices has all
its incident edges in Xk. Since Pk is in its neighbourhood, it must be that
Pk ⊆ V (Xk).

Having proved Lemma 3.3 and Lemma 3.4, it remains to derive a contra-
diction from the existence of the Xk and Pk. By construction R =

⋃
k∈N Pk

is ray. Let µ be its vertex end. By Lemma 3.4, R ⊆ V (Xk) so that µ lives in
each Xk. Hence vµ ∈ V (Xk) for all k. Let e be any edge of G incident with
vµ. As each edge of G is in precisely one part Pt, the edge e is eventually
not in Xk. Hence vµ is eventually in ∂(Xk), contradicting 4 of Lemma 3.3.
Hence there is no tree-decomposition (T, Pt|t ∈ V (T )) of G of finite adhesion
such that in each of its parts lives at most one vertex end.

Example 3.5. In this example, we construct a graph G that does not have
a tree-decomposition (T, Pt|t ∈ V (T )) of finite adhesion such that the thin
vertex ends of G define precisely the ends of T . Let Γ be the set of those
ends of T2 whose 0-1-sequences are eventually constant and let ω1, ω2, . . . be
an enumeration of Γ. We represent each end ω of T2 by the unique ray R(ω)
starting at the root and belonging to ω.

For n ∈ N∗, let Hn be the graph obtained by T2 by deleting each ray
R(ωi) for each i ≤ n. We obtain G from T2 by adding for each natural
number n the graph Hn where we join each vertex of T2 with each of its
clones in the graphs Hn. Note that a vertex in R(ωn) has at most n clones.

It is clear from this construction that T2 is a subtree of G whose ends
are those of G. For every vertex end ω not in Γ, there are infinitely many
vertex-disjoint rays in G belonging to ω, one in each Hn. For ωn ∈ Γ and
v ∈ R(ωn), let Sn(v) be the set of v and its clones. Each ray in G belonging
to ω intersects the separators Sn(v) eventually. Thus as |Sn(v)| ≤ n, there
are at most n vertex-disjoint rays belonging to ωn. Hence the thin vertex
ends of G are precisely those in Γ.
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Suppose G has a tree-decomposition (T, Pt|t ∈ V (T )) of finite adhesion
such that the thin vertex ends live in different ends of T . It remains to show
that there is a vertex end of T in which no vertex end of Γ lives. For that,
we shall recursively construct a sequence of separations (An|n ∈ N∗) that
correspond to edges of T satisfying the following.

1. An+1 is a proper subset of An;

2. infinitely many vertex ends of Γ live in An but none of {ω1, . . . , ωn}.

We start the construction by picking an edge of T arbitrarily; one of
the two separations corresponding to that edge satisfies 2 and we pick such
a separation for A1. Now assume that we already constructed A1, . . . , An
satisfying 1 and 2. By assumption, there are two distinct vertex ends α and
β in Γ that live in An. If possible, we pick β = ωn+1. Since α and β live in
different ends of T , there must be some separation An+1 corresponding to
an edge of T such that α lives in An+1 but β does not.

We claim that An+1 is a proper subset of An. Indeed, An+1 and An are
nested and as α lives in both of them, either An ⊆ An+1 or An+1 ⊆ An.
Since β witnesses that the first cannot happen, it must be that An+1 is a
proper subset of An.

Having seen that An+1 satisfies 1, note that it also satisfies 2 since by
construction one vertex end of Γ lives in An+1, which entails that infinitely
many vertex ends of Γ live in An+1 because for each finite separator S of G,
each infinite component of G− S contains infinitely many vertex ends from
Γ.

Having constructed the sequence of separations (An|n ∈ N∗) as above,
let en be the edge of T to which An corresponds. The set of the edges en
lies on a ray of T but no vertex end in Γ lives in the end of that ray by 2,
completing this example.

Example 3.6. In this example, we construct a graph G such that for any
tree-decomposition (T, Pt|t ∈ V (T )) of finite adhesion that distinguishes the
topological ends, there are two topological ends such that no separation
corresponding to an edge of T distinguishes them efficiently.

Given two graphs G and H, by G×H, we denote the graph with vertex
set V (G) × V (H) where we join two vertices (g, h) and (g′, h′) by an edge
if both g = g′ and hh′ ∈ E(G) or both h = h′ and gg′ ∈ E(G). Given a set
of natural numbers X, by X we denote the graph with vertex set X where
two vertices are adjacent if they have distance 1.

We start the construction with the graph W = N∗ × {1, 2, 3, 4, 5}. Then
for each k ≥ 2, we glue on the vertex set Rk = {1, ..., k}×{4}+ (k, 5) + (k−
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1, 5) the graph Hk = N∗ ×W [Rk] by identifying (l, i) ∈ Rk with (1, l, i).2

Let ωk be the vertex end whose subrays are eventually in Hk. Note that ωk
is undominated.

Similarly, we glue the graphs H ′k = N∗×W [R′k] on the vertex sets R′k =
{1, ..., k} × {2}+ (k, 1) + (k − 1, 1). By µk we denote the vertex end whose
subrays are eventually in H ′k.

For k < m, the separator Sk = ({1, ..., k} × {4}) + (k, 5) separates ωk
from µm and every other separator separating ωk from ωm has strictly larger
order. Note that G−Sk has precisely two components, one containing (1, 1)
and the other containing (1, 5). Thus every separation X with ∂(X) = Sk
has the property that precisely one of (1, 1) and (1, 5) is in V (X).

Now let (T, Pt|t ∈ V (T )) be a tree-decomposition of finite adhesion that
distinguishes the set of topological ends. Let Pt be a part containing (1, 1)
and Pu be a part containing (1, 5). If X is a separation corresponding to an
edge e of T and precisely one of (1, 1) and (1, 5) is in V (X), then e lies on the
finite t-u-path in T . Thus there are only finitely many such X so that there
is some k ∈ N∗ such that Sk is not the separator of any X corresponding to
an edge of T . Thus there are two topological ends that are not distinguished
efficiently by (T, Pt|t ∈ V (T )).

4 Separations and profiles

In this section, we define profiles and prove some intermediate lemmas that
we will apply in Section 5.

4.1 Profiles

Profiles [7] are slightly more general objects than tangles which are a central
concept in Graph Minor Theory. Readers familiar with tangles will not miss
a lot if they just think of tangles instead of profiles. In fact, they can even
skip the definition of robustness of a profile below as tangles are always
robust.

For two separations X and Y , we denote by L(X,Y ) the intersection of
V (X)∩V (Y ) and V (X{)∪V (Y {). Note that ∂(X∩Y ) ⊆ L(X,Y ) and there
may be vertices in L(X,Y ) that only have neighbours in X \ Y and Y \X
so that they are not in ∂(X ∩ Y ).

Remark 4.1. |L(X,Y )|+ |L(X{, Y {)| = |∂(X)|+ |∂(Y )|.
2Here W [Rk] denotes the induced subgraph of W with vertex set Rk.
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Definition 4.2. A profile3 P of order k+1 is a set of separations of order at
most k that does not contain any singletons and that satisfies the following.

(P0) for each X with ∂(X) ≤ k, either X ∈ P or X{ ∈ P ;

(P1) no two X,Y ∈ P are disjoint;

(P2) if X,Y ∈ P and |L(X,Y )| ≤ k, then X ∩ Y ∈ P ;

(P3) if X ∈ P , then there is a componental separation Y ⊆ X with Y ∈ P .

Note that (P1) implies that ∅ 6∈ P . Under the presence of (P0) the axiom
(P1) is equivalent to the following: if X ∈ P and X ⊆ Y with ∂(Y ) ≤ k,
then Y ∈ P . So far profiles have only been defined for finite graph [7], and
for them the definition given here is equivalent to one in [7]. Indeed, for
finite graphs, there is an easy induction argument which proves (P3) from
the other axioms. In infinite graphs, we get a different notion of profile if
we do not require (P3) - for example if we leave out (P3), there is a profiles
of order 3 on the infinite star.

If we replace ‘L(X,Y )’ by ‘∂(X,Y )’, then this will define tangles; indeed,
under the presence of (P1) it can be shown that the modified (P2) is equiv-
alent to the axiom that no three small sides cover G. Thus every tangle of
order k + 1 induces a profile of order k + 1, where a separation X of order
at most k is in the induced profile if and only if the tangle says that it is the
big side (formally, this means that X is not in the tangle). However, there
are profiles of order k + 1 that do not come from tangles, see [8, Section 6].

A separation X distinguishes two profiles P and Q if X ∈ P and X{ ∈ Q
or vice versa: X ∈ Q and X{ ∈ P . It distinguishes them efficiently if X
has minimal order amongst all separations distinguishing P and Q. Given
r ∈ N ∪ {∞} and k ∈ N, a profile P of order k + 1 is r-robust if there does
not exist a separation X of order at most r together with a separation Y of
order ` ≤ k such that L(X,Y ) < ` and L(X{, Y ) < ` and Y ∈ P but both
Y \ X and Y \ X{ are not in P . Note that every profile of order k + 1 is
r-robust for every r ≤ k.

The notion of a profile is closely related to the well-known notion of a
haven, defined next. Two subgraph of an ambient graph touch if they share
a vertex or there is an edge of the ambient graph connecting a vertex from
the first subgraph with a vertex from the second one. A vertex touches if
the subgraph just consisting of that vertex touches. A haven of order k + 1

3In [7], profiles were introduced using vertex-separations. However, it is straightforward
to check that the definition given here gives the same concept of profiles.
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consists of a choice of a component of G− S for each separator S of size at
most k such that any two of these chosen components touch. Note that if
a component C is a component of both G− S and G− T for separators of
order at most k, then it is in the haven for S if and only if it is in haven for
T . Hence we can just say that a component is in a haven without specifying
a particular separator.

Given a profile P of order k + 1, for each separator S of order at most
k, there is a unique component C of G − S such that sC ∈ P by (P1) and
(P3). By (P1), the collection of these components is a haven of order k+ 1.
We say that this haven is induced by P . A haven of order k+1 is good if for
any two separators S and T of size at most k and the components C and D
of G−S and G−T that are in the haven, the set C ∩D is also in the haven
as soon as there are at most k vertices in S ∪ T that touch both C and D.

Remark 4.3. A haven is good if and only if it is induced by a profile.

In [5], we further explain the connections between vertex ends, havens
and profiles.

4.2 Torsos

An N -block is a maximal set of vertices no two of which are separated by a
separation in N . A separation X ∈ N distinguishes two N -blocks B and D
if there are vertices in B \ ∂(X) and D \ ∂(X). Note that if B and D are
different N -blocks, then there is some X ∈ N distinguishing them.

Until the end of this subsection, let us fix a nested set N of separations
and an N -block B. We obtain the torso GT [B] of B from G[B] by adding
those edges xy such that there is some X ∈ N with x, y ∈ ∂(X). This
definition is compatible with the usual definition of torso [12] in the context
of tree-decompositions: if N is the set of separations corresponding to the
edges of a tree-decomposition, then the vertex set of every maximal part is
an N -block and its torso is just the torso of that part.

Lemma 4.4. Let C be a component of G − B whose neighbourhood N(C)
is finite. Then there is some X ∈ N such that N(C) ⊆ ∂(X).

In particular, N(C) is complete in GT [B].

Proof. Let U ⊆ N(C) be maximal such that there is some X ∈ N separating
a vertex of C from B with U ⊆ ∂(X). Suppose for a contradiction there is
some y ∈ N(C) \ U . Pick X ∈ N with U ⊆ ∂(X). Then ∂(X) contains a
vertex of C. Pick such an X such that the distance from y to ∂(X) ∩ C is
minimal. Let z ∈ ∂(X) ∩C with minimal distance to y and let Z ∈ N be a
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separation separating z from B. Without loss of generality we may assume
that B ⊆ V (X) and B ⊆ V (Z). Since z is in the link ∂(X) \ V (Z) and X
and Z are nested, the link ∂(X) \ V (Z{) is empty. Thus U ⊆ ∂(Z). By the
minimality of the distance, it cannot be that X{ ⊆ Z{. So X ⊆ Z{ as this is
the only left possibility for X and Z to be nested. Hence B ⊆ ∂(Z)∩ ∂(X).
Hence y ∈ U , which is the desired contradiction. Thus U = N(C).

Given a separation Y of G that is nested with N , the separation YB
induced by Y in the torso GT [B] is obtained from Y ∩ E(G[B]) by adding
those edges xy ∈ E(GT [B]) such that there is some X ∈ N with x, y ∈ ∂(X)
and V (X) ⊆ V (Y ) or V (X{) ⊆ V (Y ).

Remark 4.5. ∂(YB) ⊆ ∂(Y ).

The vertex-separation (C,D) of G induced by Y induces the separation
(C ∩B,D∩B) of GT [B]. In general (C ∩B,D∩B) differs from the vertex-
separation induced by YB.

Remark 4.6. Let H be a haven of order k+1. Assume that for every vertex
set S ⊆ B of at most k vertices the unique component CS of G − S in H
intersects B. Let HB be the haven induced by H: for each S ⊆ B of at most
k vertices, HB picks the unique component CS of GT [B] − S that includes
CS ∩ B. Then HB is a haven of order k + 1. Moreover, if H is good, then
so is HB.

Proof. If CS and DS touch, then so do CS and DS by Lemma 4.4. Thus
HB is a haven of order k + 1. The ‘Moreover’-part is clear.

Let P be a profile of order k+ 1 and H be its induced good haven, then
under the circumstances of Remark 4.6 we define the profile PB induced by
P on GT [B] to be the profile induced by HB. Note that PB has order k+ 1.

Remark 4.7. If P is r-robust, then so is PB.

Lemma 4.8. Let r ∈ N ∪ {∞}, and k ≤ r be finite. Let N be a nested
set of separations of order at most k. Let P and Q be two r-robust profiles
distinguished efficiently by a separation Y of order l ≥ k + 1 that is nested
with N . Then there is a unique N -block B containing ∂(Y ).

Moreover, PB and QB are well-defined and r-robust profiles of order at
least l + 1, which are distinguished efficiently by YB.

Proof. Since Y is nested with any Z ∈ N , no Z can separate two vertices
in ∂(Y ) because then both links ∂(Y ) \ V (Z) and ∂(Y ) \ V (Z{) would be
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nonempty. Let B be the set of those vertices that are not separated by any
Z ∈ N from ∂(Y ). Clearly, B is the unique N -block containing ∂(Y ).

Let H be the haven induced by P . Let S ⊆ B be so that there is a
component C of G − S that is in H. Suppose for a contradiction that C
does not intersect B. Then by Lemma 4.4, the neighbourhood N(C) of C
is complete in GT [B] and |N(C)| ≤ k.

Since (V (Y ) ∩ B, V (Y {) ∩ B) is a vertex-separation of GT [B] either
N(C) ⊆ V (Y ) ∩ B or N(C) ⊆ V (Y {) ∩ B. By symmetry, we may as-
sume that Y ∈ P . Then the second cannot happen since the component of
G − ∂(Y ) that is in H touches C. Hence sC distinguishes P and Q, con-
tradicting the efficiency of Y . Thus HB is well-defined and a good haven of
order l + 1 by Remark 4.6. Thus PB is an r-robust profile of order at least
l+ 1. The same is true for QB whose corresponding havens we denote by J
and JB.

If PB and QB are distinguished by a separation X of order less than l,
then HB and JB will pick different components of GT [B] − ∂(X). Then in
turn H and J will pick different components of G−∂(X), which is impossible
by the efficiency of Y . Thus by Remark 4.5 it remains to show that YB
distinguishes PB and QB.

Let U and W be the components of GT [B]−∂(Y ) picked by HB and JB,
respectively. Since sU ⊆ YB and sW ⊆ Y {

B, the separation YB distinguishes
PB and QB by (P1).

Given a set P of r-robust profiles of order at least l + 1, in the circum-
stances of Lemma 4.8, we let PB be the set of those P ∈ P distinguished
efficiently from some other Q ∈ P by a separation Y nested with N with
|∂(Y )| ≥ k+1 and ∂(Y ) ⊆ B. By P(B) we denote the set of induced profiles
PB for P ∈ PB.

4.3 Extending separations of the torsos

We define an operation Y 7→ Ŷ that extends each separation Y of the torso
GT [B] to a separation Ŷ of G in such a way that Ŷ is nested with every
separation of N .

For each X ∈ N at least one of V (X) and V (X{) includes B. We pick
X[B] ∈ {X,X{} such that B ⊆ V (X[B]). Let M = {X[B]{ | X ∈ N}. We
shall ensure that X ⊆ Ŷ or X ⊆ Ŷ { for every X ∈ M, which implies that
Ŷ is nested with every separation in N .

Let (C,D) be the vertex-separation of the torso GT [B] induced by Y .
An edge e of G is forced at step 1 (by Y ) if one of its incident vertices is
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in C \D. A separation X ∈ M is forced at step 2n + 2 if there is an edge
e ∈ X that is forced at step 2n+ 1 and X is not forced at some step 2j + 2
with j < n. An edge e of G is forced at step 2n+ 1 for n > 0 if there is some
X ∈ M containing e that is forced at step 2n and e is not forced at some
step 2j + 1 with j < n.

The separation Ŷ consists of those edges that are forced at some step.

Remark 4.9. If Y ⊆ Z, then Ŷ ⊆ Ẑ.

Remark 4.10. X ⊆ Ŷ or X ⊆ Ŷ { for every X ∈M.
In particular, Ŷ is nested with every separation of N .

Proof. If X intersects Ŷ , then X ⊆ Ŷ by construction.

There are easy examples of nested separations Y and Z of the torso
GT [B] such that Ŷ and Ẑ are not nested. These examples motivate the
definition of L̃ below.

Given a nested set L of separations of GT [B], the extension L̃ of L
(depending on a well-order (Yα | α ∈ β) of L) is the set {Ỹ | Y ∈ L}, where
Ỹ is defined as follows: For the smallest element Y0 of the well-order, we

just let Ỹ0 = Ŷ0 and Ỹ {
0 = (Ŷ0)

{.

Assume that we already defined Ỹα and Ỹ {
α for all α < γ. Let Zα ∈

{Yα, Y {
α} be such that Zα ⊆ Yγ or Yγ ⊆ Zα. We let Ỹγ consist of those edges

that are first forced by Yγ or second contained in some Z̃α with Zα ⊆ Yγ or

third both contained in every Z̃α with Yγ ⊆ Zα and not forced by Y {
γ . We

define Ỹ {
γ similarly with ‘Y {

γ ’ in place of ‘Yγ ’ and ‘Z{
α’ in place of ‘Zα’.

Lemma 4.18 below says that no edge is forced by both Y and Y {. Using
that and Remark 4.9, a transfinite induction over (Yα | α ∈ β) gives the
following:

Remark 4.11. 1. If Zα ⊆ Yγ, then Z̃α ⊆ Ỹγ;

2. If Yγ ⊆ Zα, then Ỹγ ⊆ Z̃α;

3. Ỹ {
γ = (Ỹγ){;

4. Ỹγ contains all edges forced by Yγ;

5. Ỹ {
γ contains all edges forced by Y {

γ ;
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Lemma 4.12. Let N be a nested set of separations and let B and D be
distinct N -block. Let LB and LD be nested sets of separations of GT [B] and
GT [D], respectively. Then L̃B is a set of nested separations. If X ∈ LB and
Y ∈ LD, then X̃ and Ỹ are nested. Moreover, they are nested with every
separation in N .

Proof. L̃B is nested by 1 and 2 of Remark 4.11. It is easily proved by
transfinite induction over the underlying well-order of LB that for every
Z ∈ N either Z[B]{ ⊆ X̃ or X̃ ⊆ Z[B]. This implies the ‘Moreover’-part.

There is some Z ∈ N distinguishing B and D. By exchanging the roles
of B and D if necessary, we may assume that Z[B] = Z and Z[D] = Z{.
Thus X̃ ⊆ Z or X̃{ ⊆ Z. And Ỹ ⊆ Z{ or Ỹ { ⊆ Z{. Hence one of X̃ or X̃{

is included in Z which in turn is included in one of Ỹ or Ỹ {. Thus X̃ and
Ỹ are nested.

Remark 4.13. Let Y be a separation in a nested set L of GT [B]. Then
∂(Ỹ ) ⊆ ∂(Y ).

Proof. Let (C,D) be the vertex-separation induced by Y . If v is a vertex of
B not in C ∩D, then all its incident edges are either all forced by Y at step
1 or else all forced by Y { at step 1, yielding that v cannot be in ∂(Ỹ ). If v
is not in B then it is easily proved by induction on a well-order of L that all
its incident edges are in Ỹ or else all of them are in Ỹ {.

Remark 4.14. Let B, PB and QB as in Lemma 4.8. Let L be a nested set
of separations in GT [B]. If X ∈ L distinguishes PB and QB in GT [B], then
X̃ distinguishes P and Q.

Proof. By construction there are different components F and K of G−∂(X)
such that sF ∈ P and sK ∈ Q. Clearly, every edge in sF is forced by X,

and every edge in sK is forced by X{. Thus sF ⊆ X̃ and sK ⊆ X̃{ = (X̃){.
Hence X̃ distinguishes P and Q.

Now we prepare to prove Lemma 4.18 below:

Remark 4.15. Let X ∈ M that contains some edge e forced by Y . Then
each endvertex v of e in C \D is in the boundary ∂(X) of X.

Proof. By assumption v ∈ V (X{) and thus v ∈ ∂(X).

Remark 4.16. Assume there is at least one edge forced by Y . Then no
X ∈M contains all edges of G which are forced by Y at steps 1.
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Proof. If X is not forced by Y at step 2, then this is clear. Otherwise there
is a vertex v ∈ ∂(X) that is in C \D by Remark 4.15. Thus there is an edge
e incident with v contained in X{.

Remark 4.17. 1. No edge is forced by both Y and Y { at step 1.

2. No X ∈ M contains edges forced by Y at step 1 and edges forced by
Y { at step 1.

Proof. 1 follows from the fact that (C,D) is a vertex-separation of the torso
GT [B]. To see 2, we have to additionally apply Remark 4.15 and the corre-
sponding fact for Y {.

Lemma 4.18. No edge is forced by both Y and Y {.

Proof. In this proof, we run step m for forcing by Y { in between step m
and step m+ 1 for forcing by Y . Suppose for a contradiction, there is some
step m such that just after step m there is an edge e that is forced by both
Y and Y { or there is some X ∈M containing edges forced by Y and edges
forced by Y {. Let k be minimal amongst all such m. Thus k must be odd.
By 1 and 2 of Remark 4.17, k ≥ 3.

Case 1: there is some X ∈M containing an edge eC forced by Y and an
edge eD forced by Y { just after step k. Then precisely one of eC and eD was
forced at step k, say eD (the case with eC will be analogue). Let Z ∈M be
a separation forcing eD, which exists as k ≥ 3.

We shall show that X and Z are not nested by showing that all the four
intersections X ∩ Z, X ∩ Z{, X{ ∩ Z and X{ ∩ Z{ are nonempty: First
eD ∈ X ∩ Z. Let f an edge forcing Z for Y {. By minimality of k, first
f ∈ X{ ∩ Z. Second, the separation Z does not contain any edge forced by
Y just before step k. Thus eC ∈ X ∩ Z{. Furthermore, there is some edge
forced by Y in X{ ∩ Z{ by Remark 4.16. Thus X and Z are not nested,
which gives the desired contradiction in this case.

Case 2: there is some edge e that is forced by both Y and Y { just after
step k. We shall only consider the case that e was first forced by Y and then
by Y { (the other case will be analogue). As k ≥ 3, there is a separation
Z ∈M forcing e for Y {. Let f be an edge forcing Z for Y {. If e is forced by
Y at step 1, then at the step before k the separation Z will contain edges
forced by Y and edges forced by Y {, which is impossible by minimality of k.
Thus there is a separation X ∈M forcing e for Y . Let g be an edge forcing
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X for Y . By minimality of k, we have g ∈ X ∩ Z{ and f ∈ X{ ∩ Z. Similar
as in the last case we deduce that X and Z are not nested, which gives the
desired contradiction.

4.4 Miscellaneous

Lemma 4.19. Let X and Y be two separations such that there is a compo-
nent C of G− ∂(X) with sC = X and C does not intersect ∂(Y ). Then X
and Y are nested.

Proof. By the definition of nestedness, it suffices to show that X ⊆ Y or
X ⊆ Y {. For that, by symmetry, it suffices to show that if there is some
edge e1 ∈ X ∩ Y , then any other edge e2 of X must also be in Y . For that
note that e1 has an endvertex v in C and that there is a path P included in
C from v to some endvertex of e2. As no vertex of P is in ∂(Y ) and e1 ∈ Y
it must be that e2 ∈ Y , as desired.

Lemma 4.20. Let X, Y and Z be separations such that first X and Y are
not nested and second X ∩ Y and Z are not nested. Then Z is not nested
with X or Y .

Proof. Recall that if A and Z are nested, then one of A ⊆ Z, A ⊆ Z{,
A{ ⊆ Z or A{ ⊆ Z{ is true. If one of A ⊆ Z or A ⊆ Z{ is false for
A = X ∩ Y , then it is also false for both A = X and A = Y . If one of
A{ ⊆ Z or A{ ⊆ Z{ is false for A = X ∩ Y , then it is false for at least one
of A = X or A = Y . Suppose for a contradiction that X ∩ Y is not nested
with Z but X and Y are. By exchanging the roles of X and Y if necessary,
we may assume by the above that X{ ⊆ Z and Y { ⊆ Z{. Then X{ ⊆ Y ,
contradicting the assumption that X and Y are not nested.

A separation X is tight if ∂(X) = ∂(sC) for every component C of
G− ∂(X).

Lemma 4.21. Let X be a separation of order k. Let Y be a tight separation
such that G − ∂(Y ) has at least k + 1 components. Then one of the links
∂(Y ) \ V (X) or ∂(Y ) \ V (X{) is empty.

Proof. Suppose not for a contradiction, then there are v ∈ ∂(Y ) \ V (X)
and w ∈ ∂(Y ) \ V (X{). Then v and w are in the neighbourhood of every
component C of G − ∂(Y ). Thus there are k + 1 internally disjoint paths
from v to w, contradiction that fact that ∂(X) separates v from w.
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Given two vertices v and w, a separator S separates v and w minimally
if each component of G − S containing v or w has the whole of S in its
neighbourhood.

Lemma 4.22 ([20, Statement 2.4]). Given vertices v and w and k ∈ N,
there are only finitely many distinct separators of size at most k separating
v from w minimally.

5 Distinguishing the profiles

The aim in this section is to construct a nested set of separations of finite
order that distinguishes any two vertex ends efficiently, which is needed in
the proof of Theorem 1. A related result is proved in [9]. Actually, we shall
prove the stronger statement that for each r ∈ N ∪ {∞} there is a nested
set N of separations that distinguishes any two r-robust profiles efficiently.

Overview of the proof
We shall construct the set N as an ascending union of sets Nk one for

each k ∈ N, where Nk is a nested set of separations of order at most k
distinguishing efficiently any two r-robust profiles of order k + 1. Any two
r-robust profiles of order k + 2 that are not distinguished by Nk will live in
the same Nk-block. We obtain Nk+1 from Nk by adding for each Nk-block
a nested set Ñk+1(B) that distinguishes efficiently any two r-robust profiles
of order k+ 2 living in B. Working in the torsos GT [B] will ensure that the
sets Ñk+1(B) for different blocks B will be nested with each other.

Summing up, we are left with the task of finding in these torso graphs
GT [B] a nested set distinguishing efficiently all r-robust profiles of order
k + 2. Theorem 5.2 deals with this problem if GT [B] is “nice enough”. In
order to make all torso graphs nice enough, we add in an additional step in
which we enlarge Nk a little bit so that for the larger nested set the new
torso graphs are the old ones with the junk cut off. Lemma 5.1 will be the
main lemma we use to enlarge Nk.

Finishing the overview, we first state Lemma 5.1 and Theorem 5.2 and
introduce the necessary definitions for that.

For any r-robust profile P and k ∈ N, the restriction Pk of P to the set
of separations of order at most k is an r-robust profile, whose order is the
minimum of k + 1 and the order of P . An r-profile set is a set of r-robust
profiles such that if P ∈ P then for each k ∈ N the restriction Pk is in P.
Until the end of Subsection 5.2, let us a fix a graph G together numbers
k, r ∈ N ∪ {∞} with k ≤ r and an r-profile set P.
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A set N of nested sets is extendable (for P) if for any two distinct profiles
in P of the same order, there is some separation X nested with N that
distinguishes these two profiles efficiently.

By R(k, r,P, G) we denote the set of those separations whose order is
finite and at most k that distinguish efficiently two profiles in P in the
graph G. It may happen for some X ∈ R(k, r,P, G) that G − ∂(X) has a
component C such that ∂(sC) is a proper subset of ∂(X). By S(k, r,P, G),
we denote the set of all separations sC for such components C of G− ∂(X)
for some X ∈ R(k, r,P, G). If it is clear from the context what G is, we
shall just write R(k, r,P) or S(k, r,P), or even just R(k, r) or S(k, r).

Lemma 5.1. If R(k − 1, r) = ∅, then S(k, r) is a nested extendable set of
separations.

A separation X strongly disqualifies a set Y if |∂(Y )| is strictly larger
than both |L(X,Y )| and |L(X{, Y )|. A set X disqualifies a set Y if it
strongly disqualifies Y or Y {. Note that every X ∈ R(k, r) is tight if and
only if S(k, r) = ∅.

Theorem 5.2. Let k ∈ N and r ∈ N ∪ {∞} with k ≤ r. Assume that
S(k, r) = ∅ and R(k, r) = ∅. Any set N of nested tight separations of order
at most k that are not disqualified by any X ∈ R(r, r) is extendable.

In particular, any maximal such set distinguishes any two profiles of
order k + 1 in P.

5.1 Proof of Lemma 5.1.

Lemma 5.3. If X distinguishes two r-robust profiles P1 and P2 efficiently,
then X is not disqualified by any separation Y with ∂(Y ) ≤ r.

Proof. We may assume that X ∈ P1 and X{ ∈ P2. Suppose for a con-
tradiction that Y strongly disqualifies X. Then |L(X,Y )| < |∂(X)| and
|L(X,Y {)| < |∂(X)|. As neither X ∩ Y nor X ∩ Y { is in P2, these two
sets cannot be in P1 either since X distinguishes P1 and P2 efficiently. This
contradicts the assumption that P1 is r-robust. Similarly, one shows that Y
cannot strongly disqualify X{, and thus Y does not disqualify X.

Lemma 5.4. Let X and Y be two separations distinguishing profiles in P
efficiently with k = |∂(X)| ≤ |∂(Y )|. Let C be a component of G − ∂(X)
such that ∂(sC) is a proper subset of ∂(X).

If R(k − 1, r) = ∅, then C does not intersect ∂(Y ).
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Proof. Let P and P ′ be two profiles in P distinguished efficiently by X,
where X ∈ P .

Sublemma 5.5. G− ∂(X) has two components D and K different from C
such that sD ∈ P and sK ∈ P ′.

Proof. sC can be in at most one of P and P ′. By the efficiency of X it
actually cannot be in precisely one of them. Thus sC is in none of them.
Hence the components D and K of G−∂(X) such that sD ∈ P and sK ∈ P ′,
which exist by (P3), are different from C.

Let Q and Q′ be two profiles in P distinguished efficiently by Y , where
Y ∈ Q. Since |∂(X)| ≤ |∂(Y )|, we have X ∈ Q or X{ ∈ Q. By exchang-
ing the roles of X and X{ if necessary, we may assume that X ∈ Q. By
Sublemma 5.5, we may assume that sC ⊆ X by replacing X by X ∪ sC if
necessary.

Sublemma 5.6. Either |L(X,Y )| ≤ |∂(Y )| and X∩Y ∈ Q or else |L(X,Y {)| ≤
|∂(Y )| and X ∩ Y { ∈ Q′.

Proof. Case 1: X{ ∈ Q′.
If |L(X{, Y {)| < |∂(X)|, then X{ ∩ Y { ∈ Q′ by (P2) so that X{ ∩ Y {

will distinguish Q and Q′, which is impossible by the efficiency of Y . Thus
|L(X,Y )| ≤ |∂(Y )| by Remark 4.1, yielding that X ∩ Y ∈ Q by (P2), as
desired.

Case 2: X ∈ Q′.
By Lemma 5.3, Y does not strongly disqualifyX{. Thus either |L(Y {, X{)| ≥

|∂(X)| or |L(Y,X{)| ≥ |∂(X)|. In the first case, |L(Y {, X)| ≤ |∂(Y )| by
Remark 4.1. Then Y { ∩ X ∈ Q′ by (P2). Similarly in the second case,
|L(Y,X)| ≤ |∂(Y )|. Then Y ∩X ∈ Q by (P2), as desired.

Sublemma 5.7. One of C and D does not meet ∂(Y ).

Proof. First we consider the case that |L(X,Y )| ≤ |∂(Y )| and X ∩ Y ∈ Q.
By (P3), there is a component F of G − ∂(Y ∩ X) such that sF ∈ Q. By
the efficiency of Y , it must be that ∂(sF ) = ∂(Y ∩X) as sF distinguishes Q
and Q′. Thus the union F ′ of F and the link ∂(Y ) \ V (X{) is connected.

Suppose for a contradiction that both C and D meet ∂(Y ), then they
both meet ∂(Y ) in vertices of the link ∂(Y ) \ V (X{). Since C and D are
components, they both must contain F ′, and hence are equal, which is the
desired contradiction. Thus at most one of C and D can meet ∂(Y ).

By Sublemma 5.6 it remains to consider the case where |L(X,Y {)| ≤
|∂(Y )| and X∩Y { ∈ Q′, which is dealt with analogous to the above case.
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Recall that ∂(sC) ⊆ ∂(sD). By Sublemma 5.7, one of the links ∂(sC) \
V (Y ) and ∂(sC) \ V (Y {) must be empty since otherwise there would a
path joining these two links and avoiding ∂(Y ), which is impossible. By
symmetry, we may assume that ∂(sC) \ V (Y ) is empty. Thus ∂(Y \ sC) ⊆
∂(Y ). Since R(k − 1, r) = ∅, and sC 6∈ P , it must be that sC /∈ Q. Thus
Y \ sC ∈ Q by (P2) so that Y \ sC distinguishes Q and Q′. By the efficiency
of Y , it must be that ∂(Y \ sC) = ∂(Y ). Hence ∂(Y ) ∩ C is empty, as
desired.

Proof of Lemma 5.1. Let X ∈ R(k, r) and Y ∈ R(r, r) of order at least k.
Let C be a component of G− ∂(X) and D be a component of G− ∂(Y ). In
order to see that S(k, r) is a nested, it suffices to show that for any such C
and D that the separations sC and sD are nested. This is true by Lemma 5.4
and Lemma 4.19. In order to see that S(k, r) is an extendable, it suffices to
show that for any such C and Y that the separations sC and Y are nested.
This is true by Lemma 5.4 and Lemma 4.19, as well.

5.2 Proof of Theorem 5.2.

Before we prove Theorem 5.2, we need some intermediate lemmas. Through-
out this subsection, we assume that S(k, r) is empty. Let U be the set of
those tight separations of order at most k that are not disqualified by any
X ∈ R(r, r). Note R(k, r) ⊆ U .

Lemma 5.8. For any componental separation X ∈ R(r, r), there are only
finitely many Y ∈ U not nested with X.

Proof. First, we show that X is nested with every Y ∈ U such that the link
∂(X)\V (Y ) is empty. By Lemma 4.19, it suffices to show that ∂(Y )\V (X{)
is empty. As X does not strongly disqualify Y {, one of the links ∂(Y )\V (X)
and ∂(Y )\V (X{) is empty. Hence we may assume that ∂(Y )\V (X) is empty.
If Y is not nested with X, there must be a component of C of G − ∂(Y )
all of whose neighbours are in ∂(X) ∩ ∂(Y ). As Y is tight, it must be that
∂(Y ) = ∂(X) ∩ ∂(Y ) so that ∂(Y ) \ V (X{) is empty. Hence X and Y are
nested by Lemma 4.19.

Similarly one shows that X is nested with every Y ∈ U such that the
link ∂(X) \ V (Y ) is empty.

It remains to show that there are only finitely many Y ∈ U not nested
withX such that both links ∂(X)\V (Y ) and ∂(X)\V (Y {) are nonempty. By
Lemma 4.22, there are only finitely many triples (v, w, T ) where v, w ∈ ∂(X)
and T is a separator of size at most k separating v and w minimally. Since
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each ∂(Y ) for some Y as above is such a separator T , it suffices to show
that there are only finitely many Z ∈ U with ∂(Z) = ∂(Y ). This is true as
G− ∂(Y ) has at most ∂(X) + 1 components by Lemma 4.21.

Lemma 5.9. Let N be a nested subset of U . For any two distinct profiles P
and Q in P of the same order that are not distinguished by any separation
of order less than k, there is some separation X ∈ R(k, r) ⊆ U that is nested
with N and distinguishes P and Q efficiently.

Proof. First, we show that there is some X ∈ U distinguishing P and Q
efficiently that is nested with all but finitely many separations of N . Since
S(k, r) is empty, R(k, r) is a subset of U . Thus U contains some separation
A distinguishing P and Q efficiently. By (P3), we can pick such an A that
is componental. By Lemma 5.8, A is nested with all but finitely many
separations of N . Hence we can pick X distinguishing P and Q efficiently
such that it is not nested with a minimal number of Y ∈ N .

Suppose for a contradiction that there is some Y ∈ N that is not nested
with X. We may assume that Y does not distinguish P and Q since other-
wise Y would distinguish P and Q efficiently. Thus either both Y ∈ P and
Y ∈ Q or both Y { ∈ P and Y { ∈ Q. Since Y { is nested with N , we may by
symmetry assume that Y ∈ P and Y ∈ Q.

Since X does not strongly disqualify Y { by the definition of U , either
|L(X,Y {)| ≥ |∂(Y )| or |L(X{, Y {)| ≥ |∂(Y )|. By symmetry, we may assume
that |L(X,Y {)| ≥ |∂(Y )|. By exchanging the roles of P and Q if necessary,
we may assume that X ∈ P and X{ ∈ Q. By Remark 4.1, |L(X{, Y )| ≤
|∂(X)|. Note that X{ ∩ Y /∈ P as X{ /∈ P by (P1) but X{ ∩ Y ∈ Q by (P2).
Thus X{ ∩ Y distinguishes P and Q efficiently. Any separation in N not
nested with X{ ∩ Y is by Lemma 4.20 not nested with X. As Y is nested
with X{ ∩Y , the separation X{ ∩Y violates the minimality of X. Hence X
is nested with N , completing the proof.

Proof of Theorem 5.2. By Lemma 5.9 any nested subset of U is extendable.

5.3 Proof of the main result of this section.

In this subsection, we proof the following.

Theorem 5.10. For any graph G and any r ∈ N ∪ {∞}, there is a nested
set of separation N that distinguishes efficiently any two r-robust profiles of
the same order.
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First we need an intermediate lemma, for which we fix some notation.
Let us fix some r ∈ N∪{∞}, some finite k ≤ r and an r-profile set P. Let N
be a nested set of separations of order at most k that is extendable for P and
that distinguishes efficiently any two profiles of P that can be distinguished
by a separation of order at most k. For each N -block B, let P(B) be defined
as after Lemma 4.8. And let NB be a set of nested separations of GT [B]
that is extendable for P(B). We abbreviate M = N ∪

⋃
ÑB, where the

union ranges over all N -blocks B.

Lemma 5.11. The set M is nested and extendable for P.

Proof. M is nested by Lemma 4.12.
It remains to show for every l ≥ k + 1 and any two profiles P and Q

in P that are distinguished efficiently by a separation of order l that there
is a separation nested with M that distinguishes P and Q efficiently. We
may assume that P and Q both have order l + 1 as P is an r-profile set.
By Lemma 4.8 and since N is extendable, there is a unique N -block B such
that some separation Y of order l of GT [B] distinguishes PB and QB.

As NB is extendable, there is a separation Z of GT [B] nested with NB
that distinguishes PB and QB efficiently. By Lemma 4.12, Z̃ is nested with
M, and it distinguishes P and Q by Remark 4.14 and it does so efficiently
by Remark 4.13.

Proof of Theorem 5.10. We shall construct the nested setN of Theorem 5.10
as a nested union of sets Nk one for each k ∈ N∪{−1}, where Nk is a nested
extendable set of separations of order at most k that distinguishes any two
r-robust profiles efficiently that are distinguished by a separation of order at
most k. We start the construction with N−1 = ∅. Assume that we already
constructed Nk with the above properties. For an Nk-block B, we define
P(B) as indicated after Lemma 4.8.

Sublemma 5.12. The set R(k, r,P(B), GT [B]) is empty.

Proof. Suppose for a contradiction, two profiles PB and QB in P(B) can
be distinguished by a separation X of order at most k. Then X̃ has order
at most |∂(X)| by Remark 4.13 and by Remark 4.14 it distinguishes the
profiles P and Q which induce PB and QB. So P and Q are distinguished
by Nk by the induction hypothesis. This contradicts the assumption that P
and Q are both in P(B).

By Sublemma 5.12, we can apply Lemma 5.1 to GT [B] and P(B), yield-
ing that the set S(k + 1, r,P(B), GT [B]) is a nested extendable set of sep-
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arations. For each S(k + 1, r,P(B), GT [B])-block B′, we define P(B′) as
indicated after Lemma 4.8.

Sublemma 5.13. The set S(k + 1, r,P(B′), GT [B′]) is empty.

Proof. Suppose for a contradiction, there is someX ∈ S(k+1, r,P(B′), GT [B′]).
Then there is some Y ∈ R(k+ 1, r,P(B′), GT [B′]) so that there is a compo-
nent C of GT [B′]− ∂(Y ) with sC = X. By Remark 4.13, Remark 4.14 and
the definition of P(B′), the separation Ỹ distinguishes efficiently two profiles
in P(B) so that Ỹ ∈ R(k+1, r,P(B), GT [B]). By Remark 4.13, Ỹ has order

precisely k + 1 since ˜̃Y has order k + 1 because it distinguishes two profiles
that are not distinguished by Nk. Hence X̃ ∈ S(k + 1, r,P(B), GT [B]) by
Remark 4.13. Thus X is the empty, which is the desired contradiction.

By Zorn’s Lemma we pick a maximal set N (B′) of nested tight sep-
arations of order at most k in GT [B′] that are not disqualified by any
X ∈ R(r, r,P(B′), GT [B′]). By Theorem 5.2 the set N (B′) is extendable
and distinguishes any two r-robust profiles of order k + 2 in P(B′).

LetNk+1(B) be the union of the sets Ñ (B′) together with S(k+1, r,P(B), GT [B]),
where the union ranges over all S(k + 1, r,P(B), GT [B])-blocks B′. By
Lemma 5.11, Nk+1(B) is a nested and extendable set of separation of or-
der at most k + 1 in GT [B]. Let Nk+1 be the union of the sets Ñk+1(B)
together with Nk, where the union ranges over all Nk-blocks B. Apply-
ing Lemma 5.11 again, we get that Nk+1 is a nested and extendable set of
separation of order at most k + 1 in G.

Sublemma 5.14. Nk+1 distinguishes efficiently any two r-robust profiles P
and Q of G that are distinguished by a separation of order at most k + 1.

Proof. We may assume that P and Q both have order k + 2. Let A dis-
tinguish P and Q efficiently. If A has order at most k, by the induction
hypothesis, there is a separation Â in Nk distinguishing P and Q efficiently.
So Â is in Nk+1 by construction.

Otherwise there is a separation X distinguishing P and Q efficiently
that is nested with Nk as Nk is extendable. By Lemma 4.8, there is an
Nk-blocks B such that PB and QB are r-robust profiles in GT [B] of order
k + 2 in P(B), which are distinguished efficiently by XB. Using the fact
that Nk+1(B) is extendable and then applying Lemma 4.8 again, we find an
S(k + 1, r,P(B))-block B′ such that PB and QB induce different r-robust
profiles of order k+ 2 in GT [B′], which are distinguished efficiently by some
separation Z of order at most k + 1. By construction, we find such a Z in
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N (B′). Applying Remark 4.13 twice yields that the order of ˜̃Z is at most

k+ 1. Thus ˜̃Z distinguishes P and Q efficiently by Remark 4.14. As ˜̃Z is in
Nk+1, this completes the proof.

Finally, the nested union N of the sets Nk is a nested set of separations
that distinguishes efficiently any two r-robust profiles of the same order, as
desired.

For a vertex end ω, let P kω be the set of those separations of order at most
k, in which ω lives. It is straightforward to show that P kω is an ∞-robust
profile of order k + 1. Hence Theorem 5.10 has the following consequence.

Corollary 5.15. For any graph G, there is a nested set N of separations
that distinguishes any two vertex ends efficiently.

6 A tree-decomposition distinguishing the topo-
logical ends

In this section, we prove Theorem 1 already mentioned in the Introduction.
A key lemma in the proof of Theorem 1 is the following.

Lemma 6.1. Let G be a graph with a finite nonempty set W of vertices.
Then G has a star decomposition (S,Qs|s ∈ V (S)) of finite adhesion such
that each topological end lives in some Qs where s is a leaf.

Moreover, only the central part Qc contains vertices of W , and for each
leaf s, there lives an topological end in Qs, and Qs \Qc is connected.

Proof that Lemma 6.1 implies Theorem 1. We shall recursively construct a
sequence T n = (Tn, Pnt |t ∈ V (Tn)) of tree-decomposition of G of finite
adhesion as follows. We starting by picking a vertex v of G arbitrarily and
we obtain T 1 by applying Lemma 6.1 with W = {v}. Assume that we
already constructed T n. For each leaf s of T n, we denote by Ws the set of
those vertices in Qs also contained in some other part of T n. Note that Ws

is contained in the part adjacent to Qs and thus is finite. By Lemma 6.1, we
obtain a star decomposition Ts of G[Qs] such that no w ∈ Ws is contained
in a leaf part of Ts and such that each topological end living in Qs lives in
a leaf of Ts. We obtain T n+1 from T n by replacing each leaf part Qs by Ts,
which is well-defined as the set Ws is contained in a unique part of Ts.

By r, we denote the center of T1. For each j < m < n, the balls of radius
j around r in Tm and Tn are the same. Thus we take T to be the tree whose
nodes are those that are eventually a node of Tn. For each t ∈ V (T ), the
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parts Pnt are the same for n larger than the distance between t and r, and
we take Pt to be the limit of the Pnt .

It is easily proved by induction that each vertex in Ws for s a leaf of
Tn has distance at least n − 1 from v in G. Thus for each j < n the ball
of radius j around v in G is included in the union over all parts Pnt where
t is in the ball of radius j around r in Tn. Hence (T, Pt|t ∈ V (T )) is a
tree-decomposition, and it has finite adhesion by construction.

It remains to show that the ends of T define precisely the topological
ends of G, which is done in the following four sublemmas.

Sublemma 6.2. Each topological end ω of G lives in an end of T .

Proof. There is a unique leaf s of Tn such that ω lives in Pns . Let sn be
the predecessor of s in Tn. Then ω lives in the end of T to which s1s2 . . .
belongs.

Sublemma 6.3. In each end τ of T , there lives a vertex end of G.

Proof. For a directed paths P , we shall denote by
←−
P the directed path with

the inverse ordering of that of P .
Let s1s2... be the ray in T starting at r that belongs to τ . By construc-

tion, the sets Wsi are disjoint and finite. For each w ∈ Wsi , we pick a path
Pw from w to v. Since Wsi−1 separates w from v, there is a first w′ ∈Wsi−1

appearing on Pw. Now we apply the Infinity Lemma in the form of [12,
Section 8] on the graph whose vertex set is the disjoint union of the sets
Wsi , and we put in all the edges ww′. Thus this graph has a ray w1w2...

where wi ∈Wsi . Then K = v
←−−
Pw1w1

←−−
Pw2w2

←−−
Pw3 ... is an infinite walk with the

property that the distance between v and a vertex k on K is at least n if k

appears after
←−−
Pwn . In particular, K traverses each vertex only finitely many

times. Thus K is a connected locally finite graph, and thus contains a ray
R. Since R meets each of the sets Wsi , the end to which R belongs lives in
τ , as desired.

Sublemma 6.4. No two distinct vertex ends ω1 and ω2 of G live in the
same end τ of T .

Proof. Suppose for a contradiction, there are such ω1, ω2 and τ . Let U be
a finite separator separating ω1 from ω2 and let n be the maximal distances
between v and a vertex in U . Then there is a leaf s of Tn+1 such that τ
lives in Qs. Let Ci be the component of G − U in which ωi lives. Since
Ws separates U from Qs \Ws, it must be that the connected set Qs \Ws is
contained in a component of G−U . As ωi lives in Qs \Ws by assumption, it
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must be that Qs \Ws ⊆ Ci. Hence C1 and C2 intersect, which is the desired
contradiction.

Sublemma 6.5. No vertex u dominates a vertex end ω living in some end
of T .

Proof. Suppose for a contradiction u does. Let n be the distance between
u and v in G. Then there is a leaf s of Tn+1 such that ω lives in Qs. Thus
the finite set Ws separates u from ω, contradicting the assumption that u
dominates ω.

Sublemma 6.2, Sublemma 6.3, Sublemma 6.4 and Sublemma 6.5 imply
that the ends of T define precisely the topological ends of G, as desired.

Remark 6.6. Let (T,≤) be the tree order on T as in the proof of Theorem 1
where the root r is the smallest element. We remark that we constructed
(T,≤) such that (T, Pt|t ∈ V (T )) has the following additional property: For
each edge tu with t ≤ u, the vertex set

⋃
w≥u V (Pw) \ V (Pt) is connected.

Moreover, we construct (T, Pt|t ∈ V (T )) such that if st and tu are edges
of T with s ≤ t ≤ u, then V (Ps) ∩ V (Pt) and V (Pt) ∩ V (Pu) are disjoint.

In order to prove Lemma 6.1, we need the following.

Lemma 6.7. Let G be a connected graph and W ⊆ V (G) finite and nonempty.
Then there is a set X of disjoint edge sets X of finite boundary such that
every vertex end not dominated by some w ∈ W lives in some X ∈ X and
no edge e in any X ∈ X is incident with a vertex of W .

Proof that Lemma 6.7 implies Lemma 6.1. We may assume thatG in Lemma 6.1
is connected. Let C = V (E \

⋃
X )∪

⋃
X∈X ∂(X). For X ∈ X let QX consist

of sets of the form ∂(X) ∪ Q, where Q is a component of G − ∂(X) with
Q ⊆ V (X). Let Q be the union over X of the sets QX . Let R be the set of
those H in Q such that some topological end lives in V (H). Note that each
topological end lives in some R ∈ R and that W does not intersect any such
R. We obtain C ′ from C by adding the vertex sets of all H ∈ Q \ R. We
consider S = R∪{C ′} as a star with center C ′. It is straightforward to verify
that (S, s|s ∈ V (S)) is a star decomposition with the desired properties.

The rest of this section is devoted to the proof of Lemma 6.7. We shall
need the following lemma.
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Lemma 6.8. Let G be a connected graph and W ⊆ V (G) finite. There is a
nested set N of nonempty separations of finite order such that every vertex
end not dominated by some w ∈ W lives in some X ∈ N and no edge e in
some X ∈ N is incident with a vertex of W .

Moreover, if X,Y ∈ N are distinct with X ⊆ Y , then the order of Y is
strictly larger than the order of X.

Proof. We obtain GW from G by first deleting W and then adding a copy
of Kω, the complete graph on countably many vertices, which we join com-
pletely to the neighbourhood of W . Applying Corollary 5.15 to GW , we
obtain a nested set N ′ of separations of finite order such that any two ver-
tex ends of GW are distinguished efficiently by a separation in N ′. Let τ
be the vertex end to which the rays of the newly added copy of Kω belong.
Let N ′′ consist of those separations in N ′ that distinguish τ efficiently from
some other vertex end. As the separations in N ′′ distinguish efficiency, no
X ∈ N ′′ contains an edge incident with a vertex of the newly added copy of
Kω.

Given k ∈ N, a k-sequence (Xα|α ∈ γ) (for N ′′) is an ordinal indexed
sequence of elements of N ′′ of order at most k such that if α < β, then
Xα ⊆ Xβ. We obtain N ′′′ from N ′′ by adding

⋃
α∈γ Xα for all k-sequences

(Xα) for all k. Clearly, N ′′ ⊆ N ′′′ and N ′′′ is nested. Given k ∈ N, the set
Nk consists of those X ∈ N ′′′ of order at most k, and N ′k consists of the
inclusion-wise maximal elements of Nk.

We let N =
⋃
k∈NN

′
k. By construction, each X ∈ N contains no edge

incident with a vertex of the newly added copy of Kω, and thus it can be
considered as an edge set of G, whose boundary is the same as the boundary
in GW . We claim that N has all the properties stated in Lemma 6.8: By
construction, each X ∈ N is nonempty. Since N ⊆ N ′′′, the set N is nested.
The “Moreover”-part is clear by construction. Thus it remains to show that
each vertex end ω of G not dominated by some vertex in W lives in some
element of N .

Let R be a ray belonging to ω. Since ω is not dominated by any vertex in
W , for each w ∈W there is a finite vertex set Sw separating a subray Rw of
R from w. Then S =

⋃
w∈W Sw \W separates R′ =

⋂
w∈W Rw from W in G

but also in GW . Let ω′ be the vertex end of GW to which R′ belongs. Note
that S witnesses that ω′ 6= τ . Thus there is some X ∈ N ′′′ in which ω′ lives.
Let k be the order of X. By Zorn’s lemma, N ′′′ contains an inclusion-wise
maximal element X ′ of order at most k including X. By construction X ′ is
in N ′k and includes a subray of R′. Thus ω lives in X ′, which completes the
proof.
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Next we show how Lemma 6.8 implies Lemma 6.7. A good candidate
for X in Lemma 6.7 might be the inclusion-wise maximal elements of N .
However, there might be an infinite strictly increasing sequence of members
in N , whose orders are also strictly increasing, so that we cannot expect
that the union over the members of this sequence has finite order, and hence
cannot be in N . Thus we have to make a more sophisticated choice for X
than just taking the maximal members of N .

Lemma 6.8 implies Lemma 6.7. Let N be as in Lemma 6.8. Let X ∈ N
be such that there is another Y ∈ N with X ⊆ Y , then the order of Y is
strictly larger than the order of X. We denote the set of such Y of minimal
order by D(X). Let H be the digraph with vertex set N where we put
in the directed edge XY if Y ∈ D(X). A connected component of H, is a
connected component of the underlying graph of H.

Sublemma 6.9. Let X ′, Y ′ ∈ N . Then X ′ ⊆ Y ′ if and only if there is a
directed path from X ′ to Y ′. Moreover, if X,Y ∈ N are not joined by a
directed path, then they are disjoint.

Proof. Clearly, if there is a directed path from X ′ to Y ′, then X ′ ⊆ Y ′.
Conversely, let X ′, Y ′ ∈ N with X ′ ⊆ Y ′. Let (Xn) be a sequence of distinct
separations in N such that X ′ ⊆ X1 ⊆ ... ⊆ Xn ⊆ Y ′. By Lemma 6.8,
n ≤ |∂(Y ′)| − |∂(X ′)|+ 1. Thus there is a maximal such chain (Zn), which
satisfies Z1 = X ′ and Zn = Y ′ and Xi+1 ∈ D(Xi) for all i between 1 and
n− 1. Hence Z1...Zn is a path from X ′ to Y ′.

To see that “Moreover”-part, let X,Y ∈ N . As G is connected, there
is an edge e incident with some vertex in W . Since e is not in X ∪ Y and
X and Y are nested, X and Y must be disjoint if they are not joined by a
directed path.

Sublemma 6.10. Each vertex v of H has out-degree at most 1

Proof. Suppose for a contradiction v has out-degree at least 2. Then there
are distinct X,Y ∈ D(v) so that neither X ⊆ Y nor Y ⊆ X. Thus X
and Y are disjoint by Sublemma 6.9. Since v ⊆ X ∩ Y , this is the desired
contradiction.

Sublemma 6.11. Any undirected path P joining two vertices v and w con-
tains a vertex u such that vPu and wPu are directed paths which are directed
towards u.
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Proof. It suffices to show that P contains at most one vertex of out-degree
0 on P . If it contained two such vertices then between them would be a
vertex of out-degree 2, which is impossible by Sublemma 6.10.

We define X as the union of sets XC , one for each component C of H.
The XC are defined as follows: If C has a vertex vC of out-degree 0, then
by Sublemma 6.11 C cannot contain a second such vertex and for any other
vertex v in C, there is a directed path from v to vC directed towards vC .
Hence vC includes any other v ∈ V (C). We let XC = {vC}.

Otherwise, C includes a ray X1X2 . . . as C cannot contain a directed
cycle by Sublemma 6.9. In this case, we take XC to be the set consisting of
the Yi = Xi \Xi−1 for each i ∈ N, where Y1 = X1. Note that the order of
Yi is bounded by the sum of the orders of Xi and Xi−1, and thus finite.

Since no Y ∈ N contains an edge incident with some w ∈ W , the same
is true for any Y ∈ X . Any two distinct X,Y ∈ X are disjoint: If X and
Y are in the same XC , this is clear by construction. Otherwise it follows
from the definition of Yi and Sublemma 6.9. Thus it remains to prove the
following:

Sublemma 6.12. Each vertex end ω not dominated by some vertex of W
lives in some X ∈ X .

Proof. By Lemma 6.8, there is some Z ∈ N in which ω lives. Let C be the
component of H containing Z. If XC = {vC}, then Z ⊆ vC . Otherwise let
the Xi and the Yi be as in the construction of XC . If Z = Xj for some j.
Then we pick j minimal such that ω lives in Xj . Since ω does not live in
Xj−1, it must live in Yj , as desired.

Thus we may assume that Z is not equal to any Xj . Let P be a path
joining Z and X1 = Y1. By Sublemma 6.11, P contains a vertex u such that
ZPu and X1Pu are directed paths which are directed towards u. If u = X1,
then Z ⊆ Y1, and we are done. Otherwise X1Pu is a subpath of the ray
X1X2 . . . since the out-degree is at most 1 so that u = Xj for some j.

We pick P such that the j with u = Xj is minimal and have the aim to
prove that then Z ⊆ Yj . Since Z ⊆ Xj , it remains to show that Z and Xj−1
are disjoint. Suppose for a contradiction, there is a directed path Q joining Z
and Xj−1. If Q is directed towards Z, then Z = Xm for some m, contrary to
our assumption. Thus Q is directed towards Xj−1. But then ZQXj−1PX1

has a smaller j-value, which contradicts the minimality of P . Hence there
cannot be such a Q, and thus Z and Xj−1 are disjoint by Sublemma 6.9.
Having shown that Z ⊆ Yj , we finish the proof by concluding that then ω
also lives in Yj .
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Finally we deduce Corollary 2.1.

Proof that Theorem 1 implies Corollary 2.1. By Theorem 1, G has a tree-
decomposition (T, Pt|t ∈ V (T )) of finite adhesion such that the ends of T de-
fine precisely the topological ends of T , and we choose this tree-decomposition
as in Remark 6.6. In particular, we can pick a root r of T such that for each
edge tu with t ≤ u, the vertex set

⋃
w≥u V (Pw) \ V (Pt) is connected.

Thus for each such edge tu, there is a finite connected subgraph Su of
G[

⋃
w≥u V (Pw)] that contains V (Pt)∩V (Pu). Let Qt be a maximal subforest

of the union of the Su, where the union ranges over all upper neighbours
u of t. We recursively build a maximal subset U of V (T ) such that if
a, b ∈ U , then Qa and Qb are vertex-disjoint. In this construction, we first
add the nodes of T with smaller distance from the root. This ensures by
the “Moreover”-part of Remark 6.6 that U contains infinitely many nodes
of each ray of T .

Let S′ be the union of those Qt with t ∈ U . We obtain S by extending
S′ to a spanning tree of G, and rooting it at some v ∈ V (S) arbitrarily. By
the Star-Comb-Lemma [12, Section 8], each spanning tree of G contains for
each topological end ω a ray belonging to ω.

Thus it remains to show that S does not contain two disjoint rays R1

and R2 that both belong to the same topological end ω of G. Suppose there
are such R1, R2 and ω. Let t1t2 . . . be the ray of T in which ω lives. Let n
be so large that both R1 and R2 meet Ptn . Then for each m ≥ n, the set
Stm contains a path joining R1 and R2. Thus the set Qtm−1 contains such
a path. Since Qtm−1 ⊆ S for infinitely many m, the tree S contains a cycle,
which is the desired contradiction.
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