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Abstract

We survey various aspects of infinite extremal graph theory and prove
several new results. The lead role play the parameters connectivity and
degree. This includes the end degree. Many open problems are suggested.

1 Introduction

1.1 A short overview

Until now, extremal graph theory usually meant finite extremal graph theory.
New notions, as the end degrees [5, 42], circles and arcs, and the topological
viewpoint [11], make it possible to create the infinite counterpart of the theory.
We attempt here to give an overview of results and open problems that fall into
this emerging area of infinite graph theory.

The paper divides into three parts. The first part is about forcing sub-
structures with assumptions on the degree. We use the vertex-/edge-degree of
the ends (for a definition see below) to force highly connected subgraphs and
grid minors. For ensuring large complete minors, the vertex-/edge-degree is not
enough, and we introduce a new notion, the relative degree, which accomplishes
the task, at least for locally finite graphs. Related problems will be addressed
along the way.

The second part is on minimal higher connectivity and edge-connectivity of
graphs, that is k-(edge-)connectivity for some k ∈ N. This includes minimality
with respect to edge deletion, with respect to vertex deletion, and with resepct to
taking subgraphs. The main questions here are the existence of vertices or ends
of small degree, and bounds on the number of these. We also discuss whether
minimal k-connected subgraphs in the sense(s) above exist in every k-connected
graph. This will lead to a discussion of the problem in certain subspaces of the
topological space associated to the graph.

The third and last part of the survey is on circles and arcs. These are
the topologically defined analogues of cycles and paths in infinite graphs (see
Section 2). We first discuss results and problems related to Hamilton circles,
then move on to (topological) tree-packing and arboricity, and finally close the
paper with a discussion of problems related to connectivity-preserving arcs and
circles.
∗Supported by Fondecyt grant no. 11090141.

1



1.2 Structure and degree

Extremal graph theory in its strictest sense is all about forcing some palpable
properties of a graph, very often some interesting substructure, by making as-
sumptions on the overall density of the graph, conveniently expressed in terms
of global parameters such as the average or minimum degree.

A typical and important result in finite extremal graph theory, which can
be found in any standard textbook, is the following theorem of Kostochka. It
says that large average degree forces a large complete minor (and the function
f1(k) is essentially the best possible bound [44]).

Theorem 1.1.1. [11] There is a constant c1 so that, for every k ∈ N, if G is a
finite graph of average degree at least f1(k) := c1k

√
log k, then G has a complete

minor of order k.

Also large topological minors can be forced with similar assumptions in finite
graphs, as the following result, due to Bollobás and Thomason, states.

Theorem 1.1.2. [11] There is a constant c2 so that, for every k ∈ N, if G is
a finite graph of average degree at least f2(k) := c2k

2, then G has a complete
topological minor of order k.

Let us see how these results could extend to infinite graphs. First of all we
have to note that it is not clear what the average degree of an infinite graph
should be. We shall thus stick to the minimal degree as our ‘density-indicating’
parameter. A minor, on the other hand, is defined in same way as for finite
graphs, only that the branch-sets may now be infinite.1

In rayless graphs we will then get a verbatim extension of Theorems 1.1.1
and 1.1.2 (namely Theorem 3.1.1). This theorem will follow from a useful re-
duction theorem (Theorem 3.1.2), which states that every rayless graph of min-
imum degree k has a finite subgraph of minimum degree k. These results will
be presented in Section 3.1.

In graphs with rays, however, large minimal degree at the vertices is too
weak to force any interesting substructure. This is so because infinite trees
may have arbitrarily large degrees, but they do not even have any 2-connected
subgraphs. So at first sight, our goal seems unreachable. At second thought,
however, the example of the infinite tree just shows that we did not translate
the term ‘large local densities’ in the right way to infinite graphs. Only having
every finite part of an infinite graph send out a large number of edges will not
produce large overall density, if we do not require something to ‘come back’
from infinity.

The most natural way to do this is to impose a condition on the ends of
the graph. Ends are defined as the equivalence classes of rays (one-way infinite
paths), under the equivalence relation of not being separable by any finite set
of vertices. Ends have a long history, see [23].

In [5] and in [42], end degrees were introduced. In fact, two notions have
turned out useful (for different purposes): the vertex-degree and the edge-degree
of an end ω. The vertex-degree of ω is defined as the maximum cardinality of a

1As long as our minors are locally finite, however (which will always be the case in this
paper), it does not make any difference whether we allow infinite branch-sets or not. It is easy
to see that any infinite branch-set of a locally finite minor may be restricted to a finite one.
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set of (vertex-)disjoint rays in ω, and the edge-degree is defined as the maximum
cardinality of a set of edge-disjoint rays in ω. These maxima exist [18].

Do these notions help to force density in infinite graphs? To some extent
they do: A large minimum degree at the vertices together with a large minimum
vertex-/edge-degree at the ends implies a certain dense substructure, which
takes the form of a highly connected or edge-connected subgraph.

More precisely, there is a function fv such that every graph of minimum
degree resp. vertex-degree fv(k) at the vertices and the ends has a k-connected
subgraph, and there is also a function fe such that every graph of minimum
degree/edge-degree fe(k) at the vertices and the ends has a k-edge-connected
subgraph. While fe is linear, fv is quadratic, and this is almost best possible.
All these results are from [42] and will be presented in Section 3.3.

Related results will be discussed in Sections 3.2 and 3.4. In the latter, we
shall see that in locally finite vertex-transitive graphs, k-connectivity is implied
by much weaker assumptions. In fact, the k-(edge-)connectivity of a locally finite
vertex-transitive graph is equivalent to all its ends having vertex-(resp. edge-)
degree k. In Section 3.2 we shall see that independently of the degrees at the
vertices, large vertex-degrees at the ends force an interesting planar substruc-
ture: An end of infinite vertex-degree produces the N×N-grid as a minor (this
is an old result of Halin [18]), and an end of vertex-degree at least 3

2k− 1 forces
a [k]×N-grid-minor (and this bound is best possible). The latter result was not
known before.

However, our notion of vertex-/edge-degrees is not strong enough to make
extensions of Theorems 1.1.1 and 1.1.2 possible. This can be seen by taking
the infinite r-regular tree and inserting the edge set of some spanning subgraph
at each level (Example 3.5.1). With a little more effort we can transform our
example into one with infinitely many ends of large but finite vertex-/edge-
degree (Example 3.5.2).

To overcome this problem, we introduce in Section 3.6 a new end degree
notion, the relative degree, that allows us to extend Theorems 1.1.1 and 1.1.2
to infinite locally finite graphs (Theorem 3.6.2). Moreover, every locally finite
graph of minimum degree/relative degree at least k has a finite subgraph of
average degree at least k (Theorem 3.6.1). An application of Theorem 3.6.2 is
investigated in Section 3.7, where we ask whether as in finite graphs, large girth
can be used for forcing large complete minors.

1.2 Minimal k-connectivity

The subjects of the second part of our survey are minimally k-connected graphs.
Minimality may here mean minimality with respect to either edge or vertex
deletion, and it may also mean mimimality with respect to taking subgraphs.
Minimality has been studied mainly for finite graphs [7, 20, 26, 27, 28], but also
for infinite graphs [19, 29, 40]. See [40] for an overview of results on edge-and
vertex-minimality in finite graphs, see also [3, 15].

Edge-minimally k-connected graphs, i.e. those that are k-connected but lose
this property upon the deletion of any edge, have received most attention in
the literature and will be the subject of Section 4.1. It is known that these
graphs have vertices of degree k. Even bounds on the number of such vertices
are known [28, 29]: Every finite edge-minimally k-connected graph must have
at least k+1 vertices of degree k, and every infinite edge-minimally k-connected
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graph G has |G| such vertices. Moreover, they appear on every (finite) cycle
of G.

Unlike in finite graphs, however, infinite k-connected graphs need not have
edge-minimally k-connected subgraphs. One example is the double-ladder (see
the end of Section 4.1).

It is thus natural to shift our investigations to certain ‘edge-minimally k-
connected standard subspaces’ which have the advantage that they do exist, at
least in every locally finite k-connected graph (Lemma 4.6.1). Then, most of the
results for graphs mentioned above carry over to standard subspaces. For the
definition of these subspaces, we will have to we view the point set of a graph
G together with its ends as a topological space, see Section 2.

Vertex-minimally k-connected graphs, i.e. those graphs that are k-connected
but lose this property upon the deletion of any vertex, are the topic of Sec-
tion 4.2. It is known that finite such graphs have at least two vertices of ‘small’
degree [20], where ‘small’ now means 3

2k−1 (which is best possible). This result
carries over to infinite graphs, if we allow for ends of small degree as well as
vertices [40]. It is necessary to allow also ends here.

Minimal k-connectivity with respect to taking subgraphs/induced subgraphs
will be discussed in Section 4.3. The respective questions for subspaces will be
treated in Section 4.7.

Section 4.4 and 4.5 investigate the same problems as Sections 4.1 and 4.2,
but for edge-connectivity. In Section 4.4, the existence and quantity of ver-
tices of degree k in edge-minimally k-edge-connected graphs (and sometimes
multigraphs) are studied. In Section 4.5 we focus on vertex-minimally k-edge-
connected graphs and multigraphs. The results shown in these two sections are
taken from [40].

1.3 Spanning circles and trees

The third and last part of the present survey, Section 5, deals with extremal
problems concerning circles, topological trees/forests, and arcs, which shall be
introduced in Section 2. In addition to being natural extensions of the concepts
of cycles, trees, forests, and paths in finite graphs, all these notions have proved
over the last decade to be of immense use in infinite graph theory (see [11] or
the survey [9]).

Section 5.1 presents results and open problems concerning Hamilton circles.
The main result seems to be Georgakopolous’ extension (Theorem 5.1.2) of Fleis-
chner’s theorem that the square of any locally finite 2-connected graph has a
Hamilton cycle. The main conjecture, on the other hand, is due to Bruhn (Con-
jecture 5.1.1), and would extend a result of Tutte which states that every planar
4-connected graph has a Hamilton cycle. For these and more problems/results,
see Section 5.1.

In Section 5.2 we turn our attention to forests and spanning trees. These play
the lead role in two well-known results from finite graph theory: the tree-packing
theorem and the arboricity theorem. The former is about the number of edge-
disjoint spanning trees of a graph. It states that if every partition of the vertex
set of a graph G is crossed by at least as many edges as k edge-disjoint spanning
trees would send across, then in fact, G has k edge-disjoint spanning trees. The
infinite locally finite analogue is false for ‘traditional’ spanning trees, but Bruhn
and Diestel showed it holds true for topological spanning trees (Theorem 5.2.1).
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A related result, the arboricity theorem, extends easily, if we do not require
these forests to be topological ones, but extends also if we do (although then, a
further condition is needed). See Section 5.2 for all details.

We close the last part of our survey with a topic that would have also fitted
into the second part: connectivity-preserving arcs and cycles/circles. These are
paths or cycles whose deletion does not reduce the connectivity ‘too much’.

A well known conjecture of Lovász in this respect states that there is a
function f so that every finite f(k)-connected graph has an induced cycle so
that the deletion of its vertices leaves the graph k-connected, and moreover,
that one may prescribe an edge which the cycle has to contain. There are
several weakenings and modifications of this conjecture which have been proved
in finite graphs. We ask for extensions to infinite graphs in Section 5.3.

2 Terminology

All our notation is as in [11], but we take the oppotunity here to remind the
reader of the few less standard concepts.

One of the main concepts in infinite graph theory is that of the ends of
a graph G. An end of G is an equivalence class of rays (i.e. one-way infinite
paths) of G, where we say that two rays are equivalent if no finite set of vertices
separates them. We denote the set of ends of a graph G by Ω(G).

The vertex-degree and the edge-degree of an end ω ∈ Ω(G) were introduced
in [5] resp. in [41]. Sometimes, one refers to both at the same time speaking
informally of the end degree. The vertex-degree dv(ω) of ω is defined as the
maximum cardinality of a set of (vertex-)disjoint rays in ω, and the edge-degree
de(ω) of ω is defined as the maximum cardinality of a set of edge-disjoint rays
in ω. These maxima exist [18], see also [11]. Cleary, the vertex-degree of an
end is at most its edge-degree. We shall encounter a third end degree notion in
Section 3.6.

For a subgraph H of a graph G, we write ∂vH := N(G−H) for its vertex-
boundary. Similarly, ∂eH := E(H,G−H) is the edge-boundary of H.

An induced connected subgraph H of an infinite graph that has a finite
vertex-boundary is called a region. If H contains rays of an end ω, we will say
that H is a region of ω.

For k ∈ N, a separator of a graph of size k will often be called a k-separator,
and k-cuts are defined analogously. We say that a separator (or cut) S of a
graph G separates some set A ⊆ V (G) from an end ω ∈ Ω(G), if the component
of G− S that contains rays of ω does not meet A.

The rest of this section is dedicated to the topological viewpoint on (infinite)
graphs that has been introduced in [12, 13, 14]. With a few exceptions we shall
not use these concepts until Section 4.6, so the reader might wish to read the
rest of this section only then.

We first define a topological space |G| on the point set of the graph G plus
its ends. The topology is as on a 1-complex, only that we allow as basic open
neighbourhoods of a vertex v only sets of half-open edges of the same length
ε, and the basic open neighbourhoods of an end ω are defined as follows. For
each finite set S ⊆ V (G), and for ε > 0 let CS,ω be the (unique) component of
G − S that contains rays of ω. Let ΩS,ω be the set of all ends that have rays
in CS,ω, and let ES,ε,ω be the set of half-open intervals of length ε of the edges
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in E(S, V (C)), one for each edge. Now CS,ω ∪ ΩS,ω ∪ ES,ε,ω is a basic open
neighbourhood of ω.

A standard subspace of |G| is a closed subspace that contains every edge
of which it contains an inner point. Observe that a standard subspace is thus
nothing else than the closure H of a subgraph H of G. Later in the text, we
shall give a definition of end degrees in subspaces.

Finally we shall need the notion of circles and arcs, which are the infinite
analogues of paths and cycles, and will be used mainly in Section 5. A circle is
the homeomorphic image of the unit cycle in |G| . An arc is the homeomorphic
image of the unit interval. Observe that these definitions include the traditional
cycles and paths.

The definition of a circle gives rise to a new concept of trees and forests:
These are now required to be void of circles (and not only finite cycles). Thus
we define a topological tree in G as a path-connected standard subspace of |G|
that contains no circles, and a topological forest as a union of such topological
trees.

3 Degrees and substructure

3.1 Large complete minors in rayless graphs

We start this section on substructures with an extension of Theorems 1.1.1
and 1.1.2 to infinite rayless graphs. The functions f1 and f2 are as defined in
these theorems.

Theorem 3.1.1. Let G be a rayless graph. If each vertex of G has degree at
least f1(r), then Kr is a minor of G, and if each vertex of G has degree at least
f2(r), then Kr is a topological minor of G.

In fact, Theorem 3.1.1 follows at once from Theorems 1.1.1 and 1.1.2 together
with the following reduction theorem:

Theorem 3.1.2. Let G be a rayless graph of minimum degree m. Then G has
a non-empty finite subgraph of minimum degree m.

In order to prove Theorem 3.1.2, we need Kőnig’s infinity lemma:

Lemma 3.1.3. [11] Let G be a graph on the union of disjoint finite non-empty
sets Si, i ∈ N, so that each v ∈ Si has a neighbour in Si−1. Then G has a ray.

Proof of Theorem 3.1.2. We start with any finite non-empty vertex set S0. For
i ≥ 1 we choose for each vertex v ∈ Si−1 a set Sv of max{0,m− dG[

S
j<i Sj ](v)}

neighbours of v in V (G) \
⋃

j<i Sj . This is possible, as by assumption v has
degree at least m in G. We set Si :=

⋃
v∈Si−1

Sv.
Now if Si = ∅ for some i, then G[

⋃
j<i Sj ] is the desired subgraph of G. On

the other hand, if Si 6= ∅ for all i ∈ N, we may apply Lemma 3.1.3 to find a ray
in G, a contradiction, as G is rayless.
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3.2 Grid minors

From now on, we will deal with graphs that may have rays. We have already
seen in the introduction that then large degrees at the vertices are not enough
to force even cycles. We shall thus use additionally the end degrees in order to
force interesting substructures in infinite graphs. In this subsection, we start
modestly by asking for minors that are planar.

Particularly interesting planar graphs are the grids. The infinite grid Z× Z
is the graph on Z2 having all edges of the form (m,n)(m+ 1, n) and of the form
(m,n)(m,n+ 1), for m,n ∈ Z. The half-grid N×Z, the quarter-grid N×N, and
the [k]× N-grid are the induced subgraphs of Z× Z on the respective sets.

A well-known result in infinite graph theory concerns the quarter-grid2,
which is a minor of every graph that has an end of infinite vertex-degree (this
is a classical result of Halin [18] who called such ends thick ends).

Theorem 3.2.1 (Halin [18]). Let G be graph which has an end ω of infinite
vertex-degree. Then the N× N-grid is a minor of G.

From Halin’s proof it follows that the rays of the subgraph of G that can be
contracted to N× N belong to ω (see also the proof in Diestel’s book [11]). On
the other hand, it is clear that if a subdivision of the quarter-grid appears as a
subgraph of some graph G, the its rays belong to an end of infinite vertex-degree
in G.

Thus, it is not surprising that assuming large (but not infinite) degrees and
vertex-degrees we cannot force a quarter-grid minor. One example for this fact
is G̃k which is to be defined after Theorem 3.3.1, another, even planar, example
is the graph G′k from Example 3.5.2.

However, both graphs contain something quite similar to a quarter-grid: a
[k] × N grid, where k depends on the minimum vertex-degree we required at
the ends. In fact, such a grid always appears in a graph with an end ω of large
enough vertex-degree. It will follow from the proof that the rays corresponding
to the rays of the minor, in G belong to ω.

Theorem 3.2.2. Let k ∈ N and let G be graph which has an end ω of vertex-
degree at least 3

2k − 1. Then the [k]× N-grid is a minor of G.

The bound on the vertex-degree is sharp. This is illustrated by Exam-
ple 3.2.3, after the proof of Theorem 3.2.2.

Proof of Theorem 3.2.2. We shall proceed by induction on k. For k = 1 and
k = 2, the assertion clearly holds, so assume that k ≥ 3 and that ω is an end of
a graph G with dv(ω) ≥ 3

2k − 1.
Choose a set R of dv(ω) disjoint rays from ω. Consider the auxiliary graph

H with V (H) := R where two vertices R and R′ are adjacent if there exists
an infinite set of disjoint V (R)–V (R′) paths in G which avoid all R′′ ∈ R with
R′′ 6= R,R′. Let T be a spanning tree of H. Clearly, if T happens to be a path,
it is easy to construct the desired minor.

2Observe that when considering minors, it makes no difference whether we work with the
half-grid or the quarter-grid, since, as one easily checks, each of the two is a minor of the
other.
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So suppose otherwise. Then T has (at least) three leaves R1, R2, R3. Ob-
serve that the graph G′ := G− V (

⋃
j=1,2,3Rj) has an end ω′ of degree

dv(ω′) = dv(ω)− 3 ≥ 3
2
k − 4 =

3
2

(k − 2)− 1

whose rays, when viewed in G, belong to ω. Hence, by induction, the [k−2]×N-
grid is a minor of G′. In other words, G′ contains a set of rays Q1, Q2, . . . Qk−2 ∈
ω′, and furthermore, each Qi is linked to Qi+1 by infinitely many disjoint paths,
which do not meet any other Qj .

In G, the Qi belong to ω. Thus, since |R| = dv(ω), each Qi meets
⋃
R

infinitely often. Hence each Qi meets (at least) one of the rays in R, which we
shall denote by R(Qi), infinitely often.

The tree T from above contains three paths Pi, i = 1, 2, 3, so that Pi starts
in V (Ri) and ends in

⋃k−2
i=1 V (R(Qi)). Since R1, R2 and R3 are leaves of T , the

Pi can be chosen so that they are disjoint except possibly in their endvertices.
Using the path systems in G represented by the Pi, it is now easy to see that for
each Rj , j = 1, 2, 3, there is a Qij among the Qi such that there exist an infinite
family of disjoint V (Rj)–V (Qij

) paths which avoid all other Qi′ and Rj′ . Say
i1 ≤ i2 ≤ i3.

In order to see that the [k] × N-grid is a minor of G, we shall now define a
family of rays Q̃1, Q̃2, . . . Q̃k ∈ ω so that Q̃i and Q̃i+1 are connected by infinitely
many disjoint paths which do not meet any other Q̃i. For i < i1 set Q̃i := Qi,
and for i > i3 + 2 set Q̃i := Qi−2. Set Q̃i2+1 := R2. For i 6= i2 + 1 with
i1 < i < i3 + 2, we choose Q̃i as a suitable ray which alternatively visits Qi−1

and Qi, if i ≤ i2, or Qi−2 and Qi−1, if i > i2 + 1. Finally, Q̃i1 and Q̃i3+2 are
chosen so that they alternate between R1 and Qi1 , respectively between Qi3

and R3. Clearly this choice of the rays Q̃i ensures that, together with suitable
connecting paths, the Q̃i may be contracted to a [k]× N-grid.

Figure 1: The graph Y (3) from Example 3.2.3.

Example 3.2.3. Denote by K1,3(`) the graph that is obtained by replacing each
edge of K1,3 with a path of length `. Define Y (`) := K1,3(`)× N. (That is, for
each i ∈ N, we take a copy of K1,3(`) and add an edge between every ith and
(i+ 1)th copy of each vertex in K1,3(`).)
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Clearly, the vertex-degree of the unique end of Y is 3` + 1. We shall show in
Lemma 3.2.4 that the [k]× N-grid is not a minor of Y (`), for k = 2`+ 2.

Lemma 3.2.4. Let ` ∈ N and let k = 2` + 2. Then the graph Y (`) from
Example 3.2.3 has an end of vertex-degree 3

2k − 2, but the [k]× N-grid is not a
minor of Y (`).

Proof. Suppose otherwise. Then the graph Y (`) contains a family of rays R :=
{R1, R2, . . . Rk} such that for i = 1, 2, . . . , k− 1, there are infinitely many finite
paths connecting Ri with Ri+1, such that all these paths are all disjoint, except
possibly in their endvertices, and such that they avoid all Ri′ with i′ 6= i, i+ 1.
Let n ∈ N be such that all Ri meet Yn := K1,3(`)×{n}, the nth copy of K1,3(`)
in Y (`). Write V (Yn) as {v0, v1

1 , v
1
2 , . . . , v

1
` , v

2
1 , v

2
2 , . . . , v

2
` , v

3
1 , v

3
2 , . . . , v

3
`} where

each v0v
j
1v

j
2 . . . v

j
` induces a path in Yn.

For each j = 1, 2, 3 consider that ray R(j) ∈ R that meets a vj
m with largest

index m. Observe that (at least) one of these three rays, say R(1) is neither
equal to R1 nor to Rk. Let R′(1) be the ray in R that meets v1

m with the second
largest index m, or, if there is no such, let R′(1) be the ray that meets v0 (which
then exists, since |R| = k > 2`+ 1 and since each ray of R meets Yn).
We claim that S := V (R′(1)) ∪ V (

⋃
h≤n Yh) separates R(1) from the rest of

the Ri, which clearly leads to the desired contradiction, since R(1) 6= R1, Rk,
and thus has to be connected to two of the Ri by infinitely many disjoint finite
paths that avoid all other Ri. So suppose otherwise, and let P be a path that
connects R(1) in Y (`)− S with some Ri∗ ∈ R.
By construction of Y (`), this is only possible if R′(1) uses vertices of the type v2

m

or v3
m. Let ñ be the smallest index ≥ n such that this occurs, say the ñth copy

of v2
1 lies on R′(1). Then also the ñth copy of v0 lies on R′(1), and furthermore,

all other Ri (with the exception of R(1)) have to pass through the ñth copies
of the vertices v2

2 , v
2
3 , . . . , v

2
` , v

3
1 , v

3
2 , . . . , v

3
` . Hence the total number of rays in R

cannot exceed 2`+ 1, a contradiction, as k = 2`+ 2.

3.3 Highly connected subgraphs

We shall now see another example of how large end degrees and large degree at
the vertices force a certain dense substructure. In fact, assuming large degree
and large vertex-/edge-degree we can ensure highly connected or highly edge-
connected subgraphs in infinite graphs. This is the content of Theorem 3.3.1
below. Before we state it, let us quickly remark that conversely, in a locally
finite k-connected/k-edge-connected graph, all ends have vertex-/edge-degree
at least k. This will follow at once from Lemma 3.4.2 of Section 3.4.

Theorem 3.3.1. [42, Theorems 3.1 and 5.1] Let k ∈ N, let G be an infinite
graph.

(a) If all vertices of G have degree greater than 2k(k + 1), and all ends of G
have vertex-degree at least 2k(k + 3), then G contains a (k + 1)-connected
subgraph.

(b) If all vertices of G have degree at least 2k, and all ends of G have edge-degree
at least 2k, then G contains a (k + 1)-edge-connected subgraph.
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We can find these highly (edge-)connected subgraphs inside every region of
G [42].

Observe that we have no control on whether the highly connected subgraph
from Theorem 3.3.1 is finite or infinite. That is, there are examples of graphs
with the prescribed degrees but no finite highly connected subgraph, and others
which have no infinite highly connected subgraph. An example of the first kind
is the graph Gk from Example 3.5.1. An example of the second kind can be
constructed as follows. For k ∈ N, consider the k × N grid, and for each vertex
v of this grid, take a copy of Kk+1, and identify one of its vertices with v. The
obtained graph G̃k has an end of vertex- and edge-degree k, and all vertices
have degree at least k, but G̃k has no infinite 5-connected subgraph. Similar
examples can be constructed for edge-connectivity.

There are also examples of graphs (for all k ∈ N) that have very large degree
at the vertices, and a degree of order k log k at the ends, but no k-connected
subgraphs [42]. Thus the at first sight surprising quadratic bound on the vertex
degrees of the ends is not too far from best possible.

Theorem 3.3.2.[42, Theorem 6.1] For each k = 5`, where ` ∈ N is even, there
exists a locally finite graph whose vertices have degree at least 2`, whose ends
have vertex-degree at least ` log `, and which has no (k+ 1)-connected subgraph.

So, Theorem 3.3.1 can not be improved in this sense. We may ask how-
ever, whether the theorem holds for standard subspaces of infinite graphs. The
analogue of this question in finite graphs would be to ask whether the theorem
stays true for subgraphs, which is obviously true. We see that the infinite setting
allows for more subtleties than the finite one.

For brevity, we shall only concentrate on part a) of Theorem 3.3.1, that
is, the vertex-version. First, we have to define a notion of k-connectivity for
standard subspaces. There are two options which seem natural.

Call a path-connected standard subspace X of the space |G| (that is as-
sociated to some graph G) that contains at least k + 1 vertices of G strongly
k-connected if deleting up to k ends or vertices (the latter together with all adja-
cent edges) leaves X path-connected. Call X weakly k-connected, if deleting up
to k vertices together with all adjacent edges from X leaves a path-connected
space. Observe that for X = |G|, our notions coincide, and coincide with k-
connectivity of G.

We also have to define the degree of an end ω in the standard subspace X.
Following [5], we say that the vertex-degree of ω in X is the maximum of the
cardinalities of the sets of arcs in X that are disjoint except in their common
endpoint ω. The edge-degree in X is defined analogously.

Then, the question is whether there exists a function f : N→ N so that if Y
is a standard subspace of an infinite graph G whose vertices and ends all have
degree resp. vertex-degree at least f(k) in Y , then there is a standard subspace
X ⊆ Y which is weakly or even strongly k-connected.

For strong k-connectivity, the answer is no. This is illustrated by the follow-
ing simple example.

Example 3.3.3. Consider the graph Gk which we obtain from the k-regular
tree Tk by inserting a spanning cycle at each level. We consider the standard
subspace T k of |Gk|.
Clearly, all vertices and also the unique end ω of T k have (vertex-)degree at
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least k. However, for any standard subspace X of T k that contains at least 3
vertices, we can choose one of its vertices so that its deletion plus the deletion
of ω (if present in X) destroys the path-connectivity.

However, Theorem 3.3.1 might still extend to standard subspaces if we use
the weaker notion of k-connectivity:

Problem 3.3.4. Is there a function f : N → N so that the following holds: If
Y is a standard subspace of an infinite graph G, such that all vertices and ends
of Y have degree resp. vertex-degree at least f(k) in Y , then G has a weakly
k-connected standard subspace X ⊆ Y ?

3.4 Connectivity of vertex-transitive graphs

Let us now pose the question from the previous section for vertex-transitive
graphs. As vertex-transitive graphs are regular, we need no longer use the term
‘mimimum degree’. Thus our question from Section 3.3 reduces to the following
in vertex-transitive graphs: Which degree at each vertex do we need in order to
ensure that our graph has a k-(edge-)connected subgraph?

It is known that in finite graphs a degree of k is enough, and moreover the
subgraph will be the graph itself. In fact, every finite vertex-transitive k-regular
connected graph is k-edge-connected [27]. It is even k-connected, as long as it
does not contain K4 as a subgraph [25].

In infinite graphs, this is no longer true, if we only require degree k at the
vertices, because of the trees. However, if we require a vertex-/edge-degree of
at least k at the ends (which is conversely implied by the k-(edge-)connectivity,
see below), we can obtain analogous results for infinite locally finite graphs. We
may even drop the condition on the degrees of the vertices.

Proposition 3.4.1. Let G be an infinite locally finite graph, let k ∈ N. Suppose
that G is vertex-transitive and connected.

(a) G is k-connected if and only if all ends of G have vertex-degree at least k.

(b) G is k-edge-connected if and only if all ends of G have edge-degree at least k.

In fact, the forward implications in Proposition 3.4.1 are easily implied by
the following result, whose proof is not very difficult and can be found in [5] for
the edge-case (the vertex-case is analogous).

Lemma 3.4.2. Let k ∈ N, let G be a locally finite graph, and let ω ∈ Ω(G).
Then

(i) dv(ω) = k if and only if k is the smallest integer such that every finite set
S ⊆ V (G) can be separated from ω with a k-separator, and

(ii) de(ω) = k if and only if k is the smallest integer such that every finite set
S ⊆ V (G) can be separated from ω with a k-cut.

Proof of Proposition 3.4.1. Because of Lemma 3.4.2 we only need to prove the
backward implications. Let us only prove the implication for (a), for (b) this is
analoguous.

Suppose the implication is not true, and let S be an `-separator of G, for
some ` < k. Choose a vertex w at distance at least max{dist(u, v) : u, v ∈ S}+1
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from all v ∈ S. (Observe that such a vertex w exists, since G is infinite, locally
finite and connected.) Now, let φ be an automorphism of G that maps some
vertex from S to w. Then φ(S) is contained in one component of G− S.

Next, choose an automorphism φ′ that maps φ(w) ‘far away’ from φ(S) to
a component of G− φ(S) that does not contain S. Continuing in this manner,
we arrive at a sequence S, φ(S), φ′(φ((S)), φ′′(φ′(φ(S))), . . . of `-separators of
G. It is not difficult to construct a ray that meets each of these separators and
hence defines an end of vertex-degree ` < k. This contradicts our assumption
that all ends have vertex-degree at least k.

3.5 Two counterexamples

This short section is dedicated to two examples which show that large degree
and large vertex-degree together are not strong enough assumptions to force
large complete minors. The difference between the two examples is that the
latter does not have ends of infinite vertex-degree.

Example 3.5.1. For given k, take the k-regular tree Tk with levels L0, L1, L2, . . .
and insert the edge set of a spanning cycle Ci at each level Li of Tk (cf. Ex-
ample 3.3.3). This can be done in a way so that the obtained graph Gk is still
planar.
Clearly, Gk has one end of infinite vertex- and edge-degree, and furthermore,
all vertices of Gk have degree at least k. It is easy to see that Gk is k-connected,
but being planar, Gk has no complete minor of order greater than 4.

By deleting some (carefully chosen) edges from Gk, we obtain a planar graph
of high minimal degree and vertex-degree whose (continuum many) ends all have
finite vertex-degree:

Example 3.5.2. Let k ∈ N be given, and consider the graph Gk from Exam-
ple 3.5.1. Now, for each i ∈ N, delete the edge vw ∈ E(Ci) from E(Gk), if v
and w have no common ancestors in the levels Li−k+2, Li−k+3, . . . , Li−1. De-
note the obtained graph by G′k.
As Gk is planar, also G′k is. Clearly, k ≤ d(v) ≤ k + 2 for each v ∈ V (G). We
show in Lemma 3.5.3 that the ends of G′k have large, but finite vertex-degree.

Lemma 3.5.3. The ends of the graph G′k from Example 3.5.2 all have vertex-
degree between k − 2 and 2k − 3.

Proof. Consider, for each x ∈ V (G′k) the set

Sx := {x} ∪
⋃

i=1,...,k−2

N i(x),

where N i(x) here denotes the ith neighbourhood of x in level Lm+i, supposing
that x lies in the mth level (of Tk).
Clearly for each x ∈ V (G′k), the set Sx separates G′k. Hence, already ∂vSx,
which has order between k − 1 and 2k − 3, separates G′k.
Let us use the sets Sx in order to show that the ends of G′k correspond to the
ends of Tk. In fact, all we have to show is that for each ray R ∈ G′k there
is a ray RT in Tk that is equivalent to R in G′k. We can find such a ray RT

12



Figure 2: The graph G′k from Example 3.5.2 for k = 4.

by considering for each i large enough the last vertex vi of R in V (Li). Now,
vi ∈ Swi

for exactly one wi ∈ V (Li−k+2). By definition of the vi, the wi are
adjacent to their successors wi+1 ∈ V (Li−k+3). So, RT := wkwk+1wk+2 . . . is a
ray in Tk as desired.

Thus G′k has continuum many ends, all of which have vertex-degree at most
2k − 3, because of the separators ∂vSx. It remains to show that each end ω of
G′k has vertex-degree at least k − 2.

For this, fix ω ∈ Ω(G) and consider the union Sω of the sets ∂vSwi
for the

ray R = w0w1w2w3 . . . of Tk that lies in ω, where we assume that R starts in
L0 = {w0}. By Lemma 3.4.2, in order to see that ω has vertex-degree at least
k−2 in G[S] (and thus in G) we only have to show that no set of less than k−2
vertices separates L0 from ω in G[S].

So suppose otherwise, and let T be such a separator. Since every vertex of
S has at least k − 1 neighbours in the next level, we can reach the 2nd, 3rd,
. . . k − 2th level from w0 in G[S]− T . By definition of G′k, these levels contain
spanning cycles, and thus, as |T | > k− 2, there is a wi with i ∈ {1, 2, . . . , k− 2}
which can be reached from w0 in G[S]− T . We repeat the argument with wi in
the role of w0, observing that in G[S] ∩ (Li+1 ∪Li+2 ∪ . . . ∪Li+k−2), each level
contains spanning paths, by construction of G′k.

3.6 Large relative degree forces large complete minors

In the previous sections we explored which substructures may or may not be
forced in an infinite graph if we assume large (vertex-)degree at both vertices
and ends. In particular we saw that Theorems 1.1.1 and 1.1.2 (with the average
degree replaced by the minimum degree) do not extend to infinite graphs that
have rays.

In the present section we shall overcome this problem. We will see that with
a different, more appropriate notion of the end degree a satisfactory extension
of Theorems 1.1.1 and 1.1.2 to locally finite graphs is possible.

For this, let us first take a closer look at the graph G′k from Example 3.5.2.
Why do the large (vertex-)degrees not interfere with the planarity? Observe
that, for each finite set S ⊆ V (G), the edge-boundary of the subgraph G′k − S
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has about the same size as its vertex-boundary. So locally the density is never
large enough to force non-planarity. Similar as in the tree Tk, the density that
the high degrees should generate gets lost towards infinity.

In order to avoid this behaviour, we have to prohibit regions R of an end
ω which have the property that |∂eR|/|∂vR| is small, or at least we should
prohibit sequences of such regions ‘converging’ to ω. This motivates us to define
the relative degree of an end as the limit of the ratios above for ‘converging’
sequences. This is not unnatural: applied to vertices this gives the usual degree,
as each vertex v is contained in a smallest region, namely R = {v}, for which
|∂eR|/|∂vR| = d(v).

Let us make our idea more precise. Suppose that G is a locally finite graph.
We introduce a useful notation: if H is a region of G, let us write ΩG(H) for
the set of all ends of G that have rays in H.

Now, write (Hi)i∈N  ω if (Hi)i∈N is an infinite sequence of distinct regions
of G with Hi+1 ⊆ Hi − ∂vHi such that ω ∈ Hi for each i ∈ N. If moreover,
∂vHi+1 is an ⊆-minimal ∂vHi–ΩG(Hi+1) separator for each i ∈ N, then we write
(Hi)i∈N → ω. Observe that such sequences always exist, as G is locally finite.
Define the relative degree of an end as

de/v(ω) := inf
(Hi)i∈N→ω

lim inf
i→∞

|∂eHi|
|∂vHi|

.

Note that it does not matter whether we consider the lim inf or the lim sup,
because if (Hi)i∈N → ω, also all subsequences of (Hi)i∈N converge to ω. For the
same reason we could restrict our attention to sequences (Hi) where limi→∞

|∂eHi|
|∂vHi|

exists.
We remark that if in the definition of the relative degree we replaced (Hi)i∈N →

ω with (Hi)i∈N  ω, then the result would be a ‘degree’ of 1 for every end in
any graph. Indeed, let (Hi)i∈N with (Hi)i∈N  ω, and let vi ∈ ∂vH3i for i ∈ N.
Then the vi do not have common neighbours. We construct a sequence (H ′j)j∈N
with H ′0 := H0, and, for j > 0, we let H ′j := Hij

− Vj where ij is such3 that
Hij
⊆ H ′j − ∂vH

′
j , and Vj consists of j|∂eHij

| vertices vi with i ≥ ij . Then
(H ′j)j∈N  ω, and

lim inf
j→∞

|∂eH
′
j |

|∂vH ′j |
= lim inf

j→∞

|∂eHij |+
∑

v∈Vj
d(v)

|∂vHij
|+

∑
v∈Vj

d(v)
= 1.

This shows that the additional condition that ∂vHi+1 is an ⊆-minimal ∂vHi–
ΩG(Hi+1) separator is indeed neccessary for the relative degree to make sense.
For more discussion of our notion, see [43].

Note that by Lemma 3.4.2, in locally finite graphs, we can also express our
earlier notions, the vertex- and the edge-degree, using converging sequences of
regions. Here the  -convergence suffices:

dv(ω) = inf
(Hi)i∈N ω

lim inf
i→∞

|∂vHi|,

de(ω) = inf
(Hi)i∈N ω

lim inf
i→∞

|∂eHi|.

3For instance set ij := max{dist(v, w)|v ∈ ∂vH0, w ∈ ∂vH′j}+ 1.
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Note that while de ≥ dv, there is no relation between de/v and any of de, dv.
Examples are not difficult to construct. For instance, take the union of complete
graphs on k vertices, one for each i ∈ N, that gives a graph H with vertex set⋃

i∈N
⋃k

j=1{vi
j}. Adding all edges vi

1v
i+1
1 and vi

1v
i+1
2 , we obtain a graph with an

end of vertex-degree 1, edge-degree 2 and relative degree k. On the other hand,
adding to H the edges vi

jv
i+1
j for all i ∈ N and all j = 1, . . . , k, we get a graph

with an end of vertex-/edge-degree k and relative degree 1. See [43].
With the notion of the relative degree at hand, we can prove a very useful

reduction theorem:

Theorem 3.6.1. Let G be a locally finite graph such that each vertex has degree
at least k, and for each end ω we have de/v(ω) ≥ k. Then G has a finite subgraph
H of average degree at least k.

Proof. Choose a vertex v ∈ V (G) and set S0 := {v}. Inductively we shall
construct a sequence (Si)i∈N of finite vertex sets with Si ⊆ Si+1 for all i ∈ N.
In each step i ≥ 0 we start by considering the set Ai of all components A of
G−(Si∪NG(Si)). Let Bi ⊆ Ai be the set of all those B ∈ Ai that contain a ray.
Observe that as G is locally finite, each A ∈ Ai \ Bi is finite. Moreover, since
we may assume G to be connected, |Ai \ Bi| <∞, and thus Fi :=

⋃
(Ai \ Bi) is

finite.
Next, let Ci be the set of all components of

⋃
Bi ∪NG(

⋃
Bi). Note that Ci

is finite and that for each C ∈ Ci

∂vC ⊆ NG(Si) is an ⊆-minimal NSi
(C)–ΩG(C) separator. (1)

Let Di ⊆ Ci be the set of all those D ∈ Ci with

|∂eD|
|∂vD|

< k.

Finally, set
Si+1 := Si ∪ Fi ∪ (NG(Si) \

⋃
Ci) ∪

⋃
D∈Di

∂vD.

This finishes the definition of the sets Si. Note that by construction, ∂vC ⊆
NG(Si)∩NG(Si+1) and NG(C) ⊆ Si+1 \

⋃
Di for each C ∈ Ci \Di. Hence, it is

easy to show by induction that

Ci \ Di ⊆ Ci+1 \ Di+1 for all i ∈ N. (2)

Now, if there is an i ∈ N so that Di = ∅, then H := G[Si+1 ∪NG(Si+1)] is
as desired. Indeed, then NG(Si+1) =

⋃
C∈Ci\Di

∂vC. Thus by construction, and
by definition of Di, H has average degree ≥ k.

Otherwise, that is, if Di 6= ∅ for all i, we apply Kőnig’s infinity lemma
(Lemma 3.1.3) to the graph with vertex set

⋃
i∈NDi which has an edge CD

whenever C ∈ Di, D ∈ Di+1 and D ⊆ C. Note that by (2), there is such an
edge CD for each D ∈ Di+1. So Kőnig’s lemma yields a sequence (Di)i∈N with
Di ∈ Di and Di ⊆ Di−1 − ∂vDi−1 for i ≥ 1.

It is easy to construct a ray R that passes exactly once through each ∂vDi,
and hence there is an end ω ∈

⋂
i∈N Di. We claim that for all i ∈ N,

∂vDi+1 is an ⊆-minimal ∂vDi–ΩG(Di+1) separator. (3)
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Then, (Di)i∈N → ω. So, by definition of Di, we find that de/v(ω) < k, a
contradiction to our assumption, as desired.

It remains to show (3). Let i ∈ N, and observe that by definition of the Si,
we know that ∂vDi separates the rest of Si from Di+1 ⊆ Di − ∂vDi. Hence
NSi(Di+1) ⊆ ∂vDi. As by (1), ∂vDi+1 is an ⊆-minimal NSi(Di+1)–ΩG(Di+1)
separator, and clearly, ∂vDi+1 is a ∂vDi–ΩG(Di+1) separator, this implies that
∂vDi+1 is also an ⊆-minimal ∂vDi–ΩG(Di+1) separator, proving (3).

We may now use Theorem 3.6.1 as a black box for translating to infinite
locally finite graphs any kind of results from finite graph theory that make as-
sumptions only on the average or minimum degree. For example, Theorem 3.6.1
together with Theorem 1.1.1/Theorem 1.1.2 yields at once the desired extension
of Theorems 1.1.1 and 1.1.2 to locally finite graphs.

Theorem 3.6.2. Let G be a locally finite graph. If each vertex and each end of
G has (relative) degree at least f1(r), then Kr is a minor of G. If each vertex
and each end of G has (relative) degree at least f2(r), then Kr is a topological
minor of G.

Let us remark that we may not weaken the assumption of Theorem 3.6.2 in
the following sense. Denote by d′e/v the ratio of the edge- and the vertex-degree,
that is, set d′e/v(ω) := de(ω)/dv(ω).

Now, there is no function f ′ such that all graphs with d′e/v(ω), d(v) > f ′(k)
for all ends ω and vertices v contain a complete minor of order k. This can be
seen by considering the following example (which appeared in a different context
in [42]).

Figure 3: The graph G′′k from Example 3.6.3 for k = 4.

Example 3.6.3. Take the infinite tree T ′k with levels L0 = {v0}, L1, L2, . . .
where v0 is the root of Tk and each vertex sends k edges to the next level.
For each i ∈ N, consider separately each vertex x ∈ Li and its neighbourhood
{vx

1 , . . . , v
x
k} in Li+1. For j = 1, 2, . . . , k− 1, add a new vertex wx

j and all edges
between wx

j and NLi+2(vx
j ) ∪ NLi+2(vx

j+1) (see Figure 3). Call the obtained
graph G′′k.
Lemma 4.1 of [42] states that de(ω) ≥ k and dv(ω) ≤ 3 for all ω ∈ Ω(G′′k).
Hence d′e/v(ω) ≥ k/3 for each ω ∈ Ω(G′′k). Clearly, also all vertices of G′′k have
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degree at least k. But, by Lemma 4.3 of [42], G′′k has no 6-connected minor,
while k may grow as much as we like.

We finish this section with some problems. First of all, is there a description
of the relative degree de/v that involves rays instead of sequences of separators?
Ideally, this would be similar to the definition of the vertex-/edge-degree.

Problem 3.6.4. Find an equivalent definition of de/v(ω), in terms of rays of ω.

Let us now turn to arbitrary, that is, not necessarily locally finite graphs.
First observe that the sequences (Hi)i∈N that define the relative degree of an
end need no longer exist, as for example in Kℵ0 . Clearly, the non-existence
of these sequences is due to the existence of dominating vertices. Hence, in
some way the dominating vertices of an end have to be taken into account for
a generalisation of the relative degree notion to arbitrary infinite graphs.

Question 3.6.5. Is there a natural modification of the relative degree notion
that makes an extension of Theorem 3.6.2 to arbitrary infinite graphs possible?

A positive answer to this question, at least for graphs with countably many
ends, will be given in [43].

3.7 Using large girth

In finite graphs, we can force large complete minors by assuming large girth,
and a minimal degree of 3. More precisely, every finite graph of minimal degree
at least 3 and girth at least g(k) := 8k+ 3 has a complete minor of order k [11].

If we do not take the ends into account, then it is easy to see that this fact
does not extend to infinite graphs. Clearly, the 3-regular infinite tree T3 has
infinite girth and no large complete minors, and even if finite girth was required,
we might simply add an edge to T3, and still have a counterexample.

But, the ends of our example have end degree 1 in each of our three end
degree notions. Now, we shall see that requiring large minimum vertex- degree
at the ends, together with large girth, and minimum degree at least 3 at the
vertices, will still not suffice to force large complete minors.

Example 3.7.1. For all g ∈ N, we construct a planar graph Hg with finite
girth g, minimal degree 3 at the vertices and a unique end, which has infinite
vertex-degree.
Take the union of the cycles of length gn, over all n ∈ N. We shall add edges
between each Cgn and Cgn+1 , one for each vertex in V (Cgn), in a way that their
new neighbours lie at distance g on Cgn+1 . Clearly, this can be done in a way
so that we obtain a planar graph Hg (cf. Figure 3.7). Being planar, Hg has no
complete minor of order greater than 4.

However, the relative degree of the end of H is relatively small (in fact, it
is 1). Is this a necessary feature of any counterexample? That is, does every
graph of minimum degree 3 and large girth and without large complete minors
have to have an end of small relative degree? At least the relative degrees cannot
be too large:

Proposition 3.7.2. Every locally finite graph G of minimal degree at least 3 at
the vertices, minimal relative degree at least r(k) = c1k

√
log k at the ends and

girth at least g(k) = 8k + 3 has a complete minor of order k.
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Figure 4: The graph Hg from Example 3.7.1 for g = 3.

Proof. One may employ the same proof as for finite graphs, as given e.g. in [11].
The strategy there is to construct first a minor M of G that has large minimal
degree, and then apply Theorem 1.1.1 to M . In an infinite graph, we can
construct the minor M in exactly the same way, and it is not overly difficult to
see that M does not only have large degree at the vertices, but also has at least
the same relative degree at the ends as G. It suffices to apply Theorem 3.6.2 to
obtain the desired minor.

How much can this bound be lowered? May we take r(k) to be constant,
even r(k) = 3?

Problem 3.7.3. For k ∈ N, which is the smallest number r(k) so that every
locally finite graph with d(v) ≥ 3 and de/v(ω) ≥ r(k) for all vertices v and ends
ω, and of girth at least g(k) has a complete minor of order k?

4 Minimal k-(edge-)connectivity

4.1 Edge-minimally k-connected graphs

A k-connected graph can be minimal in several ways. The first option that we
will investigate here, and which has been most studied until now, is minimality
with respect to edge deletion. Let us call a graph G edge-minimally k-connected
if it is k-connected but G− e is not, for every e ∈ E(G).

Mader [28] showed that every finite edge-minimally k-connected graph G
contains at least |G|/2 vertices of degree k. Halin [19] showed that infinite
locally finite edge-minimally k-connected graphs have infinitely many vertices
of degree k, provided that k ≥ 2. Mader extended this result to arbitrary infinite
graphs.

Theorem 4.1.1 (Mader [29]). Let k ≥ 2 and let G be an infinite edge-minimal-
ly k-connected graph. Then the cardinality of the set of those vertices of G that
have degree k is |G|.
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For completeness, let us quickly describe what happens in infinite edge-
minimally 1-connected graphs. Clearly, these are exactly the infinite trees. Thus
they do not necessarily have vertices of degree 1. But if not, then they must have
ends of vertex-degree 1. Actually, it is easy to see that they have at least two
such points, and unfortunately this is already the best bound for countable trees
(because of the double ray). Uncountable trees, however, allow for a version of
Theorem 4.1.1 with ends:

Proposition 4.1.2. Let T be an edge-minimally 1-connected graph (i.e. a tree)
of uncountable order. Then T has |T | vertices of degree 1, or |T | ends of vertex-
degree 1.

Proof. Root T at an arbitrary vertex r. Observe that each ‘leaf’, that is, each
vertex/end of (vertex-)degree 1 corresponds to a finite or infinite path starting
at r, and it is easy to see that these paths cover V (T ). Hence if T had less than
|T | vertices/ends of (vertex-)degree 1, then T would have order less than |T |, a
contradiction.

The proof of Theorem 4.1.1 relies on the following theorem, which is of
interest on its own.

Theorem 4.1.3 (Mader [29]). Let k ∈ N, and let G be an edge-minimally
k-connected graph. Then each (finite) cycle of G contains a vertex of degree k.

In other words, if we delete all vertices of degree k in an edge-minimally
k-connected graph, we are left with a forest.

It is not overly difficult to see that Theorem 4.1.3 implies Theorem 4.1.1
(see [29]). In order to give an idea, we shall now sketch the easier proof for
locally finite G. The following basic lemma will be useful.

Lemma 4.1.4. [11] Every infinite connected graph contains either a ray or a
vertex of infinite degree (or both).

In order to see how the locally finite version of Theorem 4.1.1 follows from
Theorem 4.1.3, suppose k and G are given as in Theorem 4.1.1, and that G is
locally finite. If G does not have infinitely many vertices of degree k, then by
Theorem 4.1.3, there is a finite non-empty set S ⊆ V (G) so that F := G − S
is a forest. As k ≥ 2 (by the assumption of Theorem 4.1.1), for each v ∈ V (F )
every component of F − v sends at least one edge to S. Thus, if F contains
a ray R, then it is easy to see that there are infinitely many V (R)–S edges,
contradicting the fact that G is locally finite. Hence, F is rayless, and therefore,
by Lemma 4.1.4, has infinitely many components. These all send edges to S,
again contradicting the fact that G is locally finite.

Mader observed that Theorem 4.1.3 also implies that every subgraph H of
a finite edge-minimally k-connected graph has vertices of degree at most k. In
fact, first suppose that H contains a (finite) cycle C. Then C is also a cycle in
G, and thus Theorem 4.1.3 implies that H contains a vertex of degree at most
k (in G and thus) in H. On the other hand, if H has no finite cycle, then H is
a tree and thus has a leaf.

If G and H are infinite then this ‘leaf’ might be an end. Apart from this
detail, we may use the same argument for infinite graphs, and thus obtain:
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Corollary 4.1.5. Every subgraph H of an infinite edge-minimally k-connected
graph has a vertex of degree at most k, or an end of vertex-degree 1 (in H).

As mentioned earlier, ‘infinite cycles’, i.e. circles, play an important role in
infinite graph theory. It is thus natural to ask whether Theorem 4.1.3 extends
to circles. It turns out that this is not the case. Infinite circles do not necessarily
contain vertices of degree k, as can be seen by considering the following example.

Figure 5: The graph J3 from Example 4.1.6.

Example 4.1.6. Let k ≥ 2. We define a graph Jk on the vertex set [2k−1]×Z.
Let Jk have the edges (i, j)(i′, j) where i mod 2 6= i′, and the edges (i, j)(i, j+1)
for all odd i.
Clearly, the vertices (i, j) ∈ V (Jk) have degree k if i is even, and degree k + 1
if i is odd. It is easy to see that Jk is k-connected. As every edge of Jk is either
incident with a vertex of degree k, or lies on one of the horizontal k-cuts, it
follows that Jk is edge-minimally k-connected.
Now, the vertex set S := {(1, j) : j ∈ Z} ∪ {(3, j) : j ∈ Z} spans a circle in |Jk|,
while none of the vertices in S has degree k.

However, the ends of the graph from Example 4.1.6 have vertex-degree k.
So, each infinite cycle runs through ends of small degree. This motivates us to
ask whether the following infinite version of Theorem 4.1.3 holds true:

Question 4.1.7. Is it true that every (finite or infinite) circle of an infinite
edge-minimally k-connected graph contains a vertex or an end of (vertex-)-
degree k?

One might be tempted to ask whether something stronger is true, namely,
whether all ends of an edge-minimally k-connected graph have vertex-degree
k. By Lemma 3.4.2, we know that the ends of a locally finite edge-minimally
k-connected graph all have vertex-degree at least k. So, the question is, can
they have larger vertex-degree? Consider the following example to see that the
answer is yes.

Example 4.1.8. We shall construct an edge-minimally k-connected locally fi-
nite graph whose ends all have vertex-degree `, for every k ∈ N and ` ∈ N∪{ℵ0}
with ` > k.
For each i ∈ Z, take a copy Hi of Kk,k−2. Denote by Ai the bigger colour class
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Figure 6: A graph as in Example 4.1.8 for k = 4 and ` = 8.

of Hi. Also, take a set {R1, R2, R3, . . . , R`} of double-rays.
We now identify the vertices of A :=

⋃
i∈N Ai with the vertices on the double-rays

Ri, in a way that each vertex on the Ri gets identified with exactly one vertex of
A and vice versa. We take some care doing this: for each pair of double rays,
Ri = . . . vi

−2v
i
−1v

i
0v

i
1v

i
2 . . . and Rj = . . . vj

−2v
j
−1v

j
0v

j
1v

j
2 . . ., we can manage that

the sets of indices m and n so that vi
m and vj

n are mapped to the same Ar are
unbounded ‘in both directions’. More precisely, if M is the set of indices m as
in the previous sentence (for some n and some r), then M is unbounded from
below and from above in Z, and we require the same for set of indices n. See
Figure 6.

We have seen that pretty much is known about infinite edge-minimally k-
connected graphs. A very important question, however, has not been treated
yet: Does every k-connected graph have an edge-minimally k-connected sub-
graph? Or stronger: Does every k-connected graph have an edge-minimally k-
connected spanning subgraph? In finite graphs, the answer is trivially yes: We
may simply go on deleting edges as long as the k-connectivity is not destroyed.
In infinite graphs, this method will not work, and in fact, as Halin [19] pointed
out, there are graphs, which have no edge-minimally k-connected subgraph at
all.

One example of a 2-connected graph that has no edge-minimally 2-connected
spanning subgraph is the double-ladder D, i.e. the graph on {xi : i ∈ Z} ∪ {yi :
i ∈ Z} with all edges of the form xixi+1, yiyi+1 or xiyi. We may delete any
subset {xiyi : i ∈ I} of the rungs of D which has the property that Z \ I is
unbounded from both above and below, and the graph will stay 2-connected.
But, deleting any other subset of the rungs, our graph will lose its 2-connectivity.
Deleting any other edge but a rung will also destroy the 2-connectivity. The
double-ladder thus has no edge-minimally 2-connected spanning subgraph.

Replacing the upper and the lower double-rays of the double-ladder each with
the kth power of a double-ray, and deleting every second rung, we arrive at a
2k-connected graph Dk which has no edge-minimally 2k-connected subgraph at
all. Indeed, it is easy to see that any 2k-connected subgraph of Dk has to contain
one and then all vertices of degree 2k, and therefore all vertices of Dk. Now
similarly as with the double-ladder, we see that there is no inclusion-maximal
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Figure 7: The graph Dk. here for k = 2.

subset of the rungs whose deletion leaves the graph 2k-connected. Hence Dk

has no edge-minimally 2k-connected subgraph.
Coming back to the original example of the double-ladder D (although we

could do the same for Dk), let us see what happens if we delete all the rungs.
Evidently, we arrive at a subgraph H of D that is isomorphic to the (disjoint)
union of two double-rays and thus not connected. Viewed as a standard subspace
of |D|, however, H is still path-connected, moreover, the deletion of any edge,
or even of one of the ends, leaves it path-connected. One may thus actually
consider the space H to be an edge-minimally 2-connected standard subspace
of D. This point of view has been suggested by Diestel [9].

Figure 8: The double-ladder after deleting all its rungs.

As we have already discussed in Section 3.3, there are two possible notions of
k-connectivity for standard subspaces: weak and strong k-connectivity. We shall
see in Section 4.6 that an edge-minimally weakly k-connected standard subspace
exists in every k-connected graph, and that the main results on edge-minimally
k-connected subgraphs carry over to edge-minimally weakly k-connected stan-
dard subspaces.

4.2 Vertex-minimally k-connected graphs

Let us now turn to those graphs that are minimally k-connected with respect to
vertex-deletion. These are the vertex-minimally k-connected graphs, i.e. those
graphs that are k-connected but lose this property upon the deletion of any ver-
tex.4 Clearly, every edge-minimally k-connected graph is also vertex-minimally
k-connected.

Vertex-minimally k-connected graphs need no longer contain vertices of de-
gree k, but it has been shown by Chartrand, Lick and Kaugars [7] and by
Mader [26] that finite vertex-minimally k-connected graphs necessarily have
vertices of degree at most 3

2k − 1. Hamidoune [20] showed that even two such
vertices exist.5

4In the literature, these graphs are often called critical or k-critical graphs, in order to
distinguish them from the edge-minimally k-connected graphs aka k-minimal graphs. Here,
we chose to speak of edge- and vertex-minimality, in order to make the notation more intuitive.

5Some authors speak of the bound b 3
2
k− 1c. Evidently, this does not make any difference,

since the degree is a natural number.
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The bound 3
2k − 1 on the degree is best possible, as the following example

shows.

Example 4.2.1. Let `, k ∈ N, and assume that k is even. Take the union of
` disjoint copies of Kk/2, which we denote by H1, H2, . . . ,H`. Add all edges
between Hi and H(i+1)mod`, with i = 1, . . . `.
The obtained graph Ok,` clearly is vertex-minimally k-connected, and all its
vertices have degree 3

2k − 1.

Instead of connecting the first and the last copy of Kk/2, we may continue
infinitely in both directions, thus keeping the minimum degree of the vertices
and reducing the connectivity. Replacing the underlying double-ray structure
with a tree structure, we see that the degrees of the vertices need not even
depend on k:

Example 4.2.2. Let k, r ∈ N, let Tr be the r-regular infinite tree, and for
each v ∈ V (Tr) let Hv be a copy of Kk. Take the union of all Hv and add all
edges between Hv and Hw, if vw ∈ E(Tr). Clearly, the obtained graph Tr(k) is
vertex-minimally k-connected, and all vertices of Tr(k) have degree (r+ 1)k−1.

Figure 9: The graph Tr(k) from Example 4.2.2 for k = 2 and r = 3.

However, the vertex-degree of the ends of Tr(k) is k. This suggests that an
adequate extension of Lick’s theorem to infinite graphs has to allow for ends of
small degree.

And in fact, a first bound is given by Theorem 3.3.1, which implies that every
vertex-minimally k-connected graph G has a vertex of degree at most 2k(k+ 1)
or an end of vertex-degree less than 2k(k + 3). But one can do better:

Theorem 4.2.3.[40, Theorem 3 (b)] Let k ∈ N, and let G be a vertex-minimally
k-connected graph. Then G has a vertex of degree at most 3

2k − 1 or an end of
vertex-degree ≤ k.

One can improve Theorem 4.2.3 in the spirit of Hamidoune’s result men-
tioned above:
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Theorem 4.2.4.[40, Theorem 4 (b)] Let k ∈ N, and let G be a vertex-minimally
k-connected graph. Then |{ω ∈ Ω(G) : dv(ω) ≤ k} ∪ {v ∈ V (G) : d(v) ≤
3
2k − 1}| ≥ 2.

Observe that the bound given by Theorem 4.2.3 is best possible. Indeed, by
Lemma 3.4.2, the vertex-degree of the ends has to be at least k in a k-connected
locally finite graph. On the other hand, even if we allow a larger vertex-degree
of the ends, we cannot expect a lower bound on the degrees of the vertices. This
is illustrated by the following example.

Example 4.2.5. For k ∈ 2N and ` ∈ N ∪ {ℵ0}, ` ≥ k, we construct a vertex-
minimally k-connected graph Ĥ`,k whose vertices have degree 3

2k−1, and whose
ends have vertex-degree `.
Take the disjoint union of ` double-rays R1, . . . , R`. For simplicity, assume that
k divides `. For each i ∈ Z, take `/k copies of the graph Ok,4 from Exam-
ple 4.2.1, and identify the vertices that belong to the first or the last copy of
Kk in Ok,4 with the ith vertices the Rj. This can be done in a way that the
obtained graph has two ends of vertex-degree `, while the vertices have degree
either 3k/2− 1 or 3k/2 + 1.

Figure 10: The graph from Example 4.2.5 for k = 4 and ` = 8.

Observe that Example 4.2.5 also illustrates the fact that the ends of a vertex-
minimally k-connected subgraph may all have large vertex-degree (i.e. indepen-
dent of k), in analogy to Example 4.1.8.

Finally, we shall ask the same fundamental question as we did for edge-
minimally k-connected graphs:

Problem 4.2.6. Does every k-connected graph have a vertex-minimally k-con-
nected subgraph?

In analogy to the edge-minimal case, it is clear that in a finite graph, greedily
deleting vertices while not destroying the k-connectivity will lead to the desired
vertex-minimally k-connected subgraph. This need no longer work in infinite
graphs, as the following example shows. Take the complete bipartite graph
Kk,ℵ0 . Successively we may delete all vertices of the infinite partition class, at
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each step maintaining the k-connectivity. But after infinitely many steps this
procedure will produce a disconnected graph.

‘Decontracting’ the vertices of the finite partition class of Kk,ℵ0 to suitable k-
connected graphs, we may transform our example to a locally finite one. Indeed,
for simplicity assume that k is even, and consider the following example.

Figure 11: A locally finite 4-connected graph where greedy deletion of vertices
may fail.

Example 4.2.7. Take k copies of the dk/2eth power of the double-ray R =
. . . v−2v−1v0v1v2 . . ., and for each i ∈ Z, let xi be a new vertex which we shall
connect to each of the copies of vi (see Figure 11).
It is not difficult to see that this graph is k-connected.

Successively deleting all the xi will at each step will maintain the k-connec-
tivity of the graph from Example 4.2.7. But as above, after infinitely many
steps we arrive at a disconnected graph.

Note that both our examples contain vertex-minimally k-connected sub-
graphs. In the first example, it is easy to see that the only option for such a
subgraph is Kk,k.

Our second example, however, has no finite k-connected subgraph. This is
so because every finite subgraph has ‘a last level’, most of whose vertices then
have degree < k in the subgraph. But nevertheless our graph does have vertex-
minimally k-connected subgraphs: one such may be obtained by deleting every
(k + 1)st level if k is even, or every (k + 2)nd level if k is odd.

4.3 (Induced-)subgraph-minimal k-connected graphs

Subgraph-minimally k-connected graphs, that is, those k-connected graphs none
of whose proper subgraphs is k-connected, might incorporate in some way
the concept of minimality of k-connected graphs better than edge- or vertex-
minimality do. Consider the following simple example. Take three paths of
length at least 3 and identify their starting vertices, and also identify their end-
vertices. The obtained graph is both edge- and vertex-minimally 2-connected.
However, our graph has proper 2-connected subgraphs, namely its cycles.

Instead of subgraph-minimality, we might also consider induced-subgraph-
minimality. Define induced-subgraph-minimally k-connected graphs as those k-
connected graphs which have no proper induced k-connected subgraph. This is
a weaker notion as each subgraph-minimally k-connected graph is also induced-
subgraph-minimally k-connected, and the converse is not true (just consider a
long enough square of a cycle to which we add a chord of the cycle).
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Clearly, induced-subgraph-minimality implies vertex-minimality. Also, sub-
graph-minimality implies edge-minimality. All other possible implications do
not hold.6 Finally, edge-minimality together with induced-subgraph-minimality
implies subgraph-minimality.

So, (that is, since subgraph-minimally k-connected graphs are edge-minimal-
ly k-connected and that induced-subgraph-minimally k-connected graphs are
vertex-minimally k-connected), all results of Section 4.1 and Section 4.2, respec-
tively, remain true for subgraph-minimally and induced-subgraph-minimally k-
connected graphs, respectively. In particular, the former have vertices of de-
gree k on every cycle, and the latter always have vertices of degree at most
3
2k − 1 or ends of vertex-degree at most k. We cannot expect more than this,
that is, we cannot expect to find vertices of lower degree in induced-subgraph-
minimally k-connected graphs. This is illustrated by Example 4.2.1.

Now, although (induced-)subgraph-minimally k-connected subgraphs triv-
ially exist in every finite k-connected graph, this is no longer clear for infinite
graphs. As in Example 4.2.7, greedy deletion of vertices might not lead to
the desired result. (Nor does greedy edge-deletion, in the case that we aim at
subgraph-minimality.) In fact, as the example from Figure 7 shows, infinite
k-connected graphs need not have subgraph-minimal k-connected subgraphs.
However, the graphs Dk from Figure 7 are themselves induced-subgraph-mini-
mally k-connected. We ask:

Question 4.3.1. Does every k-connected graph have an induced-subgraph-mi-
nimally k-connected subgraph?

If not, the following might still be true:

Question 4.3.2. Does every k-connected graph have a subgraph H such that
every induced k-connected subgraph of H is isomorphic to H?

Instead of just allowing the deletion of any kind of subgraphs, one may also
consider minimality with respect to deleting certain kinds of subgraphs. In this
spirit, Fujita and Kawarabayashi [16] showed that every finite graph that is
minimally k-connected under the deletion of the endvertices of any edge has a
vertex of degree at most 3

2k + 1.
Moreover, it is conjectured in [16] and proved by Mader [32] that there is a

function f : N → N such that every finite graph that is minimally k-connected
under the deletion of any connected subgraph7 of order ` has a vertex of degree
at most 3

2k+f(`). This extends the theorem due to Lick et al discussed above in
a different direction, and we may ask for the same extensions in infinite graphs:

Question 4.3.3. Let G be a k-connected graph such that for every xy ∈ E(G),
the graph G−{x, y} is not k-connected. Does G necessarily have a vertex or an
end of (vertex-)degree at most 3

2k + 1?

Question 4.3.4. Is there a function f : N → N such that the following holds:
If G is a k-connected graph so that for each connected subgraph H ⊆ G of
order ` the graph G −H is not k-connected, then G has a vertex or an end of
(vertex-)degree at most 3

2k + f(`)?

6Except for k = 2, where induced-subgraph-minimality implies edge-minimality.
7Actually, Mader [32] proves a stronger result: his graphs are minimally k-connected under

the deletion of any path of order `.
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We remark that in finite graphs, the related notion of (n, k)-critical graphs
has been studied. An (n, k)-graph is an n-connected graphG that stays (n−|U |)-
connected upon deletion of any set U ⊆ V (G) of order at most k. It has
been shown [31] that all (n, 2)-critical graphs are finite (and they have been
determined [22]). Similar holds for (n, k)-con-critical graphs, which are finite
for all k > 3 (see [35]).

4.4 Edge-minimally k-edge-connected graphs

Let us now pose the questions from the previous sections for vertex-/edge-
minimally k-edge-connected graphs. In this context, it seems natural to allow
for multigraphs instead of (simple) graphs, but then not all results from the
finite theory extend, as we shall see below.

We dedicate this section to edge-minimally k-edge-connected graphs. Finite
such graphs have been studied by Lick [24], who proved that every finite edge-
minimally k-edge-connected graph has a vertex of degree k. Mader [34] proved
that unless k = 1 or k = 3, there is a constant ck such that every edge-minimally
k-edge-connected graph has ck|G| vertices of degree k. For k = 1 and k = 3,
these constants do not exist: then one can only guarantee for 2 respectively 4
vertices of degree k.

These vertices of small degree need no longer exist in infinite edge-minimally
k-edge-connected graphs. This can be seen for k = 3 by considering the square
R2 of the double-ray. The graph R2 is edge-minimally 3-edge-connected, but
all its vertices have degree 4. However, the ends of R2 have edge-degree 3 (and
vertex degree 2).

Figure 12: The square of the double-ray.

For arbitrary values k ∈ N, we construct a counterexample as follows.

Example 4.4.1. For k ∈ N, we construct an edge-minimally k-edge-connected
graph which has no vertices of degree k.
Choose r ∈ N and take the rk-regular tree Trk. For each vertex v in Trk, insert
edges between the neigbourhood Nv of v in the next level so that Nv spans r
disjoint copies of Kk. This gives an edge-minimally k-edge-connected graph, as
one easily verifies. However, the vertices of this graph all have degree at least rk.

But again, in Example 4.4.1 the ends all have edge-degree k. This gives
hope that considering the minimal degrees of the ends might make it possible
to extend Lick’s theorem to infinite graphs. And in fact, this is the case:

Theorem 4.4.2. [40, Theorem 3 (c)] Every edge-minimally k-edge-connected
graph has a vertex of degree k or an end of edge-degree ≤ k.

This result can be improved in two directions. First, we can guarantee that
there are at least two points of small degree, and second, the theorem also holds
true for multigraphs (with basically the same proof [40]). We thus get:

27



Theorem 4.4.3. [40, Theorem 4 (c)] Let G be an edge-minimally k-edge-
connected multigraph. Then |{v ∈ V (G) : d(v) = k} ∪ {ω ∈ Ω(G) : de(ω) ≤
k}| ≥ 2.

Observe that in our setting here, it seems more natural to consider the
edge-degree of the ends instead of the vertex-degree (as we are dealing with k-
edge-connected graphs). It is also stronger than asking for small vertex-degree,
as the latter (by definition) is bounded from above by the edge-degree.

How about an extension of Mader’s result mentioned above? Recall that
his result states that a positive proportion of the vertices of any finite edge-
minimally k-edge-connected graph have degree k unless k = 1, 3.

For infinite graphs G, this positive proportion should translate to an infinite
set S of vertices and ends of small degree/edge-degree. More precisely, one would
wish for a set S of cardinality |V (G)| (or even stronger, |S| = |V (G) ∪ Ω(G)|).

Also in infinite graphs, we have to exclude the two exceptional values from
Mader’s result discussed above, k = 1 and k = 3. For k = 1, it is clear that
paths in the finite case, and rays in the infinite case, have only two vertices/ends
of (edge-)degree 1. For k = 3, the example of R2 given above illustrates that
there are edge-minimally k-edge-connected graph that have only two ends of
edge-degree k.

Question 4.4.4. For k 6= 1, 3 does every infinite edge-minimally k-edge-connected
graph G contain infinitely many vertices or ends of (edge-)degree k? Does G
have |V (G)| (or even |V (G) ∪ Ω(G)|) such vertices or ends?

We remark that Mader’s result on the number of vertices of small degree
does not hold for multigraphs, no matter whether they are finite or not. For
this, it suffices to consider the graph we obtain by multiplying the edges of a
finite or infinite path by k. This operation results in a multigraph which has
no more than the two vertices/ends of (edge-)degree k which were promised by
Theorem 4.4.3.

Finally, observe that in analogy to the vertex-case, an infinite k-edge-connec-
ted graph (or multigraph) need not have a an edge-minimally k-edge-connected
spanning subgraph. Again, this can bee seen by considering the double-ladder
for k = 2. Hence it might be interesting to investigate edge-minimally k-edge-
connected standard subspaces rather than graphs. This question will be shortly
addressed in Section 4.6.

4.5 Vertex-minimally k-edge-connected graphs

Considering vertex-minimally k-edge-connected graphs might seem a little less
natural at first sight. Note that, as for k-connectivity, the notions ‘edge-
minimally k-edge-connected’ and ‘vertex-minimally k-edge-connected’ are in-
dependent in the sense that none implies the other.

Mader [33] showed that every finite vertex-minimally k-edge-connected graph
contains a vertex of degree k, in fact, it contains at least two such vertices. Finite
vertex-minimally k-edge-connected multigraphs, however, may have arbitrarily
large degrees. This can be seen by multiplying each of the edges of Kk, and
then joining two such modified copies with a maximal matching.

28



What happens in infinite vertex-minimally k-edge-connected graphs? Not
only multigraphs, but also simple vertex-minimally k-edge-connected graphs
need not have vertices of degree k.

This can already be verified in the double-ladder. In fact, the degrees of the
vertices can get arbitrarily large which can be seen in Example 4.2.2, or even
easier in the following modification of it. Replace each vertex of the infinite
r-regular tree Tr with a copy of the complete graph Kk on k vertices, and add
a matching between two of these copies whenever the corresponding vertices of
Tr were adjacent (i.e. we take the product of Tr with Kk). But both graphs
have ends of vertex-degree k.

This is not a coincidence:

Theorem 4.5.1. [40, Theorems 3 (d) and 4 (d)] Let k ∈ N and let G be
an infinite vertex-minimally k-edge-connected graph. Then G has a vertex of
degree k, or an end of vertex-degree at most k.
Moreover, |{v ∈ V (G) : d(v) = k} ∪ {ω ∈ Ω(G) : dv(ω) ≤ k}| ≥ 2.

4.6 Edge-minimally k-connected subspaces

We have seen at the end of Section 4.1 that an infinite k-connected graph need
not contain an edge-minimally k-connected subgraph (unless k = 1). As an
example we discussed there the infinite double-ladder D. Only the deletion of
certain subsets of the rungs of D will leave the graph 2-connected, but in this
way, we will never arrive at an edge-minimally 2-connected graph. However,
viewing the graph D− that we obtain by deleting all rungs of D not as a graph
on its own, but as a subspace of the space |D|, we saw that in fact, we should
consider D− to be a minimally 2-connected subspace of D.

Let us make this idea more precise here. As in Section 3.3, for a graph G, and
a natural number k, we call a standard subspace X of |G| that contains at least
k+1 vertices weakly k-connected (in |G|), ifX−S is topologically path-connected
for every set S ⊆ V (G) of order less than k. We call X strongly k-connected, if
X − S is topologically path-connected for every set S ⊆ V (G) ∪ Ω(G) of order
less than k.8 Clearly, strong k-connectivity implies weak k-connectivity, and it
is easy to see that if X = |G|, then the usual graph-theoretic k-connectivity
coincides with strong and weak k-connectivity.

Call X edge-minimally weakly/strongly k-connected, if X is weakly/strongly
k-connected, but X − e̊ is not, for every edge e of G with e ⊆ X. Hence, in
particular, if we consider the double-ladderD from above, then the closureD− of
the subgraph D− is edge-minimally strongly (and thus also weakly) 2-connected
in |D|.

As our motivation for the introduction of these notions was the above-
mentioned possible inexistence of edge-minimally k-connected subgraphs, the
most important question now is whether every k-connected graph G has an
edge-minimal weakly or even strongly k-connected standard subspace. If we

8It might be interesting to consider also a notion of minimal k-connectivity for standard
subspaces that lies between weak and strong minimality. One could assign each end a certain
weight w(ω), e.g. half of its vertex-degree in X (for the definition of end degrees in subspaces
see [5, 11]), and then call X minimally k-connected if X − S is topologically path-connected
for every set S ⊆ V (G) ∪ Ω(G) with |S ∩ V (G)|+ |w(S ∩ Ω(G))| ≤ k. For lack of space, here
we do not investigate this promising direction further.
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ask for weakly k-connected standard subspaces of locally finite graphs, then the
answer is yes.

Lemma 4.6.1. [9, Lemma 3.1] Let G be a locally finite graph, and let X be
a weakly k-connected standard subspace of |G|. Then X has an edge-minimal
weakly k-connected standard subspace X ′ which contains X ∩ V (G).

Actually, we may obtain such an X ′ by greedily deleting (the interior of)
k-connectivity-preseving edges from X (see [9]).

Note that in particular, Lemma 4.6.1 implies that every k-connected locally
finite graphG has an edge-minimal weakly k-connected standard subspace which
contains V (G). On the other hand, we do not know whether every locally
finite k-connected graph G has an edge-minimal strongly k-connected standard
subspace. Deleting edges greedily we do not necessarily arrive at a strongly
k-connected standard subspace.

Figure 13: Greedily deleting k-connectivity-preserving edges of the [4]× Z-grid
we may arrive at one of these graphs.

For example, in the [4]×Z–grid, greedy deletion of 3-connectivity-preserving
edges may lead to many different graphs, three of which we depict in Figure 13.
The latter two span edge-minimal strongly 3-connected standard subspaces of
[4]×Z, but the first one does not (it is only strongly 2-connected). Is it always
possible to delete ‘the right edges’?

Problem 4.6.2. Let G be a locally finite graph, and let X be a strongly k-
connected standard subspace of |G|. Is there an edge-minimal strongly k-connec-
ted standard subspace X ′ ⊆ X? If so, can X ′ be chosen so that it contains all
of V (G) ∩X?

Another question would be whether Lemma 4.6.1 holds for arbitrary (not
necessarily locally finite) graphs.

Let us remark that everything said until now in this section remains true if
we replace k-connected by k-edge-connected. In fact, we can define weak and
strong k-edge-connectivity in the same way as weak and strong k-connectivity,
and prove an analogue of Lemma 4.6.1. Also the problems with strong (edge-)
connectivity remain the same.

We now show which results from Section 4.1 stay true for standard subspaces.
First we shall see that Theorem 4.1.3 carries over.
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Recall that we defined the degree dX(v) of a vertex v in a standard subspace
X of the space associated to some graph G as the number of edges e ∈ E(G)
with e ⊆ X that are incident with v.

Then, if k ≥ 2, every edge-minimally weakly k-connected standard subspace
of some graph which contains at least one finite cycle has a vertex of degree k
in X. We actually have the following stronger result:

Theorem 4.6.3. Let k ≥ 2, let G be a graph, and let X be an edge-minimally
weakly k-connected standard subspace of G which contains κ disjoint finite cy-
cles. Then the cardinality of the set of all vertices of X that have degree k in X
is at least κ.

Theorem 4.6.3 follows immediately from a subspace-version of Theorem 4.1.3.

Theorem 4.6.4. Let k ≥ 2, let G be a graph, and let X be a weakly k-connected
standard subspace of |G|. Let C be a finite cycle in G such that X − e̊ is not
weakly k-connected for each edge e in C. Then C contains a vertex of degree k
in X.

Before we give the proof of Theorem 4.6.4, let us remark a few things. First
of all, observe that the condition that X has a finite cycle is necessary, even
if we require X to be strongly k-connected. In order to see this it suffices to
consider the following example.

Example 4.6.5. Let r > k be given. Let G be the product of the infinite r-
regular tree Tr with a path of length k (i.e. on k + 1 vertices). Let X consist of
the k copies of Tr plus the end set of G. Lemma 4.6.6 below asserts that X is
edge-minimally strongly k-connected. However, all vertices in V (G) have degree
r in X.

Lemma 4.6.6. The space X from Example 4.6.5 is edge-minimally strongly
k-connected.

Proof. Since clearly every edge e ∈ E(G) with e ⊆ X lies in a k-cut of G, we only
have to show that X is strongly k-connected. Suppose otherwise. Then there is
a set S ⊆ V (G) ∪ Ω(G) with |S| < k so that X − S is not path-connected. Let
x and y lie in different path-connected components of X − S. We may suppose
that x, y ∈ V (G).

Since |S| < k there is at least one copy T ∗r of Tr such that V (T ∗r ) ∩ S = ∅.
Also, as r > k, there are raysRx andRy starting at x resp. y which lie completely
in X − S. Moreover, we can find Rx and Ry such that also their ends lie in
X − S. Now, Rx ∪ T ∗r ∪ Ry ⊆ X − S contains an x–y arc, a contradiction as
desired.

The ends of the example just given have vertex-degree k, however. This
leads at once to the following question:

Question 4.6.7. Does every edge-minimally weakly k-connected standard sub-
space X of an infinite graph G have a vertex or an end of (vertex-)degree k?

Observe that Theorem 4.6.4 also implies a variant of Proposition 4.1.5 for
subspaces. In fact, every standard subspace Y of an edge-minimally weakly k-
connected standard subspace X ⊆ |G| that contains a cycle of G has a vertex of
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degree k, by Theorem 4.6.4. On the other hand, if Y has no (finite) cycles, then
it may happen that Y has no vertices of degree k, and no ends of vertex-degree
less than k, as is the case in Example 4.6.5. However, Y might have to have
ends of vertex-degree k then, so we might repeat Question 4.6.7 for standard
subspaces of X.

As for graphs, we do not know whether Theorem 4.6.4 extends to circles:

Problem 4.6.8. Let G be a graph and let X be an edge-minimally weakly k-
connected standard subspace of |G|. Does every circle of G with C ⊆ X have a
vertex or an end of (vertex-)degree k in X? What happens if we replace ‘weakly
k-connected’ with ‘strongly k-connected’?

We dedicate the rest of this section to the proof of Theorem 4.6.4 which is
strongly inspired by Mader’s proof [29].

Proof of Theorem 4.6.4. Suppose V (C) = {a1, a2, . . . a`} and C has edges ei =
aiai+1 for i = 1, 2, . . . , ` (throughout the proof, we shall understand all indices
to be modulo `). For contradiction suppose that for each i = 1, 2, . . . , `:

dX(ai) ≥ k + 1. (4)

By assumption, for each i = 1, 2, . . . , `, there is a set Si in Xi := X − e̊i so
that Xi − Si is not path-connected. For j ∈ {i, i + 1} let Cj

i denote the path-
connected component of Xi−Si that contains aj . Set W j

i := (V (G)∪Ω(G))∩Cj
i .

We claim that

W i+2
i+1 −Ai = W i+1

i −Bi. (5)

where Ai ∈W i+2
i+1 and Bi ∈W i+1

i are such that

|Ai| < |Bi|. (6)

Then, using (5) for i = 1, . . . , ` we get that

W 2
1 −

⋃̀
i=1

Ai = W `+2
`+1 −

⋃̀
i=1

Ai = W 2
1 −

⋃̀
i=1

Bi.

By (6), this means that there is a vertex or end x that lies in more Ai’s than
Bi’s. But this is impossible, because if x lies in Am and Am′ , say, then by (5), x
also lies in some Bm′′ with m < m′′ < m′ (recall that we are viewing all indices
modulo `). We have thus reached the desired contradiction.

It remains to show the existence of the Ai and Bi satisfying (5) and (6). For
this, consider the sets

Di := W i+1
i ∩W i+1

i+1 ∩ V (G) and D̃i := W i
i ∩W i+2

i+1 ∩ V (G).

For an illustration, see Figure 14. Note that D̃i might be empty. Observe
that the neighbourhoods of Di and D̃i in the subgraph H ⊆ G induced by X
satisfy

NH(Di) ⊆ (Si+1 ∩W i+1
i ) ∪ (Si ∩ Si+1) ∪ (Si ∩W i+1

i+1 ) ∪ {ai, ai+2},
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Figure 14: The sets Di and D̃i in the proof of Proposition 4.6.4.

and
NH(D̃i) ⊆ (Si+1 ∩W i

i ) ∪ (Si ∩ Si+1) ∪ (Si ∩W i+2
i+1 ).

Thus,
|NH(Di)|+ |NH(D̃i)| ≤ |Si|+ |Si+1|+ 2 = 2k. (7)

On the other hand, we claim that

|NH(Di) \ {ai, ai+2}| ≥ k − 1. (8)

Indeed, suppose otherwise. Then NH(Di) ∪ {ai+1} has cardinality at most
k − 1. Hence, as X is weakly k-connected, X − (NH(Di) ∪ {ai+1}) is path-
connected. Since X − (NH(Di) ∪ {̊ei, e̊i+1}) is not path-connected, this is only
possible if Di \ {ai+1} = ∅. But then dX(ai+1) < k + 1, a contradiction to (4).
This proves (8).

Combining (7) and (8) we obtain that

|NH(D̃i)| ≤ 2k − |NH(Di) \ {ai, ai+2}| − |{ai, ai+2}|
≤ 2k − (k − 1)− 2
= k − 1.

As X is weakly k-connected, this implies, similarly as above, that D̃i is empty.
We set Ai := W i+2

i+1 ∩ Si, and Bi := W i+1
i \ W i+2

i+1 . This choice clearly
satisfies (5), and for (6) it suffices to show that |Ai| ≤ |W i+1

i | ∩ Si+1. So
suppose otherwise. Then |NH(Di) \ {ai, ai+2}| < |Si| = k − 1. Hence by (4),
Di \{ai+1} 6= ∅. But then X−NH(Di \{ai+1}) is not path-connected, although
|NH(Di \{ai+1})| < k, a contradiction. This proves (6), and thus completes the
proof of the theorem.

Let us remark that the proof of Theorem 4.6.4 would also work for edge-
minimally weakly k-connected spaces X that have the property that X − e̊ is
not strongly k-connected for every edge e ⊆ X. In this case, the sets Si from
the proof would consist of vertices and ends, and instead of the neighbourhoods
of Di and D̃i we would consider certain subsets of (V (G) ∪ Ω(G)) ∩X. These
would consist of the neighbourhood of Di and all ends in Di, and the same
for D̃i.
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4.7 Other minimally k-connected subspaces

Let us consider the approach from the previous section for vertex- or subgraph-
minimality. That is, we now consider vertex-minimally and (induced-)subgraph-
minimally weakly or strongly k-connected standard subspaces, defined in the
same way as the edge-minimally weakly or strongly k-connected standard sub-
spaces above. Generalising the results and questions of Sections 4.2 and 4.3 we
ask for the existence and the properties of such graphs.

Question 4.7.1. Does every k-connected graph have a vertex-minimally weakly
or even strongly k-connected standard subspace? Does every weakly/strongly
k-connected standard subspace of an infinite graph have a vertex-minimally
weakly/strongly k-connected standard subspace?

For locally finite graphs, we can imitate the proof of Lemma 4.6.1 and ob-
tain a positive answer to the above questions for weakly k-connected standard
subspaces. Once we have such a space, does it have the vertices of small degree?

Problem 4.7.2. Let X be a vertex-minimally weakly/strongly k-connected stan-
dard subspace of an infinite graph. Does X contain vertices of degree at most
3
2k − 1?

For subgraph-minimally weakly k-connected standard subspaces, we know
from Section 4.6 that they have vertices of degree k on every (finite) cycle. How
about induced-subgraph-minimally weakly/strongly k-connected subspaces?

Problem 4.7.3. Let X be an induced-subgraph-minimally weakly/strongly k-
connected standard subspace of an infinite graph. Does X contain vertices or
ends of ‘small’ degree? How many?

If we wish to ask for the existence of these subspaces, the first idea would
be to phrase our questions as follows: Does every k-connected graph have an
(induced-)subgraph-minimally weakly/strongly k-connected standard subspace?
Or, does every k-connected standard subspace of an infinite graph have an
(induced-) subgraph-minimally weakly or strongly k-connected standard sub-
space? This, however, might be too strong. Perhaps it would be more natural
to ask:

Question 4.7.4. Does every weakly k-connected standard subspace X of an
infinite graph have a weakly k-connected standard subspace Y such that all weakly
k-connected standard subspaces of Y are isomorphic to Y ? What happens if we
replace ‘weakly k-connected’ by ‘strongly k-connected’?

5 Circles, arcs, and forests

5.1 Hamilton circles

Early attempts to generalise results on Hamilton cycles in finite graphs to in-
finite graphs have been made by Nash-Williams [37]. He considered spanning
double-rays as the infinite analogues of Hamilton cycles. This leads to a se-
vere restriction on the class of objects one may study: it is not difficult to see
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that a graph with a spanning double-ray has at most two ends. So, although
some interesting results have been obtained with this notion (Yu [48] proved a
conjecture of Nash-Williams that extends Tutte’s theorem discussed below to
spanning double rays), this is not quite satisfactory.

From the topological viewpoint on infinite graphs, there is a much more
intuitive generalisation of Hamilton cycles. This has been first pointed out by
Bruhn. Since circles are the hoemeomorphic image of the unit circle in the space
|G| associated to the graph G, nothing seems more natural than to adapt this
notion and define a Hamilton circle of a graph G as a circle C in |G| that visits
every vertex of G. Observe that this definition guarantees that every end of G
gets visited ‘exactly once’ by c and that C is a standard subspace of |G|.

One of the best known results on Hamilton cycles in finite graphs is due to
Tutte. It states that every (finite) 4-connected planar graph has a Hamilton
cycle. Bruhn (see [10]) conjectured that this should extend to infinite graphs,
using his notion of a Hamilton circle:

Conjecture 5.1.1 (Bruhn). Every 4-connected locally finite planar graph has
a Hamilton circle.

Partial results on Conjecture 5.1.1 have been obtained by Bruhn and Yu [6]
and by Cui, Wang and Yu [8].

An extension of Fleischner’s theorem on Hamilton cycles to infinite graphs
has been conjectured by Diestel [10] and proved by Georgakopoulos [17]:

Theorem 5.1.2 (Georgakopoulos [17]). Let G be a locally finite 2-connected
graph. Then G2 has a Hamilton circle.

It is also shown in [17] that the 3rd power of any locally finite connected
graph has a Hamilton circle. The finite analogue is well-known and not overly
difficult to prove.

So, which other assumptions force Hamilton circles in infinite graphs? Un-
fortunately, most conditions for Hamilton cycles in finite graphs, like Dirac’s
theorem, involve degree assumptions that use the order of the graph as a ref-
erence. It seems difficult to find a good generalisation of such conditions to
infinite graphs.

Some results from the finite theory, however, use local conditions that do not
involve the order of the graph, and thus might allow for extensions to infinite
graphs. Oberly and Sumner [38] showed that every connected locally connected9

claw-free10 graph of order at least 3 has a Hamilton cycle. By a result os As-
ratian [2], such a graph, if in addition 3-connected, is even hamilton-connected,
which means that every pair of vertices is connected by a Hamiltonian path.

We thus feel motivated to ask:

Question 5.1.3. Does every infinite connected locally connected claw-free graph
have a Hamilton circle?

Defining hamilton-connectivity in the obvious way11 for infinite graphs,
Bruhn (personal communication) asks the stronger:

9A graph is locally connected if the neighbourhood of each vertex spans a connected sub-
graph.

10A claw-free graph is one that has no induced subgraph isomorphic to K1,3.
11That is, we define a graph G to be hamilton-connected, if every pair of vertices can be

linked by an arc in |G| which contains all of V (G).
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Question 5.1.4. Is every infinite connected locally connected claw-free graph
hamilton-connected?

5.2 Tree-packing and arboricity

A well-known theorem from finite graph theory is the tree-packing theorem of
Nash-Williams [36] and Tutte [47]. It states that a finite multigraph G has k
edge-disjoint spanning trees if and only if every partition of V (G), into r ∈ N
sets say, is crossed by at least k(r − 1) edges of G. (An edge is said to cross a
given vertex-partition of a graph G if it has its endvertices in distinct partition
sets.)

Disproving a conjecture of Nash-Williams, Oxley [39] constructed a locally
finite graph that for k = 2 satisfies the second condition but has no two edge-
disjoint spanning trees. His graph however, has two edge-disjoint topological
spanning trees, which are defined as topological trees that contain all vertices of
the graph. And in fact, if one replaces the term ‘spanning tree’ from the tree-
packing theorem with the term ‘topological spanning tree’, then the theorem
does extend to locally finite graphs. This has been shown by Bruhn and Diestel
(see [11]), building on work of Tutte.

Theorem 5.2.1. [11] For a locally finite multigraph G the following statements
are equivalent:

(i) |G| contains k edge-disjoint topological spanning trees;

(ii) every partition of V (G), into r ∈ N sets say, is crossed by at least k(r− 1)
edges of G.

A related result is Nash-Williams’ arboricity theorem, which states that a
graph is the edge-disjoint union of at most k forests, if no set of ` vertices
induces more than k(` − 1) edges. A standard compactness argument shows
that Nash-Williams’ arboricity theorem extends to infnite graphs, if we ask for
traditional forests, i.e. subgraphs of G that have no finite cycles. But, having
taken the topological viewpoint, one should want more. In fact, it is now natural
to require that the graph decomposes into topological forests. This, however, is
false without additional constraints.

In fact, for any k ∈ N, there are examples of graphs which satisfy the condi-
tion of local sparseness, but do not decompose into as few topological forests as
desired. It suffices to take one copy of K2k for each n ∈ Z, and identify, for each
n ∈ N, one vertex of the nth copy with one vertex of the (n + 1)th copy, not
using any vertex twice. Then add, for each n ∈ N, an edge between two not yet
used vertices of the nth and the (−n)th copy. It is not difficult to see that the
obtained graph is the edge-disjoint union of k ordinary forests, and hence satis-
fies Nash-Williams’ condition that no set of ` vertices spans more than k(`− 1)
edges. But any partition of G into k forests induces such a partition in each
copy of K2k, ie. into spanning trees of K2k. Each of these contains a v–w path,
so each of our k forests contains a double ray and thus an infinite cycle.

So what goes wrong in this counterexample? In fact, our situation is re-
ciprocal to the one in the beginning of the paper, when we tried to get from
local density (implied by large vertex degrees) to global density. This would
only work if we required denseness at the ends as well. Analogously, here we
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have to impose a sparseness condition on the ends of the graph. This sparseness
condition can be expressed in terms of the vertex-degree:

Theorem 5.2.2. [41] Let k ∈ N, and let G be a locally finite graph in which
no set of ` vertices induces more than k(`− 1) edges. Further, let every end of
G have vertex-degree < 2k. Then |G| is the edge-disjoint union of at most k
topological forests in |G|.

Although, as we have seen in the example above, the bound of 2k in Theo-
rem 5.2.2 cannot be reduced, the theorem has no direct converse: a partition into
k topological forests does not force all end degrees to be small. The N×N grid,
for example, is an edge-disjoint union of two topological forests (its horizontal
vs. its vertical edges), but its unique end has infinite vertex-degree.

It would be interesting to investigate whether Theorem 5.2.1 and 5.2.2 extend
to subspaces. In the former theorem, we then have to replace the term ‘crossing
edges’ with something like ‘crossing arcs’. This seems to be necessary as can be
seen by considering once again the double-ladder D and its subgraph D− which
is obtained by deleting all the rungs. Now a partition of D− into the two sets
corresponding to the two double-rays contained in D− (and putting the ends
anywhere) has no crossing edges. However, D− does not contain a topological
spanning tree of |D|. This motivates the following definition.

For a partition of V (G)∪Ω(G) of a graph G, an arc A ⊆ |G| is said to cross
the partition, if it has its endpoints in different partition sets P1 and P2, and
furthermore, A ∩ (V (G) ∪ Ω(G)) ⊆ P1 ∪ P2.

Problem 5.2.3. Let G be a locally finite multigraph G, and let X ⊆ |G| be a
standard subspace. Are the following statements equivalent?

(i) X contains k edge-disjoint topological spanning trees of G;

(ii) every partition of V (G) ∪ Ω(G), into r ∈ N sets say, is crossed by at least
k(r − 1) edge-disjoint arcs A ⊆ X .

For a version of Theorem 5.2.2 for subspaces, we use the definition of the
vertex-degree in standard subspaces, which can be found at the end of Sec-
tion 3.3.

Problem 5.2.4. Let k ∈ N, let G be a locally finite graph, and let X be a
standard subspace of |G|.
If no set of ` vertices of G induces more than k(` − 1) edges e with e ⊆ X
and furthermore, every end of G has vertex-degree < 2k in X, is then X is
edge-disjoint union of at most k topological forests in |G|?

5.3 Connectivity-preserving arcs and circles

There are a few very interesting conjectures about connectivity-preserving paths
and cycles in finite graphs. The most famous among these is a conjecture of
Lovász (see [46]):

Conjecture 5.3.1 (Lovász). There is a function f(k) such that for every finite
f(k)-connected graph G, and every pair of vertices v, w of G there is an induced
v–w path P such that G− V (P ) is k-connected.
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The conjecture can equivalently be stated as follows: There is a function
f(k) such that for every finite f(k)-connected graph G and every edge e of G
there is an induced cycle C containing e so that G−V (C) is k-connected. Lovász
also conjectured that if we do not insist on prescribing an edge which the cycle
has to contain, then f(k) = k + 3. This has been verified by Thomassen [45]:
every finite (k+ 3)-connected graph has an induced cycle C so that the deletion
of V (C) results in a k-connected graph.

A weakening of Conjecture 5.3.1 has been conjectured by Kriesell and proved
by Kawarabayashi et al [21]. It states that there is a function f(k) so that for
every f(k)-connected graph G and for every edge e of G there is an induced
cycle C of G with e ∈ E(C) such that G− E(C) is k-connected.

These results (and Lovász’ conjecture, if true) do not carry over to infinite
graphs, if we ask for connectivity-preserving cycles that are finite. The reason is
that there are infinite (even locally finite) graphs of arbitrarily large connectivity
whose cycles are all separating. More precisely, for every k ∈ N there is a k-
connected locally finite graph such that for each cycle C of G we have that both
G− V (C) and G−E(C) are disconnected. Such graphs have been constructed
by Aharoni and Thomassen [1].

Will it help to consider circles instead of finite cycles, and arcs instead of
finite paths? Some of the following problems have been posed already in [10].
Call an arc A or a circle C induced if e ⊆ A for each edge e with both endpoints
in A resp. C.

Problem 5.3.2. Is there a function f(k) such that for every infinite f(k)-
connected graph G, and every pair of vertices v, w of G there is an induced v–w
arc A whose deletion leaves a strongly/weakly k-connected subspace of |G|? If
so, may we also prescribe ends to be the starting points/endpoints of A?

Problem 5.3.3. Does every infinite (k + 3)-connected graph have an induced
circle C so that the deletion of V (C) results in a weakly/strongly k-connected
subspace of |G|?

Problem 5.3.4. Is there a function f(k) so that for every edge e of an infinite
f(k)-connected graph G there is an induced circle C of G which contains e
such that the deletion of the edges of C results in a strongly/weakly k-connected
subspace of |G|?

Stronger versions of these problems can be obtained by replacing the graph
G with a standard subspace X.

An analogue of Thomassen’s result for edge-connectivity also holds. Indeed,
Mader [30] showed that every finite (k + 2)-edge-connected graph contains an
induced cycle C such that the deletion of E(C) leaves a k-edge-connected graph.

Recently, this has been extended to infinite graphs by Bruhn, Diestel and
Pott [4], using the notion of weak k-edge-connectivity (which one defines anal-
ogously to weak k-connectivity). More might be true:

Problem 5.3.5. Is there a function f(k) so that for every edge e of an f(k)-
edge-connected graph G there is an (induced) circle C of G which contains e such
that the deletion of the edges of C results in a strongly/weakly k-edge-connected
subspace of |G|?
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