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Chapter 1

Introduction

The aim of this thesis is to portray some interesting aspects of graph theory

and, more precisely, infinite graph theory. In particular, we will focus on

objects called bicycles and some other concepts they relate to, such as left-

right tours and pedestrian graphs.

The origins of graph theory are usually dated back to Leonhard Euler and

his paper from 1736 about the problem of the Seven Bridges of Königsberg.

While in the beginning finite and infinite graphs were studied with equal

interest, in recent decades there has been far more emphasis only on finite

structures. Yet infinite graphs remain fascinating and important, despite the

fact that many standard theorems for finite graphs are very difficult to extend

to infinite graphs. These extensions often require new methods or viewpoints

in order to prove theorems analogous to the ones for finite graphs. One of the

challenges in infinite graph theory is that we often do not know how certain

structures will behave at the point of infinity. The points at infinity that

occur in an infinite graph are called ends, and they were first introduced in

the 1940s.

The importance of cycles in a graph is illustrated by the fact that they

were already the objects of study in Euler’s paper. Hence the question of how

cycles behave in infinite graphs is fundamental, yet the definition of the cycle

space from finite graph theory has proven to be insufficient in infinite graph

theory. In 2004, Reinhard Diestel and Daniela Kühn introduced the notion

of infinite cycles and provided a definition for the cycle space of an infinite

graph which included these together with the finite cycles [12], [13]. This
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2 Introduction

definition has proven to be the most natural. Many famous theorems about

the cycles in finite graphs (which do not directly extend to infinite graphs

when considering only finite cycles) have now been generalized to infinite

graphs: MacLane’s planarity criterion [6], Tutte’s generating theorem [2],

Whitney’s theorem that a finite graph has a dual if and only if it is planar [3],

Gallai’s theorem that every finite graph has a vertex partition into two parts

each inducing an element of its cycle space [4] and, last but not least, Euler’s

theorem from 1736 [12], [7].

This thesis is yet another illustration of the importance of infinite cycles.

Since a bicycle is, in particular, also an element of the cycle space, there is

a sensible way to define infinite bicycles. There are a number of important

results involving bicycles that hold for finite graphs, but which fail when we

consider only finite cycles in infinite graphs. In this thesis we extend four

such results to infinite graphs using the cycle space as introduced by Diestel

and Kühn. This thesis evolved from joint work with Henning Bruhn and

Stefanie Kosuch which resulted in [5]. Therefore, some main results of this

thesis, such as Theorems 3.2, 5.5, 6.4, and 7.2, have been published in [5].

So, let us get a better idea of these bicycles. The set of edge (sub)sets in

a graph G together with symmetric difference as addition forms a Z2-vector

space, which we call its edge space E(G). Two important subspaces of E(G)

are the cycle space C(G), which is the set of all sums of (edge sets of) cycles,

and the cut space C∗(G), which is the set of all (edge) cuts. Although cuts

(or co-cycles) and cycle space elements are orthogonal to each other, it is

possible for an edge set to be an element of both C(G) and C∗(G). Such

an edge set is then called a bicycle and the space B(G):=C(G) ∩ C∗(G) is

the bicycle space. The set of bold edges in the graph in Figure 1.1 (a) is an

example of a finite bicycle.

Bicycles in finite graphs have been widely studied, and a number of fun-

damental results involving bicycles are known. We will extend four of these

to an important class of infinite graphs, namely to locally finite graphs, ie. to

graphs in which every vertex has finite degree. Although this may seem very
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(a) (b)

Figure 1.1: (a) a bicycle; (b) a left-right tour

restrictive, locally finite graphs are a very natural class of infinite graphs since

many important properties of (and intuitions about) graphs fail completely

if we also allow vertices with infinite degree.

The first theorem we will extend is Rosenstiehl and Read’s tripartition

theorem:

Theorem (Rosenstiehl & Read [24]). Let e be an edge in a finite graph G.

Then exactly one of the following holds:

(i) there exists a B ∈ B(G) with e ∈ B;

(ii) there exists a Y ∈ C(G) with e ∈ Y and Y + e ∈ C∗(G);

(iii) there exists a Z ∈ C(G) with e /∈ Z and Z + e ∈ C∗(G).

One way of regarding this theorem is to consider the statement in terms

of the cycle space and the cut space. Then given any edge e in a finite

graph G, either e ∈ B for some B ∈ C(G)∩C∗(G) (which is what (i) says), or

{e} ∈ C(G) + C∗(G), but not both. In the latter case, we can then consider

the two symmetric subcases that either e lies in some cycle space element,

and when we delete e from that, it becomes a cut (this is the statement

in (ii)), or else e lies in some cut, and when we delete e from it, this edge set

becomes an element of the cycle space (which corresponds to (iii)).

If we now naively use the finite version of the cycle space on an infinite,

locally finite graph, every element of the cycle space will necessarily be fi-

nite, and we will see that this theorem fails for locally finite graphs. One
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counterexample is the double ladder, shown in Figure 1.2. Here, no finite

bicycle contains the edge e since every element of the cycle space will be a

sum (modulo 2) of the induced 4-cycles and hence cannot form a cut at the

same time. Similarly, some consideration yields that on the other hand (for

the same reason), there is neither a finite Y nor a finite Z as in (ii) or (iii)

of the theorem.

e

Figure 1.2: There is no finite B, Y or Z as in the theorem for e.

Fortunately, as mentioned earlier, we have a broader definition of the cycle

space which allows for infinite structures. Diestel and Kühn [12, 13] provided

a definition of cycles that introduces infinite cycles but encompasses the usual

finite cycles as well. They defined a circle to be the homeomorphic image

of the unit circle in the graph compactified by its ends. (Where ends are

equivalence classes of rays. These definitions will be introduced formally in

the next chapter.) This definition has proven to be very fruitful, insofar as

almost all of the properties of the cycle space in a finite graph remain valid in

locally finite graphs. There has also been studied a more general approach by

Vella and Richter [26], that covers other compactifications of infinite graphs

as well.

In the double ladder, the two double rays (the bold edges in Figure 1.2)

together with their two ends are homeomorphic to the unit circle, and hence

they form such an infinite cycle. If we now reconsider the tripartition theo-

rem, we see that the set of bold edges now forms an infinite cycle and also

constitutes a cut, and hence it forms an infinite bicycle which contains our

edge e. The proof of the tripartition theorem for locally finite graphs and

lemmas relating to it will be the topic of Chapters 3 and 4.

There is a very interesting connection between bicycles and left-right tours

in planar graphs, which we will investigate next. If G is a finite plane graph,

we can easily obtain a left-right tour of G: start at an arbitrary edge uv,
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traverse it in one direction, say from u to v, then ‘turn left’ when we reach

v (meaning choose the leftmost edge at v in our embedding), follow it along,

then ‘turn right’ at the next vertex and continue traversing edges and alter-

nately turn left and right until we reach the edge uv again. There we stop,

provided we are about to traverse uv again from u to v and provided our turn

at v would, again, be a left turn. In this way, we produce a closed walk which

is our left-right tour. Depending on the graph, the left-right tour might then

contain a certain edge e of G once, twice or not at all. The set of edges that

are traversed exactly once is called the residue of our left-right tour.

Shank [25] showed that in finite graphs, this residue is always a bicycle.

This gives us a particularly easy way to find bicycles in planar graphs.

Theorem (Shank [25]). If G is a finite plane graph, then the residue of a

left-right tour is a bicycle.

We will extend his theorem and prove that this also holds for locally

finite graphs in Chapter 5. In order to be able to do this, we will first

need to generalize the concept of left-right tours to infinite, locally finite

graphs. Figure 1.1 (b) shows a left-right tour in the graph. Looking at the

residue of that tour we can see the same bicycle that we observed earlier in

Figure 1.1 (a).

Not only do the left-right tours of a graph offer an easy way to find bicycles;

they in fact determine all bicycles in the graph:

Theorem (Shank [25]). In a finite plane graph the residues of the left-right

tours generate the bicycle space.

In Chapter 6 we will show that this is also true for locally finite graphs.

See also Richter and Shank [22] and Lins, Richter and Shank [19].

In finite graphs, Archdeacon, Bonnington and Little [1] used ladders

(which are certain substructures involving left-right tours and bicycles in

an unusual way) to give a criterion for planarity. Planarity criteria are very

important tools, and this one in particular is purely algebraical and requires
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no geometrical knowledge about the graph. In Chapter 7 we will extend this

criterion to locally finite graphs.

This planarity criterion becomes particularly intuitive when considering

pedestrian graphs, which are graphs that do not contain any nonempty bi-

cycles. When considering only finite graphs, we have the following simple

characterization.

Theorem (Chen [9]). A finite graph G is pedestrian if and only if the number

of spanning forests of G is odd.

Since the number of spanning forests in a locally finite graph is usually

infinite, this theorem certainly cannot hold for infinite graphs. Unfortunately,

neither can we use our usual methods or infinite cycles to simply generalize

it in some way. In this last chapter we will show that if a locally finite graph

contains only a finite number of spanning forests, then the theorem holds.

As yet there is no adequate extension to graphs with an infinite number of

spanning forests.

We will see examples of locally finite pedestrian graphs with any given

number of ends and any given degree in each end (where the degree of an end

is the maximum number of disjoint rays it contains). We will even present a

plane graph that has a thick end, ie. an end that contains an infinite number

of disjoint rays; furthermore, surprisingly, this graph contains no bicycles.

Using what we show in Chapter 5, this means that the residue of any left-

right tour in this graph must be empty, and hence, the entire edge set is

covered twice by only a single left-right tour. At the end of the chapter, we

will briefly discuss other possible approaches for finding a characterization of

infinite pedestrian graphs.



Chapter 2

Definitions and Preliminaries

All of our graphs are undirected and simple, unless otherwise noted. In

general, we follow the notation of [11], which also provides a good introduc-

tion to the topological cycle space. A more thorough introduction gives the

expository paper [10].

Sometimes we will write
⋃

A to denote the union of all elements of a set A.

A graph of the form K1,n is called a star. A normal spanning tree T of a

graph G is a rooted spanning tree of G such that any two vertices that are

adjacent in G are comparable in the tree-order of T . We will make use of

certain double covers of the edge set of a graph G, thus, let us call a set of

walks W a double cover of G if every edge e ∈ E(G) is traversed exactly

twice by walks in W (ie. either once in two walks or twice in one walk).

In this thesis we will only consider locally finite graphs, which are graphs

whose vertex degrees are finite. Let G be an infinite, locally finite graph.

A one-way infinite path is called a ray, and a two-way infinite path is a

double ray. A subray of a ray is called a tail of its ray. We will introduce

an equivalence relation on the rays of a graph, where two rays R and S are

equivalent if there are infinitely many disjoint R–S paths. The equivalence

classes of rays are called the ends of G. The set of ends of G is denoted

by Ω(G). As an example, the double ladder in Figure 5.2 has two ends, one

to the left and one to the right, and the upper and lower double ray both

converge to one of these ends on each side. By contrast, the 3-regular tree

has uncountably many ends. The degree of an end is the maximum number

of disjoint rays it contains. An end is said to be thick if it contains infinitely

7
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many disjoint rays. A comb is a graph that is the union of a ray with infinitely

many disjoint finite paths each of whose first vertex lies on this ray. The ray

is then called the spine of the comb, and the last vertices of the paths are its

teeth.

In order to introduce infinite cycles, we need to view G as a topological

space. So let us introduce a topology on G. We will view G as a 1-complex,

meaning that every vertex and every end of G is represented by a distinct

point, and for every edge e of G we add a set of continuum many points to

our topological space. These sets shall be disjoint from each other and from

the set V ∪ Ω. Every edge shall be homeomorphic to the real interval (0, 1),

and we extend this bijection to one from the edge including its endpoints to

the interval [0, 1]. We denote the topological space thus constructed by |G|.

Now, to actually define a topology on |G|, let us define a basis of open

sets. For every edge, let the open neighborhoods of inner points of this edge

correspond to the open neighborhoods around points in (0, 1). For a vertex v

and every ǫ > 0, declare as open all open stars around v of radius ǫ, ie. for

every edge at v all points on this edge with distance less than ǫ from v (in

the metric of the respective edge). Given an end ω of G, let S be a finite set

of vertices. Let C(S, ω) be the component of G − S that contains a ray in

ω, then C(S, ω) contains a subray for every ray in ω. By Ω(G,ω) we denote

those ends of G which have a ray in C(S, ω). We write Ĉ(S, ω) for the union

of C(S, ω) with Ω(G,ω) and with all interior points of edges between C(S, ω)

and S. Then for every such S, the set Ĉ(S, ω) shall be an open neighborhood

of ω. With the basis thus defined, the open sets of |G| shall be all unions of

these sets.

The closure of a set X in |G| is denoted by X. Also note that if H is a

subgraph of G, then the ends of H need not correspond to the ends of G. For

instance, consider the double ladder from our example in Figure 1.2. The

double ladder itself has two ends (one to the left and one to the right), but

if we consider the subgraph H of G consisting only of the two (horizontal)

double rays, then H has four ends, two for each double ray. Therefore, H \H

(where, again, H is the closure of H in G) has two ends, which are the ends
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of G, not of H.

The space |G| is sometimes also referred to as the Freudenthal compacti-

fication of G. We note that the topological space |G| is Hausdorff. When G

is connected and locally finite, then |G| is compact (cf. [11]).

In the topological space thus obtained, every ray converges to the end

it belongs to. Since there is a correspondence between G and |G|, we will

now translate some graph theoretic concepts to the topological space: The

image of a continuous mapping from the unit interval [0, 1] to |G| is called

a topological path, and the images of 0 and 1 are called its endpoints. The

homeomorphic image of [0, 1] in |G| is called an arc. A circle of |G| is a

homeomorphic image C in |G| of the unit circle. We call the subgraph C ∩G

a cycle, and its edge set a circuit. Hence, a cycle may be finite or infinite;

in the latter case it is a disjoint union of double rays. Since C ∩ G is dense

in C (cf. [12]), every circle is the closure in |G| of its cycle. Thus, there is a

unique correspondence between a circle and its cycle.

The closure T in |G| of a subgraph T of G is a topological spanning tree of

G if it is path-connected and contains all the vertices and ends of G, but no

circles of |G|. In finite graph theory, for a connected graph G and a spanning

tree T of G, we know that for every edge of E(G)\E(T ) there exists a unique

cycle Ce in T + e which we call a fundamental cycle. Similarly, consider a

connected, locally finite graph G with a topological spanning tree T of G.

Then for an edge e ∈ E(G) \ E(T ) there exists a unique circle in T ∪ e. Its

edge set is called the fundamental circuit Ce of e with respect to T .

As mentioned in Chapter 1, the collection of all subsets of the edge

set E(G) of a graph G is the edge space of G, which we denote by E(G). To-

gether with symmetric difference as addition, it forms a vector space over Z2.

In order to introduce the topological cycle space as defined by Diestel and

Kühn, we need to allow certain infinite sums as well. So let us call a family

F of subsets of the edge set of a graph thin if no edge appears in infinitely

many members of F . The sum
∑

F∈F
F is the set of edges that appear in

precisely an odd number of members of F and hence is well-defined. When-

ever we take the sum over an infinite family we will assume this family to be
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thin (and sometimes refer to the sum as being thin) without mentioning it

explicitly.

We are now ready to define the topological cycle space. For an infinite,

locally finite graph G, let its cycle space C(G) be the set of all thin sums

of circuits — where, again, a circuit is the edge set of the subgraph C ∩ G,

and C is a homeomorphic image of S1 in |G|. If G is a finite graph, then

this space coincides with the usual cycle space as traditionally defined. We

remark that the topological cycle space is closed under the taking of infinite

thin sums (cf. [12, 13]).

A tour T in |G| is a continuous map T : S1 → |G| that is locally injective

at every x ∈ S1 for which T (x) is an interior point of an edge. Note that,

therefore, every edge with an interior point in the image of T , denoted by

rge T , is completely contained in rge T . We denote the set of all edges that

lie in rge T by E(T ). The residue △T of a tour T is the set of those edges

that are traversed exactly once by T .

A cut (or cocycle) in G is a set of edges F ⊆ E(G) such that either F = ∅,

or there is a set U ⊆ V (G) such that an edge is in F if and only if it has

precisely one endvertex in U and one outside of U . In case that U = {v},

we denote this cut by E(v). Just as the cycle space, the space consisting

of all cuts in G forms a subspace of E(G), which is called the cut space and

denoted by C∗(G). The cuts of the form E(v) with v ∈ V (G) generate C∗(G).

A minimal non-empty cut in G is called a bond.

A graph is plane if it is drawn in the plane in such a way that the vertices

are distinct points, and the intersection of any two edges is precisely their

common endpoints. A graph is said to be planar if it can be drawn in such

a way. Let G = (V,E) and G∗ = (V ∗, E∗) be two plane multigraphs, and let

F resp. F ∗ be the faces of G, resp. G∗. Then we call G and G∗ plane duals

if there exist bijections

F → V ∗ E → E∗ V → F ∗

f 7→ v∗(f) e 7→ e∗ v 7→ f∗(v)

such that
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(i) v∗(f) ∈ f for all f ∈ F ;

(ii) |e∗ ∩ G| = |̊e∗ ∩ e̊| = |G∗ ∩ e| = 1 for all e ∈ E; and

(iii) v ∈ f∗(v) for all v ∈ V .

If G and G∗ are not planar, we have the following generalization. We call

G∗ an abstract dual of G if there exists a bijection E(G∗) → E(G) that maps

the circuits of G precisely to the bonds of G∗.

There exists a certain orthogonality between the cycle space and the cut

space of a graph. To make this more precise, let us recall that there is a scalar

product ∗ defined on E(G) for a multigraph G as follows: for X,Y ⊆ E(G),

we let X ∗ Y = 0 if |X ∩ Y | is even, and we set X ∗ Y = 1 otherwise. With

this product, for a set of edge sets X , we can define the orthogonal space

X⊥:={Y ⊆ E(G) : Y ∗X = 0 for all X ∈ X}. For a finite (multi-) graph G,

it holds that C(G) = C∗⊥(G) and C∗(G) = C⊥(G) (cf. [11]). At the end of

this chapter we will see how this property generalizes to the infinite case.

The intersection of these two spaces is another subspace of E(G) and is

called the bicycle space of G. It is denoted by B(G):=C(G) ∩ C∗(G), and an

element of B(G) is a bicycle.1 A graph that contains no non-empty bicycles is

said to be pedestrian. When dealing with infinite graphs, we may sometimes

wish to refer to only the finite sets in a subspace of E(G). Therefore, let us

denote by Cfin(G) (and C∗
fin(G) or Bfin(G), resp.) the set of all finite edge sets

in C(G) (in C∗(G) or in B(G), resp.).

As already mentioned in Chapter 1, the topological cycle space has proven

to be the most natural and has allowed for a number of fundamental results

involving cycles to be extended to infinite graphs. We mention a few such

results now, for use later in this thesis.

A very valuable tool in extending results from finite graphs to infinite

1There is a certain inconsistency here. Following Diestel [11], we use “cycle” to denote
a subgraph stemming from a homeomorphic image of S1. In particular, a finite cycle is a
connected subgraph. On the other hand, a finite bicycle, which is an edge set, does not
need to span a connected graph.
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graphs is the following lemma. We will make use of it in the proof of Theo-

rem 3.2.

Lemma 2.1 (Kőnig’s Infinity Lemma).

Let W1,W2, . . . be an infinite sequence of disjoint non-empty finite sets, and

let H be a graph on their union. For every n ≥ 2 assume that every vertex

in Wn has a neighbor in Wn−1. Then H contains a ray v1v2 . . . with vn ∈ Wn

for all n.

For a proof we refer the reader to [11].

The aforementioned orthogonality between the cycle space and the cut

space of a finite graph generalizes to infinite graphs as follows:

Theorem 2.2 (Diestel & Kühn [12]).

Let F be a set of edges in a locally finite graph G. Then F is an element of

the cycle space of G if and only if it meets every finite cut in an even number

of edges.

In the cut space C∗(G), a result analogous to Theorem 2.2 holds; a proof

can be found in [3].

Lemma 2.3 (Bruhn & Diestel [3]).

Let F be a set of edges in a graph G. Then F is a cut in G if and only if it

meets every finite circuit in an even number of edges.

We will need another property of the topological cycle space:

Theorem 2.4 (Diestel & Kühn [12]).

Every element of the cycle space of a locally finite graph is the (edge-) disjoint

union of circuits.

The following lemma tells us something about the structure in infinite

graphs:

Lemma 2.5 (Star-Comb Lemma).

Let U be an infinite set of vertices in a connected graph G. Then G contains

either a comb with all teeth in U or a subdivision of an infinite star with all

leaves in U .
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In Chapters 5 and 6 we will be concerned with plane graphs.

Theorem 2.6 (Kuratowski 1930; Wagner 1937).

A graph G is planar if and only if it contains neither K5 nor K3,3 as a minor.

This also holds, more generally, for countable graphs (cf. [15]).

The usual drawings of plane graphs seem to be rather insufficient for

infinite graphs. Indeed, several of the expected properties may fail. For

instance, in a 2-connected graph the face boundaries do not need to be cycles.

Moreover, they might even contain only half an edge (for instance, in the

drawing there might be vertices converging against an interior point of an

edge) or no edges at all. All these problems are overcome when, instead of G,

the space |G| is embedded in the sphere. Fortunately, this is not a restriction

at all:

Theorem 2.7 (Richter & Thomassen [23]).

Let G be a locally finite 2-connected planar graph. Then |G| embeds in the

sphere.

While the theorem is formulated for 2-connected graphs, it is not hard to

extend it to graphs that are merely connected. And indeed, we will make use

of the theorem in graphs that are not necessarily 2-connected.

Assuming |G| to be embedded in the sphere S, we call a connected com-

ponent of S \ |G| a face and its boundary a face boundary. It can be seen

that each face boundary consists of a subgraph of G together with a subset

of the ends of G.





Chapter 3

The Tripartition Theorem

In this chapter, as the first of the theorems we will generalize to locally finite

graphs, we will extend Rosenstiehl and Read’s tripartition theorem. Since

the proof is short and because it is worthwhile to see where it breaks down

for infinite graphs, we will start by repeating the proof for finite graphs.

Theorem 3.1 (Rosenstiehl & Read [24]).

Let e be an edge in a finite graph G. Then exactly one of the following holds:

(i) there exists a B ∈ B(G) with e ∈ B;

(ii) there exists a Y ∈ C(G) with e ∈ Y and Y + e ∈ C∗(G);

(iii) there exists a Z ∈ C(G) with e /∈ Z and Z + e ∈ C∗(G).

As mentioned already in Chapter 1, one way of regarding this theorem is

to consider the statement in terms of the cycle space and the cut space. Then

given any edge e in a finite graph G, the edge e either lies in some element

from the intersection of the cycle and the cut space, or e is the symmetric

difference of an element from the cycle space and a cut, but not both. The

latter case then splits into the two symmetric subcases that e either lies in

the cycle space element, or in the cut. When we extend this theorem to the

infinite case in Theorem 3.2, we will assume this viewpoint again. Now, let

us first give the proof for the finite case.

Proof. Assume that there is no bicycle containing e. Recall that for any

X,Y ⊆ E(G) we have X ∗Y = 0 if |X ∩Y | is even, and X ∗Y = 1 otherwise.

15
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Therefore, since C(G)⊥ = C∗(G), we know that

{e} ∈ B(G)⊥ = (C(G) ∩ C∗(G))⊥ = C(G)⊥ + C∗(G)⊥ = C∗(G) + C(G).

On the other hand, if (i) holds, then {e} ∈ B(G) and hence, with the same

reasoning, {e} /∈ B(G)⊥ = C∗(G) + C(G) and therefore neither (ii) nor (iii)

holds.

Finally, assume that both (ii) and (iii) hold and that there exist such Y

and Z. Then e = Y +Y + e and e = Z +Z + e. Thus, Y +Y + e = Z +Z + e

which gives Y +Z = Y + e+Z + e. Since Y +Z ∈ C(G) and Y + e+Z + e =

Y + Z ∈ C∗(G) it follows that Y + Z ∈ B(G). But since e ∈ Y + Z and since

by assumption there is no bicycle that contains e, it follows that Y + Z = ∅

and hence Y = Z. But this is a contradiction, since e ∈ Y and e /∈ Z.

We have seen in Chapter 1 that Theorem 3.1 fails for locally finite graphs

when we consider only the definition of the cycle space stemming from finite

graph theory. Hence, we use the cycle space as defined by Diestel and Kühn

which is applicable to both finite and infinite graphs.

In trying to apply this same proof to infinite graphs we encounter a prob-

lem with the definition of the scalar product. In a finite graph G, for any

finite subsets X,Y ⊆ E(G) we have X ∗ Y = 0 if |X ∩ Y | is even, and

X ∗ Y = 1 otherwise. In a locally finite graph, however, X and Y need not

be finite, so what should the value of X ∗Y be if the edge sets X and Y have

an infinite intersection? Fortunately, we will be able to circumvent this issue

by only using the scalar product for those X,Y ∈ E(G) with |X ∩ Y | < ∞.

A proper concept for orthogonal spaces appears to be more difficult, as how-

ever defined they seem to lose a number of their usual properties. For this

reason, we will make do without them here. We remark that, these prob-

lems notwithstanding, Casteels and Richter [8] introduce orthogonal spaces

in infinite graphs that still retain many of the usual properties.

Remembering that Cfin(G) (and C∗
fin(G) or Bfin(G), resp.) denotes the set
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of all finite edge sets in C(G) (in C∗(G) or in B(G), resp.) let us now state

the tripartition theorem for locally finite graphs.

Theorem 3.2. [5]

Let e be an edge of a locally finite graph G. Then either

(i) there exists a B ∈ B(G) with e ∈ B; or

(ii) {e} ∈ Cfin(G) + C∗
fin(G)

but not both.

Proof. For the proof we will use Kőnig’s Infinity Lemma (Lemma 2.1 from

Chapter 2). To do so, we need to define suitable sets Wi. The idea is to have

sets Wi such that a bicycle in Wn+1 induces a bicycle in the smaller set Wn.

In order to achieve this, we will construct two different sequences of graphs.

For all n, the graphs Gn will simulate the cuts in G, and the graphs G̃n will

on the other hand simulate the cycle space elements of G. For an edge set

to be an element of Wn then, it will be necessary to be in the corresponding

(cut, resp. cycle) spaces of both graphs.

Now, let us start with our construction. We may assume G to be connected

and therefore countable. For each n ∈ N, denote by Sn the set of the first n+1

vertices in some fixed enumeration of the vertices of G that starts with the

endvertices of our given edge e. We define Gn to be the graph G[Sn] induced

by these first n+1 vertices, together with the edges in E(Sn, V (G) \Sn) and

their incident vertices. Let G̃n be the minor of G obtained by contracting the

components of G−Sn (where we keep parallel edges but delete loops). Note

that E(Gn) = E(G̃n), and that by our choice of Sn, we have that e ∈ E(Gn) =

E(G̃n) for every n. By our construction, it holds that C∗(Gn) ⊆ C∗(Gn+1) and

C(G̃n) ⊆ C(G̃n+1). Also observe that C(Gn) ⊆ C(G̃n) and C∗(G̃n) ⊆ C∗(Gn)

hold for all n. Now we let Wn:={B ∈ C∗(Gn) ∩ C(G̃n) : e ∈ B}.

We distinguish two cases. First, assume there exists some N such that

WN = ∅. As e ∈ E(GN) this means that {e} ∈ (C∗(GN ) ∩ C(G̃N))⊥ (where
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we take the orthogonal space with respect to E(GN ), which is a finite vector

space). Since C(GN) ⊆ Cfin(G) and C∗(G̃N) ⊆ C∗
fin(G) it follows that

{e} ∈ (C∗(GN) ∩ C(G̃N))⊥ = C∗(GN)⊥ + C(G̃N)⊥

= C(GN) + C∗(G̃N) ⊆ Cfin(G) + C∗
fin(G)

and hence (ii) holds.

Second, assume Wn 6= ∅ for all n. We will first show that for each K ∈

C∗(Gn+1) it holds that K ∩ E(Gn) ∈ C∗(Gn). Assume that this is not the

case. Let K ′:=K ∩ E(Gn) /∈ C∗(Gn). Since Wn 6= ∅ for all n we know that

there exists some finite circuit Z ∈ C(G̃n) (recall that, by Theorem 2.4, every

element of the cycle space is the disjoint union of circuits). Since K ′ /∈ C∗(Gn)

we know by our observation above that also K ′ /∈ C∗(G̃n). By Lemma 2.3

it then follows that |Z ∩ K ′| is odd. Since Z ⊆ E(Gn) = E(G̃n), we have

Z ∩K ′ = Z ∩K ∩E(Gn) = Z ∩K and therefore, |Z ∩K| is also odd. Since

Z ∈ C(G̃n), again applying Lemma 2.3 yields K /∈ C∗(G̃n) ⊆ C∗(Gn) ⊆

C∗(Gn+1), which is a contradiction.

Similarly, let Z ∈ C(G̃n+1). We will show that the restriction Z ′:=Z ∩

E(G̃n) lies in C(G̃n). Assume that this is not the case. Since for all n

we know that Wn 6= ∅, there exists some finite cut K ∈ C∗(Gn). Again,

since Z ′ /∈ C(G̃n) we use our observation above to see that therefore, Z ′ /∈

C(Gn). Applying Theorem 2.2 we obtain that |Z ′ ∩ K| is odd. Because

K ⊆ E(Gn) = E(G̃n), we have that Z ′ ∩ K = Z ∩ E(G̃n) ∩ K = Z ∩ K and

hence |Z ∩ K| is also odd. Since K ∈ C∗(Gn) applying Theorem 2.2 once

more gives Z /∈ C(Gn) ⊆ C(G̃n) ⊆ C(G̃n+1), which is a contradiction.

Thus we have shown that the restriction of an element from the cut space

of Gn+1 to E(Gn) lies again in the cut space of Gn, and similarly the re-

striction of an element from the cycle space of G̃n+1 to E(Gn) lies again in

the cycle space of G̃n. Hence, it follows that for every B ∈ Wn+1 we have

B∩E(Gn) ∈ Wn. Now, let us define a graph on
⋃∞

n=1 Wn such that B ∈ Wn+1

is adjacent to B′ ∈ Wn if and only if B ∩ E(Gn) = B′. Thus, the conditions

for Lemma 2.1 are satisfied, and we obtain for each n ∈ N a Bn ∈ Wn such
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that Bn+1 ∩E(Gn) = Bn for all n. Then (by definition of the Wn) the union

B:=
⋃

n∈N
Bn contains e.

To see that B is a bicycle, consider a finite cut F in G. Choose N ∈ N

large enough so that F ⊆ E(G̃N). Then it follows that F is a cut in G̃N ,

too. We obtain

B ∗ F = B ∗ (F ∩ E(G̃N )) = (B ∩ E(G̃N )) ∗ F = BN ∗ F = 0,

where the last equality follows since BN ∈ C(G̃N). Since F was chosen

arbitrarily, Theorem 2.2 implies that B ∈ C(G). In a similar way, let Z be a

finite circuit of G. Now let N ∈ N be large enough such that Z ⊆ E(GN).

Then it follows that Z is also a circuit in GN . We conclude

B ∗ Z = B ∗ (Z ∩ E(GN )) = (B ∩ E(GN )) ∗ Z = BN ∗ Z = 0,

where the last equality follows from BN ∈ C∗(GN). Lemma 2.3 then implies

that B ∈ C∗(G). Hence, we have seen that B ∈ C(G) ∩ C∗(G) and therefore,

B ∈ B(G) and (i) holds.

Finally, suppose that there is a B ∈ B(G) with e ∈ B, and some Z ∈

Cfin(G), and K ∈ C∗
fin(G) such that {e} = Z + K. Then, as B is both a cut

and an element of the cycle space, we obtain

1 = {e} ∗ B = (Z + K) ∗ B = Z ∗ B + K ∗ B = 0,

which is a contradiction.

The reader will have noticed that the theorem only divides the edges into

two classes rather than three. We will address this issue at the end of this

chapter.

Casteels and Richter [8] independently proved a complementary result:

Theorem 3.3 (Casteels & Richter [8]).

Let e be an edge of a locally finite graph G. Then either

(i) there exists a B ∈ Bfin(G) with e ∈ B; or
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(ii) {e} ∈ C(G) + C∗(G)

but not both.

It should be noted that Casteels and Richter in fact prove a more general

result of which Theorem 3.3 is but a consequence.

Theorems 3.2 and 3.3 look interestingly similar, the difference being

whether infinite bicycles and only a finite sum of the cycle- and the cut

space are allowed in the theorem, or vice versa. The next lemma gives us a

better understanding of their relation.

Lemma 3.4. [5]

Let G be a locally finite graph. If for an edge e of G any two of the following

conditions hold, then the remaining condition holds as well:

(i) there is a Y ∈ C(G) with e ∈ Y and Y + e ∈ C∗(G);

(ii) there is a Z ∈ C(G) with e /∈ Z and Z + e ∈ C∗(G);

(iii) there is a B ∈ B(G) with e ∈ B.

If all of (i)–(iii) hold for e, then each of Y, Z,B in (i)–(iii) is an infinite set.

The lemma is reminiscent of a theorem by Richter and Shank [22] about

finite surface duals. In fact, our proof uses similar arguments. We mention,

moreover, that all of (i)–(iii) can hold for an edge. In Figure 1.2 we have

already seen that e lies in an infinite bicycle, while in Figure 3.1 we witness

the other two cases.

Proof of Lemma 3.4. First, assume (iii) and one of either (i) or (ii) to hold.

Then, there exists a B ∈ B(G) with e ∈ B and an X ∈ C(G) so that

X + e ∈ C∗(G). Since X + B ∈ C(G), we know that if X contains e (and

hence satisfies (i)), then X + B satisfies (ii); and if, on the other hand, X

does not contain e (and satisfies (ii)), then X + B satisfies (i).

Secondly, assume that (i) and (ii) both hold, and let Y be as in (i) and Z

be as in (ii). Then B:=Y + Z ∈ C(G) since Y, Z ∈ C(G). From the fact that
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e

e

Figure 3.1: (i) and (ii) in Lemma 3.4 both hold for e

B = (Y + e) + (Z + e) it follows that B is also a cut. Finally, since e ∈ Y

but e /∈ Z, we know that e ∈ B.

For the second part of the lemma, assume that (i)–(iii) all hold for e, and

let e ∈ B ∈ B(G). By (the trivial part of) Theorem 3.3, it follows that

B cannot be finite. On the other hand, Y and Z as in (i) resp. (ii) need

to be infinite sets, too, since otherwise this would yield a contradiction to

Theorem 3.2.

Rosenstiehl and Read’s theorem partitions the edges of a finite graph into

three classes. So far, our theorem yields only two classes. So, let us refine

Theorem 3.2. For this, we say that an edge e in a locally finite graph G is of

cut-type if there is a finite cut K containing e so that K \ {e} ∈ C(G). We

say that e is of cycle-type if there is a finite element Z of the cycle space with

e ∈ Z and Z \ {e} ∈ C∗(G). (Note that although we use the term cycle-type

and Z is an element of the cycle space, it need not be a circuit itself.) Now

the following immediate corollary of Lemma 3.4 turns Theorem 3.2 into a

true tripartition theorem:

Corollary 3.5. [5]

No edge in a locally finite graph can be of cut-type and of cycle-type at the

same time.

We should point out that it is possibly a bit misleading to denote the set

of all cuts in G by C∗(G), since it might give the impression that it is the

dual space of C(G). That, however, is not the case. Rather, Theorem 2.2
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shows that, at least in some sense, C(G) and C∗
fin(G) are dual to each other.

On the other hand, the dual space of C∗(G) is Cinf(G), see for instance [3].

In this respect, our bicycle space B(G) is situated between these two

dualities. The graph in Figure 1.2, among other examples, indicates that

this is nevertheless justified since in order to make the tripartition theorem

work for infinite graphs, whether it is in the form of Theorem 3.2 or in the

form of Theorem 3.3, we need both spaces, C(G) and C∗(G).



Chapter 4

Principal Cuts

At the end of the last chapter, we saw that if in a locally finite graph G there

is no bicycle that contains an edge e, then e is either of cycle- or of cut-type;

in which case there exists by definition a Z ∈ Cfin(G) so that Z + e ∈ C∗(G).

We call Z a principal cycle of e and Z + e a principal cut of e. In this

chapter, we demonstrate how the properties of principal cuts translate from

finite graphs to locally finite graphs.

If G is a pedestrian graph, ie. a graph for which B(G) = {∅}, then every

edge must be either of cycle- or of cut-type. In this case, we have the note-

worthy property that the principal cuts in G are unique. To see this, let K

and K ′ be two principal cuts for e. Hence, K and K ′ ∈ C∗(G) with K + e

and K ′ + e ∈ C(G). Thus, K + K ′ = K + K ′ + e + e = (K + e) + (K ′ + e) ∈

C(G)∩C∗(G) = B(G), which implies that K = K ′, since B(G) = {∅}. There-

fore, given a pedestrian graph, we denote the principal cut of an edge e by

Ke and the principal cycle by Ze.

We need the following lemma, whose statement and proof are direct ex-

tensions of the finite case which appears in Rosenstiehl and Read [24].

Lemma 4.1. [5]

Let e and f be edges in a locally finite pedestrian graph G. Then:

(i) e ∈ Zf if and only if f ∈ Ze; and

(ii) e ∈ Kf if and only if f ∈ Ke.

23
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Proof. To prove (i) consider

{e} ∗ Zf = (Ze + Ke) ∗ Zf = Ze ∗ Zf + Ke ∗ Zf = Ze ∗ Zf

= Ze ∗ Zf + Ze ∗ Kf = Ze ∗ (Zf + Kf ) = Ze ∗ {f}.

This holds using the fact that Cfin(G) = C∗⊥
fin (G) and C∗

fin(G) = C⊥
fin(G). As-

sertion (ii) is shown analogously:

{e} ∗ Kf = (Ze + Ke) ∗ Kf = Ze ∗ Kf + Ke ∗ Kf = Ke ∗ Kf

= Ke ∗ Zf + Ke ∗ Kf = Ke ∗ (Zf + Kf) = Ke ∗ {f}.

Note that all these scalar products are well-defined since the Ze and Ke

are finite sets.

We note that Lemma 4.1 remains true in non-pedestrian graphs; Ze (resp.

Zf ) is then simply any principal cycle through e (resp. f), since there is no

longer a unique one. And similarly, this also holds for Ke and Kf .

Proposition 4.2. [5]

In a locally finite pedestrian graph G both of the families (Ze)e∈E(G) and

(Ke)e∈E(G) are thin.

Proof. Recall that a family of subsets of, for example, E(G) is thin when

no edge appears in infinitely many of its members. So suppose that this is

not the case, ie. there is an edge e lying in infinitely many Zf . Since G is

a pedestrian graph, e must be of cycle- or of cut-type and Ze is therefore

defined. Thus, Lemma 4.1 implies that also f ∈ Ze for all these infinitely

many f , contradicting the fact that Ze is finite. It follows that (Ze)e∈E(G) is

thin.

Similarly, assume that the family of principal cuts is not thin. Then again,

we have an edge e that is part of infinitely many Kf . Since e must be either

of cycle- or of cut-type, we know that Ke is defined. With Lemma 4.1 it then



25

follows that f ∈ Ke for all these infinitely many f , which contradicts the fact

that Ke is finite. Hence, (Ke)e∈E(G) is thin.

For an edge e to be of cycle- or of cut-type we have required that there is

a finite Z ∈ C(G) with Z + e ∈ C∗(G). In light of Theorem 3.3, one could

also very reasonably relax this requirement and say that an edge is of cycle-

or of cut-type if there is any such Z, be it finite or infinite. A pedestrian

graph, then, would be one without any finite bicycles, since this is precisely

the case when all edges are of cycle- or of cut-type.

There are several problems with this definition. We have already seen (in

Figures 1.2 and 3.1) that this would not give a proper tripartition. Further-

more, principal cuts in a pedestrian graph would not necessarily be unique

and their family may not be thin. For instance, the cuts of the type indicated

in the lower graph in Figure 3.1 would form a non-thin family of principal

cuts.

The following corollary extends some basic properties of principal cycles

and cuts. The proofs of these results for finite graphs use the finiteness

substantially only in one point, namely that it is allowed to take arbitrary

sums of principal cuts. While this is never an issue in finite graphs, such

sums may be infinite in infinite graphs and then need to be thin in order to

be well-defined. But with Proposition 4.2 this is the case, and we can extend

these properties to locally finite graphs:

Corollary 4.3. [5]

Let G be a locally finite pedestrian graph. Then

(i) the union of all cycle-type edges is an element of the cycle space; and

(ii) the union of all cut-type edges is a cut; and

(iii) (Ze)e∈E(G) generates the cycle space; and

(iv) (Ke)e∈E(G) generates the cut space.
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Proof. For (i) and (ii), we follow Godsil and Royle [16] closely.

For showing (i), we know that, since G is pedestrian, every edge e of G

must be either of cycle- or of cut-type, and there exist unique Ze ∈ C(G) and

Ke ∈ C∗(G) such that e = Ze + Ke.

Let Z:=
∑

e∈E(G) Ze and K:=
∑

e∈E(G) Ke (which are well-defined by

Proposition 4.2). Clearly, we know that Z ∈ C(G) and K ∈ C∗(G). Then it

holds that

E(G) =
∑

e∈E(G) e = Z + K. We will use this fact in the following equation:

Ze ∗ {e} = Ze ∗ {Ze + Ke} = Ze ∗ Ze + Ze ∗ Ke = Ze ∗ Ze = Ze ∗ E(G)

= Ze ∗ (Z + K) = Ze ∗ Z + Ze ∗ K = Ze ∗ Z = (e + Ke) ∗ Z

= {e} ∗ Z + Ke ∗ Z = {e} ∗ Z,

where Ze ∗ K = 0 follows from applying Lemma 2.3 to the finite cycle space

element Ze and K ∈ C∗(G). Similarly, Ke ∗ Z = 0 holds by Theorem 2.2 for

the finite cut Ke and Z ∈ C(G).

Since Ze ∗ {e} = 1 if and only if e is of cycle-type, it follows also that

{e} ∗ Z = 1 if and only if e is of cycle-type, which means that the elements

of Z are exactly the edges of cycle-type, and hence their union is an element

of the cycle space. We note that all of the above scalar products are well-

defined, since the sets Ke and Ze are finite.

Similarly, for (ii), we can deduce that

Ke ∗ {e} = Ke ∗ {Ze + Ke} = Ke ∗ Ze + Ke ∗ Ke = Ke ∗ Ke = Ke ∗ E(G)

= Ke ∗ (Z + K) = Ke ∗ Z + Ke ∗ K = Ke ∗ K = (e + Ze) ∗ K

= {e} ∗ K + Ze ∗ K = {e} ∗ K,

where again Ke ∗ Z = 0 and Ze ∗ K = 0 by the above argument. Here too,

Ke ∗ {e} = 1 if and only if e is of cut-type, and hence {e} ∗K = 1 if and only

if e is of cut-type, which means that the elements of K are exactly the edges

of cut-type, and thus, their union is a cut.

The proof of the finite case for (iii) and (iv) can be found in Rosenstiehl
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and Read [24].

To see (iii), let ZA:=
∑

e∈A Ze and KA:=
∑

e∈A Ke. Then ZA and KA are

well-defined since the families (Ze)e∈E(G) and (Ke)e∈E(G) are thin. Thus,

ZA + KA:=
∑

e∈A

Ze +
∑

e∈A

Ke =
∑

e∈A

(Ze + Ke) =
∑

e∈A

e = A

where all sums are thin and hence well-defined. From (i) and (ii) we know

that ZA ∈ C(G) and KA ∈ C∗(G). Now, let any nonempty C ∈ C(G) be

given. Then C = ZC + KC which yields C + ZC = KC . Since C and ZC

both lie in C(G), and C(G) is closed under taking thin sums, we know that

also C + ZC ∈ C(G). Since, on the other hand, KC ∈ C∗(G), from B = {∅}

it follows that KC = ∅ and therefore C = ZC =
∑

e∈C Ze. Hence C is a sum

of principal cycles Ze, and thus (Ze)e∈E(G) generates the cycle space.

In a similar way, to show (iv), let F be a nonempty cut in G. Then

F = ZF + KF , and hence F + KF = ZF . Since F and KF are both cuts

in G, and ZF ∈ C(G), we have that ZF = ∅ and thus F = KF =
∑

e∈F Ke.

Therefore F is a sum of principal cuts Ke, and so (Ke)e∈E(G) generates the

cut space.





Chapter 5

Left-Right Tours

In Chapter 1 we already introduced left-right tours in finite graphs, albeit in

an intuitive sense. Given a finite plane graph G, we start at any edge e = uv,

traverse it in the direction of one of its endpoints, say v, ‘turn left’ at v

(meaning we choose the leftmost edge at v), traverse along that edge, ‘turn

right’ at the end of that edge and continue like this, alternately turning left

and right. We stop when we reach an edge that we have already traversed

and when we are about to traverse it again in the same direction and would

make the same (left or right) turn again at its endpoint. That way, we obtain

a closed walk in G.

How can we sensibly generalize this to infinite plane graphs? The challenge

is that we have to avoid getting ‘lost’ in an end. In locally finite graphs, we

do not necessarily return to an edge we have already traversed in the same

direction and with the same left/right parity. We could traverse infinitely

many edges, steering towards an end. This is why we will first introduce

left-right strings, meaning we pick an arbitrary edge and traverse it in the

familiar left-right fashion. We do the same for the other direction from our

starting edge and maximally extend both sides. We will see that this gives

either a closed and finite left-right tour, or a two-way infinite left-right string.

Two examples are illustrated in Figure 5.2.

In general, the two ends of a left-right string will not be identical, and

hence they do not form a closed walk. So in order to obtain something

resembling a left-right tour in a locally finite graph, we will glue together

several left-right strings to form a closed walk. This shall give us a topological

29
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tour in |G| which is therefore closed, and locally it has the property of being

‘left-right’. Unfortunately, we will generally have more than two left-right

strings per end. So which ones should we pick to construct our infinite left-

right tour?

Another way of viewing a left-right string is that after traversing an even

number of edges from our starting point, we turn right, and if, on the other

hand, we have traversed an odd number of edges, we will turn left. This kind

of parity information gets lost in the ends. So are there certain left-right

strings that fit together while others do not?

Now let us introduce these concepts formally. In order to define left-right

strings, we need to describe what it means to do a ‘left’ turn followed by a

‘right’ turn. We will follow the treatment in [18] and [19].

Let G be a locally finite graph, and let |G| be embedded in the sphere S.

Recall that by Theorem 2.7, every locally finite planar graph has such an

embedding. The interior of an edge of G is homeomorphic to the open unit

interval (0, 1). For each edge e, we fix a homeomorphism. Then, without loss

of generality, let η1 denote the image of the restriction of this homeomorphism

to (0, 1
2
) and let η2 be the image of the restriction to (1

2
, 1). Let us call η1 and

η2 the halves of e. We will use the notation η1 = η2 and η2 = η1 to switch

back and forth between the two halves of an edge. Furthermore, we fix for e

two open, disjoint and connected subsets, σ1 and σ2, of S \ |G| each of which

has e in its boundary. We call these the sides of e, and as for the halves, we

put σ1 = σ2 and σ2 = σ1. Now, a triple (e, η, σ), where e ∈ E(G), η is a half

of e, and σ is a side of e, is called a corner of |G|. We say that c = (e, η, σ) is

a corner at e, and it is a corner at v ∈ V (G) if the boundary ∂η contains v.

Clearly, for each edge e there are four corners at e.

For every v ∈ V (G) we choose an open disc D around v, so that each

half of an edge at v intersects ∂D in exactly one point. Then ∂D defines

in a natural way a rotation of the halves. We say that two corners (e, η, σ)

and (e′, η′, σ′) at v are matched if η and η′ appear consecutively in the local

rotation at v, and if the connected component K of σ ∩D with η ∩D ⊆ ∂K

and the connected component K ′ of σ′ ∩D with η′ ∩D ⊆ ∂K ′ are contained
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in the same connected component of D \ |G|. We note that this definition is

independent of the actual choice of D. Figure 5.1 gives an illustration.

σ

c’
c

η″

σ″

c"σ′

σ″

η
η′

D

__

Figure 5.1: We think of a corner c = (e, η, σ) at v ∈ V (G) as a point
close to v and η, and lying in σ. The corners c and c′ = (e′, η′, σ′) are

matched; the corners c and c′′ describe a left-right step.

The reason for introducing corners is that they are very suitable when

trying to describe a left-right step. So, now we are ready to define some

objects with a left-right structure.

Let W = . . . (e−1, η−1, σ−1), (e0, η0, σ0), (e1, η1, σ1) . . . be a (finite, one-way

infinite or two-way infinite) sequence of corners satisfying the following prop-

erties:

(i) (ei, ηi, σi) and (ei+1, ηi+1, σi+1) are matched for all i; and

(ii) no corner appears twice in W .

Then such a sequence W is called a left-right walk, which is justified by the

fact that the edges . . . e−1e0e1 . . . do indeed form a walk. Moreover, we will

sometimes pretend that a left-right walk is in fact a walk, ie. a sequence of

vertices and edges, rather than a sequence of corners. As an example, the

corners c and c′′ in Figure 5.1 describe a left-right step as in (i).

We say that S is a left-right string (LRS for short) if

it is a maximal left-right walk. It is not hard to check

that if S = . . . (e−1, η−1, σ−1), (e0, η0, σ0), (e1, η1, σ1) . . . then

S ′:= . . . (e1, η1, σ1), (e0, η0, σ0), (e−1, η−1, σ−1) . . . is an LRS, too. In fact,

the walks S and S ′ traverse the same edges, but in opposite directions.

Although we will sometimes view S as an oriented walk, we will, in general,
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not distinguish between S and S ′ and consider them to be identical. This

slight abuse of notation ensures that just as in the finite case, every edge is

covered exactly twice by LRSs, as we will see in the next lemma. Figure 5.2

gives an example of two different LRSs in the double ladder.

Figure 5.2: Two LRSs in the double ladder

Let us say that a set of walks W is a double cover of G if every edge e ∈

E(G) is traversed exactly twice by walks in W (ie. either once in two walks

or twice in one walk).

Lemma 5.1. [5]

For a locally finite graph G, let |G| be embedded in the sphere. Then:

(i) No two corners in an LRS are matched.

(ii) An LRS is either a closed walk or a two-way infinite walk.

(iii) The set of all LRSs of G is a double cover of G.

Proof. For (i), let us assume this is not the case and we have an LRS S with

two corners c0 = (e0, η0, σ0), d0 = (f0, θ0, τ0) such that c0 and d0 are matched.

Then, by the definition of an LRS, there exists a corner c1 = (e1, η1, σ1) of S

such that (e0, η0, σ0) and (e1, η1, σ1) are matched, and similarly there is d−1 =

(f−1, θ−1, τ−1) of S such that (f0, θ0, τ0) and (f−1, θ−1, τ−1) are also matched.

Inductively we obtain sequences of corners {ci}i and {di}i with i ∈ Z that

each describe left-right steps. Since c and d are both corners of S, then so

are {ci}i and {di}i for all i. Thus, since every successive pair or corners in an

LRS describes a left-right step, there exist some i, j such that (without loss

of generality) dj is the successor of ci. Hence, (ei, ηi, σi) and (fj, θj, τj)are

matched. But (ei, ηi, σi) is already matched with (ei+1, ηi+1, σi+1). Thus,

ci = dj and inductively this holds for any appropriate ck, dl. It follows that

c0 = d0 which contradicts the definition of left-right walk.
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To see (ii), we assume that we have an LRS S = . . . c−1c0c1 . . . cn that is

not a two-way infinite walk. Then we have (at least) one ‘last’ corner cn =

(en, ηn, σn) ∈ S (meaning that cn has no successor). Since an LRS is maximal

by definition, (en, ηn, σn) is either already matched with some cj ∈ S, or

(en, ηn, σn) = ck ∈ S for some k. Let us consider the first case, ie. the

corners (en, ηn, σn) and cj are matched. Then cn = cj−1 by definition, and

it follows inductively that cn−i = cj−1−i. Therefore, S is closed and hence

finite. Else, let (en, ηn, σn) = ck ∈ S for some k. If S is not closed, ck has

a successor ck+1 in S, and ck+1 and cn are also matched, which are both

corners of S. But by (i), no two corners in S can be matched, thus we obtain

a contradiction.

To show (iii), we enumerate the edges of the graph G (which is locally

finite and hence countable). To obtain a double cover, let us start with the

first edge and start an LRS in any corner at this edge. As long as some edge

of G is not covered twice yet, let us always pick the smallest such edge (in

our enumeration), pick an uncovered corner at e and start a new LRS there.

The set of LRSs we obtain this way clearly covers every edge at least twice.

Every edge has four corners, two of which always induce the same LRS by

definition (since if one of them is contained in an LRS, then the other one is

matched to the predecessor or successor of it). Thus, every edge can occur

in at most two LRSs. Altogether, we know that every edge occurs in exactly

two LRSs (which may not necessarily be distinct). Therefore, the set of all

LRSs forms a double cover of G.

Let us note that since we used corners to define LRSs and LRTs, the

statement (iii) also holds in degenerate cases. Consider for example a double

ray. Then there exist exactly two (different) LRSs (forming an LRT), and

they form a double cover of the edge set. We consider these LRSs distinct,

since their corner sequences are distinct. But they both traverse the double

ray from one end to the other and are indistinguishable as sequences of edges.

Simply to avoid confusion, let us remark that this is not the same case as

discussed earlier, where an LRS S ′ is considered identical to S. There, the
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corner sequences differed, but only because they described the same LRS

being traversed in two different directions. Two of the four corners at an

edge always induce the same LRS in different directions. In our example of

the double ladder, however, we obtain two LRSs each of which is induced

(independently) by two corners at an edge, but these corners differ for the

two distinct LRSs.

Now that we have formalized left-right structures, let us consider tours in

locally finite graphs. As mentioned in Chapter 2, in a locally finite graph G

(not necessarily planar), a tour T in |G| is a continuous map T : S1 → |G|

that is locally injective at every x ∈ S1 for which T (x) is an interior point

of an edge. We remark that therefore, every edge with an interior point in

the image of T , which we denote by rge T , is completely contained in rge T .

We denote the set of all edges that lie in rge T by E(T ). This requirement is

sensible and necessary because we now operate in the topological space |G|

as opposed to the graph G. Hence, we need to ensure that a tour cannot

‘turn around’ in the middle of an edge. The residue △T of a tour T is the

symmetric difference of the edges it contains, and is therefore the set of those

edges that are traversed exactly once by T .

At long last we are able to extend the definition of left-right tours to

infinite graphs. Assume that |G| is embedded in the sphere. Our aim is to

define an LRT as a set of LRSs that are glued together at ends such that

they constitute a tour in |G|. An example would be the two LRSs shown in

Figure 5.2 together with the two ends of the double ladder.

Formally, we define a left-right tour L in |G| (LRT for short) to be a tuple

(S, τ) where S is a set of LRSs of G and τ : S1 → |G| a tour of |G|, such

that each maximal subwalk of τ (in G, not in |G|) corresponds to one S ∈ S

and vice versa. Usually, however, we will think of L as being a tour in |G|,

and say that an LRS S lies in L if S ∈ S. When we speak of an LRT in G,

we refer to L ∩ G.

Having defined LRTs, we are now able to extend the next theorem to

locally finite graphs, ie. we will show that the residue of an LRT is always a

bicycle. In finite graphs, this is due to Shank:
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Theorem 5.2 (Shank [25]).

If G is a finite plane graph, then the residue of a left-right tour is a bicycle.

In the finite case, Theorem 5.2 is proven using plane duals. Unfortunately,

a suitable theory of plane duality involving also infinite cycles has yet to

be formulated. Therefore we will circumvent this obstacle by reducing the

problem to finite graphs. The main construction for this lies in the proof of

the following lemma.

The idea is that given a locally finite plane graph G with a set of LRTs Li,

and given a finite subgraph H of G, we will look at the pieces of those LRTs

in H and try to connect these finite pieces using only finitely many vertices

and edges (outside of H). We want to do this in such a way that the obtained

finite LRTs L′
i simulate the infinite LRTs of G, meaning that locally, on H,

the infinite Li and the assembled finite pieces L′
i will behave in the same way.

Lemma 5.3. [5]

For a locally finite graph G, let |G| be embedded in the sphere. Let L1, . . . , Lk

be a set of LRTs of G so that no LRS of G lies in more than one Li, and let H

be a finite plane subgraph of G. Then there exist a finite plane supergraph H ′

of H and a set L′
1, . . . , L

′
k of LRTs of H ′, so that the LRT Li traverses

precisely the edges e1, . . . , en of H and in this order if and only if L′
i does,

for all i = 1, . . . , k.

Proof. From the given finite plane subgraph H of G we will construct a finite

plane supergraph H ′ of H (which will not necessarily be a subgraph of G)

with the required properties. We may assume H to be induced. Each Li

decomposes in H into a set of walks. Our aim is to draw in the faces of H

finite graphs so that the subwalks in the set Li ∩ H connect up in the same

order as in G (for all i). Since this will be done in the same way in every

face, we may assume in what follows that all of G − H is contained in one

face.

Since we only worry about the LRTs, let us denote by F those edges in the

cut E(H,G − H) that lie in some Li, and find in the one face that contains
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G − H an open disc D so that each edge in F meets ∂D in its interior. For

every edge e in F , traversing along e from H towards G−H we pick the first

point, say x, in ∂D and cut off the edge at x. We draw a new vertex at x and

let the set of these x be X. Next, let us denote by H0 the finite plane graph

consisting of H together with the cut-off edges in F , including the vertices

in X. While, technically, F is a subset of E(G), we will view it as a subset

of E(H0), too.

Now consider an LRT L, and let S be the set of those LRSs that lie in

L (here, of the two orientations of an LRS S ∈ S, we pick the one that is

induced by L). In order to properly connect up the finite pieces of L that

lie in H, we need to consider the respective corners. So let KL be the set of

corners of L, or, more precisely, KL:=
⋃

S∈S S. We will also need to remember

in which order the LRSs S ∈ S were traversed in L, but since L induces a

cyclic ordering on its LRSs, it also does so on KL. Furthermore, we let M be

those of the corners in
⋃k

i=1 KLi
that are corners at edges in F . Then each

corner in M, which is a corner in G, corresponds to a corner in H0. For the

sake of simplicity, we will not distinguish between these two and, depending

on the context, view M as a set of corners either in G or in H0. Corners in

M come in two kinds: either they are outgoing corners, ie. corners at vertices

in V (H), or they are ingoing corners, ie. corners at vertices in X.

When we construct the finite subgraph that connects up the finite pieces

of our LRTs Li in H, we will need to know which piece to connect with

which other one. Our aim is to connect those pieces that lie in the same

LRT Li in G, and to connect them in the same order as they appear in Li.

So let us construct a pairing of the corners in M. For each i, we arbitrarily

pick an outgoing corner c1 in M ∩ KLi
. Then, let c1, . . . , cl be the corners

in M ∩ KLi
in the cyclic order of KLi

(which is induced by Li). We need

to pair up consecutive corners, but we need to make sure that we do this

in a way that will replace the infinite part of Li with a finite subgraph, as

opposed to replacing the part of Li that is contained in H. We know that

since Li is a tour, l is even and for each odd j the corner cj is outgoing, while

the corner cj+1 is ingoing. Hence, we need to start with c1 and then pair up
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consecutive corners: {c1, c2}, . . . , {cl−1, cl} ∈ P. For later use, we note that

if {c, c′} ∈ P, then one of c, c′ is outgoing and one is ingoing. (5.1)

Now our task is to find finite left-right walks between the two corners of every

pair {c, c′} ∈ P. The definition of P then ensures that for each i the order

of the corners in KLi
within H is maintained.

For every corner c ∈ M we will construct a sequence of left-right

walks Kj(c). To begin, let K0(c):=(c) for every c, so K0(c) is a walk of

length one, which traverses an edge in F . To simplify the construction in

the next steps we will, with the help of a suitable homeomorphism, identify

D with (0, 3)× (0, 1) ⊆ R
2, where all the vertices in X are assumed to lie in

the segment {0} × (0, 1); see Figure 5.3.

Next, we want to extend our walks K0(c) to walks K1(c) for every c. We

pick m:=|M| distinct points x1
1, . . . , x

1
m in {1} × (0, 1), where we choose the

labeling so that x1
j has a smaller y-coordinate than x1

j+1 for all j. We consider

these points to be vertices and draw non-crossing edges in (0, 1) × (0, 1) in

order to join each x1
j to a vertex w in X so that w receives one edge if its

incident edge in F is only traversed once by the L1, . . . , Lk; otherwise (when

the edge is used twice) we make w adjacent to two of the x1
j . In this way we

obtain a plane supergraph H1 of H0 in which each vertex in x1
1, . . . , x

1
m has

degree one.

Now consider a corner c = (e, η, σ) ∈ M. Assume first that c is an

outgoing corner. If (e, η, σ) is matched with the corner c′:=(e′, η′, σ′) (in

H1) we lengthen K0(c) along the edge e′ in order to obtain the left-right

walk K1(c), that is, we let K1(c):=(c, c′). Otherwise, let c be an ingoing

corner. If c is matched with (e′′, η′′, σ′′) (in H1), we precede the edge e in

K0(c) by e′′ to get K1(c), ie. we put K1(c):=((e′′, η′′, σ′′), c). (Observe that

in this case, the walk is directed towards H, and hence we have to lengthen

it in the backward direction.) In this way, we define left-right walks K1(c)

for all c ∈ M, so that each vertex in x1
1, . . . , x

1
m is used by a unique K1(c),

and this K1(c) either starts or ends in that vertex.



38 Left-Right Tours

H1
H4

s2
x2

s2
2x +1 s2

3x +1

s2
x3

0 1 2 3

0

1

D

1

2

3

H’

u w

1

2

3

Figure 5.3: The construction of the Hi (not to scale). Corners with
the same number are supposed to be paired.

The idea now is to proceed as follows: We would like to further extend

the walks K1(c) in such a way that, eventually, they will connect corners c, c′

that belong to the same pair in P . Since there may be other corners between

c and c′ in {1} × (0, 1), we will need to permute the vertices x1
1, . . . , x

1
m.

We will achieve this with a sequence of transpositions, which we will call

flips, such that after t steps, in {t̃} × (0, 1) (for some 1 ≤ t̃ ≤ 2) every

vertex xt+1
k (which will be defined in a moment) will lie next to the vertex

its paired corner belongs to. For this, we will construct a sequence of finite

graphs H2, H3, . . . , Ht+1, H
′ that will allow us to make these flips and still

remain planar and, even more, that will later allow us to connect the pieces

of an LRT Li in H such that the resulting walk is still left-right.

So, let us construct finitely many supergraphs Hi of H1 with corresponding

left-right walks Ki(c) ⊇ K1(c) for c ∈ M. These supergraphs H1 ⊂ H2 ⊂

. . . ⊂ Ht+1 will be nested and plane, and such that Hi\Hi−1 is entirely drawn

in (a, b] × (0, 1) for some 1 ≤ a < b < 3 (we will determine the respective a

and b in a moment). The intersection of Hi with {b} × (0, 1) will consist of
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m vertices. In the order we encounter them on {b} × (0, 1) going from (b, 0)

to (b, 1) we will denote these by xi
1, . . . , x

i
m. For each j = 1, . . . ,m there will

then be a unique corner pi
j ∈ M so that the left-right walk Ki(pi

j) either

starts or ends in xi
j (and is otherwise disjoint from xi

1, . . . , x
i
m).

Let (p1, . . . , pm) be a permutation of M. For the rest of the proof let us

call a flip at s ∈ {1, . . . ,m − 1} the operation that turns (p1, . . . , pm) into

(p1, . . . , ps−1, ps+1, ps, ps+2, . . . , pm). Clearly, for some t there is a sequence of

t flips at s1, . . . , st that turns (p1
1, . . . , p

1
m) into (q1, . . . , qm) such that for each

odd j ∈ {1, . . . ,m} it holds that {qj, qj+1} ∈ P.

Our goal now is to define Hi+1, for i ∈ {1, . . . , t}, in such a way that

(pi+1
1 , . . . , pi+1

m ) is obtained from (pi
1, . . . , p

i
m) by performing a flip at si. More-

over, with the exception of the points xi+1
1 , . . . , xi+1

m , we will draw Hi+1 \ Hi

in (1 + i−1
t

, 1 + i
t
) × (0, 1) for all i > 1. Let us assume H1, . . . , Hi to be

already constructed. We put m distinct vertices xi+1
1 , . . . , xi+1

m (in this or-

der) on the segment {1 + i
t
} × (0, 1). First, for each j ∈ {1, . . . ,m} with

j 6= si, si + 1, draw a straight line between xi
j and xi+1

j . We thus extend

Ki(pi
j) to a left-right walk Ki+1(pi

j) along the edge xi
jx

i+1
j . Now, consider

the vertices xi
si

and xi
si+1. We draw an edge uw in (1 + i−1

t
, 1 + i

t
) × (0, 1)

so that no crossing edges arise when we connect u to xi
si

and xi
si+1, and w to

xi+1
si

and xi+1
si+1. If necessary (meaning, if the left-right walk would be on the

‘wrong’ side of xi
si
u in order to traverse uw), we subdivide the edge xi

si
u to

guarantee the existence of a left-right walk from xi
si

through uw to xi+1
si+1 (that

is disjoint from xi
si+1). Now we can extend Ki(pi

si
) by this walk to a left-right

walk Ki+1(pi
si
), and we proceed in an analogous way for Ki(pi

si+1). This en-

sures that (pi+1
1 , . . . , pi+1

m ) is indeed obtained from (pi
1, . . . , p

i
m) by performing

a flip at si.

Finally, completing our construction, let all the Hi up to Ht+1 be defined.

Then every two vertices xt+1
j and xt+1

j+1 for odd j belong to corners forming a

pair in P . So it only remains to connect them properly. For each odd j in

{1, . . . ,m}, we draw an edge in (2, 3)× (0, 1) that joins xt+1
j to xt+1

j+1. Subdi-

viding xt+1
j xt+1

j+1 if necessary, we can join Kt+1(pt+1
j ) by this (possibly subdi-

vided) edge to Kt+1(pt+1
j+1), so that the resulting walk Kt+1(pt+1

j )Kt+1(pt+1
j+1)
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is left-right (here, (5.1) ensures that the corner sequences fit with respect to

orientation).

Now, let H ′ be the graph Ht+1 joined with the possibly subdivided edges

in (2, 3) × (0, 1). Then, by construction of the pairing P , it is ensured that

the resulting LRTs L′
i in the plane graph H ′ are indeed left-right tours, and

behave on H in the same way as the Li do.

The following lemma lists some properties of our above construction. We

will not need these properties until later, in Chapter 7, but since their proofs

involve an understanding of the details of the proof of Lemma 5.3, we show

them here.

Lemma 5.4.

For a locally finite graph G, let |G| be embedded in the sphere. Let a set

L1, . . . , Lk of LRTs of G, a finite plane subgraph H of G, a finite plane super-

graph H ′ of H and a set L′
1, . . . , L

′
k of LRTs of H ′ be given as in Lemma 5.3.

Then the following properties hold:

(i) The set {L′
1, . . . , L

′
k} of LRTs of H ′ extends to a double cover

{L′
1, . . . , L

′
k, . . . , L

′
l} of LRTs of H ′ such that it still holds that the

LRT Li traverses precisely the edges e1, . . . , en of H and in this order

if and only if L′
i does, for all i = 1, . . . , k.

(ii) If C is a cycle of G, and if E(C) ⊆ E(H), then C is also a cycle of H ′.

(iii) If F is a cut in G, and if E(F ) ⊆ E(H), then F is also a cut in H ′.

Proof. To see (i), let us construct a double cover of LRTs of H ′. We start with

the given LRTs L′:=L′
1, . . . , L

′
k, and as long as any edge of H ′ is not covered

twice by LRTs in L′ yet, we start a new LRT on the uncovered side of that

edge and add it to the set L′. Since H ′ is finite, this is easily done, and the

property that every LRS lies in at most one LRT is trivially preserved. Hence

the set {L′
1, . . . , L

′
k, . . . , L

′
l} of LRTs is a superset of the original LRTs L′, and

clearly it still holds that the LRT Li traverses precisely the edges e1, . . . , en

of H and in this order if and only if L′
i does, for all i = 1, . . . , k.
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For (ii) it can easily be seen that if C is a cycle of G with E(C) ⊆ E(H),

then C is also a cycle of H. Since H ⊆ H ′, it follows that C is a cycle in H ′

as well.

To show (iii), let a (necessarily finite) cut F in G be given such that

E(F ) ⊆ E(H). Since F is a cut in G, it induces a partition V (G) = A ·∪B

on its vertex set. Since H is a subgraph of G, it holds that F is a cut in H as

well. For the purpose of contradiction, let us now assume that F is not a cut

in H ′. Thus, there exists a (necessarily finite) A–B path P in H ′ that does

not meet F . Since F is also a cut in H, we know that P is not completely

contained in H. Hence, there exists a subpath P ′ of P with E(P ′) ⊆ E(H ′).

Let P ′ be inclusion-maximal with this property. Now let a′, b′ be the first

and last vertices of P ′, and let a and b be their neighboring vertices on P , ie.

we have that a, b ∈ V (H).

Since P ′ is completely contained in H ′ \H, it arose from the construction

in the proof of Lemma 5.3. Thus, there are corners ca, c
′
b at P such that ca

is a corner at the vertex a and c′b is a corner at the vertex b′ or vice versa, ie.

ca is a corner at a′ and c′b is a corner at b, and furthermore, the corners ca, c
′
b

constitute a pair in the pairing P from the proof of Lemma 5.3. Without

loss of generality, let ca be outgoing, and c′b be ingoing; thus {ca, c
′
b} ∈ P.

Let c′b = (e, η, σ) and let cb be the corner at the vertex b that is matched

with (e, η, σ). Then ca and cb are corners at some common LRT L in G, and

between their occurrences, the LRT L is disjoint from H.

Thus, there exists some (topological) a–b path Q in G that does not meet

H, except for its endpoints. Hence, E(Q)∩E(H) = ∅. Since F ⊆ E(H), we

know that E(Q)∩F = ∅ as well. Therefore, Q is an a–b path in G that does

not meet the cut F , which is a contradiction. Hence, F is a cut in H ′, which

completes the proof.

With the help of Lemma 5.3 we are now ready to prove Shank’s theorem

for locally finite graphs.
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Theorem 5.5. [5]

For a locally finite graph G, let |G| be embedded in the sphere. Then the

residue of a left-right tour in |G| is a bicycle.

Proof. Let L be an LRT in |G|. In order to prove that △L is a bicycle, we

have to show that it lies in both the cycle space and the cut space of G. So,

let us first show that △L ∈ C(G). For this, let F be a finite cut in G. As a

tour, L passes an even number of times through F . Therefore, |△L ∩ F | is

even and it follows by Theorem 2.2 that △L is an element of the cycle space.

To see that △L is also a cut, consider a finite cycle C in G. Lemma 5.3

(with H = C) then yields a finite plane supergraph H ′ of C and an LRT L′

of H ′ so that △L ∩ E(C) = △L′ ∩ E(C). From Theorem 5.2 it follows that

△L′ is a cut in H ′, and since C ⊆ H ′ is a cycle, we know that |△L′ ∩E(C)|

is even. Hence, |△L ∩ E(C)| = |△L′ ∩ E(C)| is also even, and it therefore

follows from Lemma 2.3 that △L ∈ C∗(G), and hence △L ∈ B(G).



Chapter 6

LRTs Generate the Bicycle Space

In Chapter 5 we saw an important connection between bicycles and left-right

tours; the residue of an LRT is always a bicycle. But what about the other

bicycles in a graph? Is there a way to characterize all of them? Indeed, the

interaction between bicycles and LRTs continues. We will see that the LRTs

determine all bicycles of a graph, and they do so in the anticipated way:

Their residues generate the bicycle space. Thus, in this chapter we prove the

analogue of the following theorem for locally finite graphs.

Theorem 6.1 (Shank [25]).

In a finite plane graph the residues of the left-right tours generate the bicycle

space.

Let us consider a locally finite graph G for which |G| is embedded in the

plane. Now let B be any bicycle of G. Since B is, in particular, a cut in G,

and since the cut space of G is generated by all cuts of the form E(v) with

v ∈ V (G), there is a vertex set X ⊆ V (G) such that B =
∑

x∈X E(x). On

the other hand, B is also an element of the cycle space. As for finite graphs,

C(G) is generated by the residues of the face boundaries (this is shown in [6]).

Thus, there is a set F of face boundaries such that B =
∑

f∈F △f .

Now, for each bicycle B assume such a pair X,F to be fixed. Following

Richter and Shank [22], we say that an LRS S is of type I if there is a

corner c = (e, η, σ) in S for which the following statements are either both

true or both false:

(i) ∂η contains a vertex in X; and
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(ii) σ lies in a face whose face boundary is in F .

Otherwise, if exactly one of the statements is true and one of them is false,

we say that S is of type II.

We will show why this definition is sensible. Let S be an LRS of type I,

and let c = (e, η, σ) be the corresponding corner. Let c′ = (e′, η′, σ′) be

the successor of c, ie. (e, η, σ) and (e′, η′, σ′) are matched. Now assume that

both (i) and (ii) hold for c. Hence, c is a corner at some vertex x ∈ X and

lies in some face f with boundary in F . Let c′ be a corner at some y ∈ V (G)

and which lies in some face g.

We first consider the case e ∈ B. Then, since x ∈ X, we know that

y /∈ X since otherwise
∑

x∈X E(x) = B would not contain e. Similarly, since

f has a boundary in F , the boundary of the face g cannot be in F , since

otherwise
∑

f∈F △f = B would not contain e. Thus, neither (i) nor (ii) hold

for the corner c′. On the other hand, assume e /∈ B. Then since x ∈ X

and
∑

x∈X E(x) = B, it follows that y ∈ X. And analogously, since f has

its boundary in F , the boundary of the face g also has to be in F , since

otherwise
∑

f∈F △f = B would contain e. Thus, in this case, both of (i)

and (ii) hold for the corner c′.

Similarly, if neither (i) nor (ii) hold for c, then x /∈ X and the boundary

of f is not in F . If e ∈ B, it follows that y ∈ X and the boundary of g lies

in F and therefore both (i) and (ii) hold for c′. Otherwise, if e /∈ B, we have

that y /∈ X and the boundary of g is not in F and hence, neither (i) nor (ii)

hold for c′.

So inductively it follows that if both of (i) and (ii), or neither (i) nor (ii),

hold for some corner in S, then this is true for every corner in S. Therefore

if exactly one of (i) and (ii) hold for a corner in S, then the same is true

for every corner in S. We have seen now that the classification of LRSs in

type I and type II does not depend on the corner to which the statements (i)

and (ii) refer (it does, however, depend on the bicycle). Compare also with

Richter and Shank [22].
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Lemma 6.2. [5]

Let G be a locally finite plane graph, and let B be a bicycle. Then an edge e

of G lies in B if and only if it lies in exactly one LRS of type I and in one

LRS of type II with respect to B.

Proof. The proof is the same as for the finite case, which is given in Richter

and Shank [22].

First, let us assume that e ∈ B. Then let η be the half of e such that ∂η

contains a vertex in X, and let σ be the side of e that is incident with some

face whose boundary lies in F . The two corners c = (e, η, σ) and c′ = (e, η, σ)

induce the two different LRSs containing e. Then c induces an LRS of type I,

while c′ induces an LRS of type II.

For the reverse implication, assume that e /∈ B. Let η be any half of e,

and let σ be any side of e. Then (i) holds for η if and only if it holds for

η and analogously, (ii) holds for σ if and only if it holds for σ. Hence for

any two corners at e that induce the two different LRSs containing e, say

c = (e, η, σ) and c′ = (e, η, σ), it follows that c satisfies (i) if and only if c′

satisfies (i), and similarly, c satisfies (ii) if and only if c′ satisfies (ii). Hence,

c and c′ always induce LRSs of the same type, and thus e lies in two LRSs

of type I or in two LRSs of type II.

In finite graphs, Lemma 6.2 is already enough to prove Theorem 6.1: we

only need to sum up the residues of all the LRSs (which are identical to LRTs

in finite graphs) of type I (or type II, for that matter). Then an edge e is in

a bicycle if and only if it occurs in exactly one LRS of type I, which holds if

and only if e is in this sum. Hence, for finite graphs, every bicycle is a sum

of residues of LRTs.

In infinite graphs, however, things become a little more complicated. Since

an LRT is formed by a set of LRSs, it is not clear what its type should be

since the types of the contained LRSs could differ. If this is not the case,

we have the following definition. An LRT L is called B-uniform if every two

LRSs contained in L are of the same type. Even worse, it is not clear that in

a locally finite graph there even exists a single B-uniform LRT, let alone a
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set of B-uniform LRTs with the properties as in the last lemma. Fortunately,

though, we are able to show the existence of B-uniform LRTs:

Lemma 6.3. [5]

Let G be a locally finite graph, let |G| be embedded in the sphere, and let B

be a bicycle of G. Then there exists a set L of B-uniform LRTs so that each

LRS of G is contained in exactly one L ∈ L.

Proof. First, let us describe the main steps of this proof. Given a graph G

with the set of all LRSs of G, we will construct a graph G′ (which may

not and need not be planar) by ‘blowing up’ the graph G; we will duplicate

vertices and edges of G in order to disperse the LRSs Si of G. Thereby

we obtain vertex-disjoint walks S ′
i in G′ corresponding to the LRSs Si in G.

We will define a function φ that will map vertices and edges of G′ to the

corresponding ones in G. In particular, every walk S ′
i gets mapped to the

LRS Si.

Next, we will classify the walks S ′
i in G according to the type of their

corresponding LRS Si in G. Using this, we will show that for each type, the

union of all E(S ′
i) in G′ corresponding to LRSs of the same type forms an

element of the cycle space of G′. Hence, this set decomposes into a set of

edge-disjoint circuits in G′. We will see that each such circuit D contains a

walk S ′
i either entirely or not at all, and that, moreover, all these S ′

i contained

in D correspond to LRSs Si that are all of the same type.

Since D is a circuit, there exists a homeomorphism σD : S1 → |G′|, and the

composition of maps φ′ ◦ σD (where φ′ is the extension of φ to the respective

topological spaces) gives us a B-uniform LRT in |G|. Since this holds for

every such D, we obtain a set of B-uniform LRTs in |G|.

We now begin with the rigorous proof. We may assume G to be con-

nected. Hence, there is an enumeration S1, S2, . . . of all LRSs of G, since G is

countable. To simplify matters, in this proof we view an LRS as its induced

sequence of vertices and edges, rather than working with its corner sequence.

Now we construct from G another locally finite graph G′ which, in all

likelihood, will not be planar. Let p be a subwalk of the form p = evf in
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some Si in G, where v ∈ V (G) and e, f ∈ E(G). For each vertex v and

each such subwalk p in each Si, we call vp a clone of v. Then let the vertex

set of G′ consist of all these clones. The edge set of G′ is comprised of two

disjoint sets, E ′ and F ′. The set F ′ contains one edge between each pair of

clones vp and vq of the same vertex v ∈ V (G); ie. the clones of a vertex span

a complete graph. Two clones up and vq of distinct vertices u, v ∈ V (G)

are connected by an edge in E ′ if p and q are subwalks in the same LRS Si

and appear consecutively in Si, ie. for Si = . . . e−1v−1e0v0e1v1e2 . . . we have

p = ej−1vj−1ej and q = ejvjej+1 (or vice versa) for some j. See Figure 6.1

for an illustration.

vr
vq

vp

iS
iS’

G G’

v

Figure 6.1: The construction of G′ in the proof of Lemma 6.3; the
edges in F ′ are solid, while the edges in E′ are dotted.

Let us define a mapping φ : V (G′)∪E(G′) → V (G)∪E(G) in the following

way. For each v ∈ V (G) we map all clones of v to v, and we map all edges

(in F ′) between two clones of v to v, as well. An edge upvq in E ′, where up

is a clone of u ∈ V (G) and vq is a clone of v 6= u, is mapped to the edge uv

of G. Then the map φ is surjective.

We note, furthermore, that because the set of all LRSs of G forms a double

cover (cf. Lemma 5.1 (iii)), it holds that

each e ∈ E(G) has exactly two preimages under φ, and these

are in E ′.
(6.1)

For each LRS Si = . . . e−1v−1e0v0e1v1e2 . . ., the map φ defines a distinct

walk in G′. Indeed, since there is a unique vertex vpj
in G′ for each sub-

walk pj:=ejvjej+1, and since each vpj
is linked by a unique edge e′j+1 in E ′ to
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vpj+1
, the sequence . . . e′−1vp−1

e′0vp0
e′1vp1

e′2 . . . is a walk in G′, which we will

denote by S ′
i. We claim that for all i it holds that

(i) if S ′
i = . . . e′−1v

′
−1e

′
0v

′
0e

′
1v

′
1e

′
2 . . . with e′j ∈ E ′ for all j, then

Si = . . . φ(e′−1)φ(v′
−1)φ(e′0)φ(v′

0)φ(e′1)φ(v′
1)φ(e′2) . . .; and

(ii) each S ′
i is either a cycle or a double ray; and

(iii) S ′
i and S ′

j are disjoint for all j 6= i.

Claim (i) is clear by construction and our argument above. To see (ii)

and (iii), note that in G′, a clone vp of a vertex v ∈ V (G) is adjacent to

exactly two vertices that are not clones of v. Hence, for (ii) we have that in

S ′
i every vertex has degree two. For (iii), on the other hand, we have different

vertices vp for different v ∈ V (G), and every vp is incident with exactly two

edges from E ′, and both of these are its incident edges in S ′
i.

For our next step, let us denote by XI the set of all those S ′
i for which Si

is of type I with respect to B, and let XII be the set of the other S ′
i, ie. those

for which Si is of type II. We will show that

both of XI :=
⋃

S′∈XI

E(S ′) and XII :=
⋃

S′∈XII

E(S ′) lie in C(G′). (6.2)

To see that XI ∈ C(G′), consider a finite cut K ′ of G′. Then by Theorem 2.2,

it suffices to prove that |XI ∩ K ′| is even.

We fix a vertex a′ of G′ and consider all finite cuts of the form L =

EG′(A,B) in G′ with a′ ∈ A. For each such cut L, let c(L) denote the

number of vertices w′ ∈ B such that there exists a clone u′ ∈ A of the same

vertex as w′. Since by definition each such w′ is adjacent to a vertex in A,

the number c(L) is finite (since the cuts L are finite).

Now, among all cuts L for which |L∩XI | has the same parity as |K ′∩XI |,

choose one, say K, such that c(K) is minimal.

Suppose that c(K) > 0, and let K = EG′(A,B) with a′ ∈ A. Since c(K) >

0 there exist u′ ∈ A and w′ ∈ B that are clones of the same vertex v ∈ V (G).
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As w′ = vp for some subwalk p in some Si, we obtain from (iii) that w′

lies in exactly one S ′
i, which implies that w′ is incident with exactly zero or

two edges in XI , depending on whether Si is of type II or of type I. Thus,

the cut K̃:=K + E(w′) meets XI in an even number of edges if and only if

|K ∩XI | is even. On the other hand, we have K̃ = EG′(A∪ {w′}, B \ {w′}),

which implies c(K̃) < c(K), but this contradicts the choice of K.

Therefore, it holds that c(K) = 0. Since all clones of a vertex are on the

same side of K, it follows that K ⊆ E ′ and that φ(K) is a finite cut in G. It

also implies that for each e ∈ φ(K), both of the preimages of e under φ lie

in K: if e = xy for x, y ∈ V (G), then all clones of x must be in one class of

the partition induced by K, while all clones of y must lie in the other (since

c(K) = 0). Hence, any other edge in G′ between the two complete subgraphs

induced by the clones of x and y, resp., has to lie in K as well.

Thus, if we can show that φ(K) is traversed an even number of times by

LRSs of type I (with respect to B), then we know that also the cut K in G′

is met by an even number of the corresponding walks S ′
i. Hence |XI ∩ K| is

even, and because |XI ∩K| = |XI ∩K ′| by our choice of K, the cut |XI ∩K ′|

is also even.

Since the LRSs in G form a double cover (see Lemma 5.1 (iii)), any cut in

G is met evenly by LRSs. However, from Lemma 6.2 we know that an edge e

of G lies in B if and only if it lies in one LRS of type I and in one LRS of

type II. Hence, every edge e /∈ B is traversed twice by LRSs, which are either

both of type I or both of type II (in particular, e is traversed an even number

of times by LRSs of the same type). Therefore, the set φ(K) \B is traversed

an even number of times by LRSs of type I. On the other hand, since B

is an element of the cycle space, the set B ∩ φ(K) has even cardinality by

Theorem 2.2. Again applying Lemma 6.2, we know that any edge e ∈ B is

traversed exactly once by an LRS of type I. Thus, the even cut B ∩ φ(K) is

traversed an even number of times by LRSs of type I. So altogether we know

that both φ(K) \B and B ∩ φ(K) are traversed an even number of times by

LRSs of type I. Therefore, with (6.1), we obtain that |XI ∩ K| is even. The

proof for XII is analogous.
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Now that we have shown that both XI and XII are elements of C(G′), it is

clear that XI + XII is as well. Hence we can use Theorem 2.4 to decompose

XI + XII into a set D of (edge-) disjoint circuits. Let us observe that

for all i and D ∈ D it holds that if E(S ′
i)∩D 6= ∅ then E(S ′

i) ⊆

D. Moreover, for each D ∈ D, all the Si with E(S ′
i) ⊆ D are

of the same type.

(6.3)

Indeed, by (ii) and (iii) we know that every vertex of G′ is incident with

exactly two or zero edges from XI (resp. XII). Since this property also holds

for circuits, the assertion follows.

Next, let us define a continuous mapping φ′ : |G′| → |G|. On the 1-

complex G′ we extend our map φ to a continuous mapping φ′ so that the

following hold:

(a) φ′(e′) = e if and only if φ(e′) = e for all e′ ∈ E(G′) and e ∈ E(G) (where,

with regard to φ′, we view e′ and e as point sets, while for φ we see them

as edges of graphs); and

(b) at each interior point of an edge in E ′, the map φ′ is locally injective.

To define φ′ on ends, consider a ray R′ in an end ω′ of G′. Then φ(R′) is

a one-way infinite walk, and thus, by Lemma 2.5, it contains a ray in some

end, say ω. We map ω′ to ω.

It remains to check that φ′ is continuous at ends. So let us consider an

end ω′ of G′, and let a basic open neighborhood C:=ĈG(U, φ′(ω′)) of φ′(ω′)

in |G| be given (recall from Chapter 2 that U is a finite vertex set). By U ′

we denote the set of all clones of vertices in U . Then U ′ is also a finite vertex

set in G′, and we see that C ′:=ĈG′(U ′, ω′) is a basic open neighborhood of

ω′ in |G′| with φ′(C ′) ⊆ C. Therefore, φ′ is continuous.

Finally, since each D ∈ D is a circuit, by definition there exists a homeo-

morphism σD : S1 → |G′| with image D. By the definition of D and by (b),

the continuous mapping φ′ ◦ σD : S1 → |G| is locally injective at points

x ∈ S1 that are mapped to interior points of edges. Furthermore, (i) and (a)
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imply that each maximal subwalk in φ′ ◦ σD is an LRS, and that these are

precisely those Si for which E(S ′
i) ⊆ D. Therefore each φ′ ◦ σD describes an

LRT in |G|. By (6.3), we know that each such LRT is B-uniform. Let us

denote the set {φ′ ◦ σD : D ∈ D} of LRTs by L.

To conclude our proof, let us observe that since for every Si the set E(S ′
i)

is contained in some D ∈ D, every Si occurs in one of the LRTs in L. On

the other hand, since all the D ∈ D are (edge-) disjoint, no Si appears in two

elements of L. Hence, L is a set of B-uniform LRTs in |G| with the desired

property.

We remark that the LRTs in L have an additional property, of which we

will, however, make no use: each L ∈ L is minimal in the sense that, if L′

is an LRT with ∅ 6= E(L′) ⊆ E(L) then E(L′) = E(L). In order to briefly

sketch the proof, let D ∈ D be the circuit in G′ so that φ′ ◦ σD describes the

LRT L. Let Y be the subset of LRSs contained in L that also lie in L′. Since

L′ is also an LRT, it is easy to check that Y :=
⋃

S∈Y E(S ′) is an element of

the cycle space of G′. Since Y is nonempty and is a subset of the circuit D,

it follows that Y = D, which implies E(L) = E(L′) as claimed.

With Lemma 6.3 we can extend Theorem 6.1 to locally finite graphs using

arguments of Richter and Shank [22].

Theorem 6.4. [5]

Let G be a locally finite graph, and let |G| be embedded in the sphere. Then

the residues of the left-right tours in |G| generate the bicycle space of G.

Proof. In Chapter 5 we have seen that, by Theorem 5.5, the residue of an

LRT in |G| is a bicycle. Since B = C(G) ∩ C∗(G) is a subspace of E(G),

it follows that all sums of residues of LRTs are also elements of the bicycle

space. (Note that these sums are necessarily thin by Lemma 5.1 (iii).)

On the other hand, let a bicycle B in G be given. Then Lemma 6.2 tells

us that an edge e is in B if and only if e occurs in exactly one LRS of type I.

Hence, this holds if and only if e ∈
∑

S is of type I △S.
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Lemma 6.3 gives us a set L of B-uniform LRTs, so that every LRS appears

in exactly one L ∈ L. From this we obtain a set M ⊆ L of B-uniform LRTs

of type I (meaning that the contained LRSs are all of type I), so that every

LRS of type I appears in exactly one M ∈ M. Therefore e lies in B if and

only if e ∈
∑

M∈M
△M . Thus B =

∑
M∈M

△M , and we see that B is a sum

of residues of LRTs in |G|.

Let us note one more difference between LRTs in finite graphs and in

infinite graphs. We know that in a finite graph, the set of LRTs forms a

double cover. For infinite graphs, however, let us consider the double ladder.

There we have four different LRSs (which are shifts of the two LRSs we

witness in Figure 5.2), and we construct different LRTs by gluing together

any two of these four. Hence, the double ladder has a set of six LRTs, which

clearly covers all edges more than twice. Moreover, while Lemma 6.3 asserts

that there are double covers consisting of LRTs, none of these double covers

is, for our purposes, sufficient and hence distinguished: In our example of

the double ladder, none of the double covers suffices to generate the entire

bicycle space of the graph.

Indeed, consider a double cover L of LRTs for the double ladder. Pick an

LRT of the double cover and observe that it traverses some edge e twice (in

Figure 5.2 this is the case for every second rung). Hence, e does not lie in the

residue of any L ∈ L, and therefore no bicycle containing e can be expressed

as the sum of residues of L ∈ L. It is easy to check that every edge in the

double ladder lies in some bicycle, and since we can find such an edge e and

a bicycle containing e for every double cover of LRTs of the double ladder,

we do indeed need all of the LRTs of the double ladder in order to generate

its bicycle space.



Chapter 7

The ABL Planarity Criterion

Planarity is a very important concept in graph theory, and therefore pla-

narity criteria are especially valuable. The most famous planarity criterion is

certainly the one known as Kuratowski’s theorem (Theorem 2.6 from Chap-

ter 2), which says that a finite graph is planar if and only if it contains neither

K5 nor K3,3 as a minor. Another well-known planarity criterion is that of

MacLane [21] which states that a finite graph is planar if and only if its cycle

space has a basis such that every edge is contained in at most two members

of it. Notice that MacLane’s criterion characterizes planar graphs in terms

of the cycle space. MacLane observed that in (finite) plane graphs, the set of

facial walks is a double cover that generates the cycle space. Then he proved

that, conversely, any double cover of closed walks with this property can be

realized as a set of facial walks and is therefore a certificate for planarity.

The planarity criterion of Archdeacon, Bonnington and Little [1] works in

a similar way. Instead of the facial walks leading to the planarity criterion

though, they list the essential properties of left-right tours. These properties

are rather more elaborate and necessitate a number of definitions, which we

give below.

MacLane’s criterion has been extended to locally finite graphs in [6], using

the cycle space as defined by Diestel and Kühn. Similarly, in this chapter,

we extend the planarity criterion of Archdeacon, Bonnington and Little to

infinite, locally finite graphs.

Let us first start with the definitions. Consider a locally finite graph G,

and let W be a double cover of tours in |G|, ie. every edge is traversed twice
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by W. For any l, let H be a cyclic sequence e = r1,W1, . . . , rl,Wl, rl+1 = e so

that Wi ∈ W, ri ∈ E(G), and Wi contains both of ri and ri+1, and ri 6= ri+1

for all i. We call such a sequence H a ladder (with respect to W), and we

say that the ri are the rungs of H. For a ladder of length one we require that

W1 traverses the rung r1 twice.

Usually, the Wi will be distinct members of W and the rj distinct edges

of G. In this case, the sequence is called, more precisely, a simple ladder.

With one exception in the proof of Theorem 7.2, every ladder we encounter

will be simple, so for ease of terminology we will refer to them only as ladders.

Next, let
→

W i be one of the two possible orientations of Wi for every i.

We denote by Pi the topological subpath in
→

W i between ri and ri+1, and

by P̃i the topological subpath between ri+1 and ri; ie. traversing ri, then

following Pi, traversing ri+1 and finally running along P̃i describes the same

tour in |G| as
→

W i. An edge that is traversed both times in the same direction

by the
→

W i (either by one
→

W i in which it appears twice, or by two distinct

tours) is said to be consistent ; otherwise it is inconsistent. We call the family

(Pi)i=1,...,l together with the set of inconsistent rungs (with respect to the
→

W i)

a side of H. Furthermore, if the side is denoted by S, then we write △S for
∑l

i=1 △Pi +
∑

j∈J rj where J = {j : 1 ≤ j ≤ l and rj is inconsistent}.

Finally, a double cover D of tours in |G| is called a diagonal if both △D

and △S are cuts for every D ∈ D and every side S of any simple ladder in D.

We can now state the planarity criterion for the finite case:

Theorem 7.1 (Archdeacon, Bonnington & Little [1]).

A finite graph is planar if and only if it has a diagonal. In particular, the set

of LRTs of a finite plane graph is a diagonal.

A simple proof of this criterion can be found in Keir and Richter [18]. So,

let us extend Theorem 7.1 to locally finite graphs:

Theorem 7.2. [5]

A locally finite graph is planar if and only if it has a diagonal.
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Proof. Let G be a locally finite graph. First, assume G to be planar. From

Theorem 2.7 we know that |G| has an embedding in the sphere, and thus

Lemma 6.3 yields (with, for instance, B = ∅) a set L of LRTs so that every

LRS of G lies in exactly one element of L. Hence (with Lemma 5.1 (iii)), L is a

double cover of G. Furthermore, Theorem 5.5 implies that since △L ∈ B(G),

in particular △L is a cut for each L ∈ L.

For L to be a diagonal, it remains to show that for any side S of any

ladder H (with respect to L), the residue △S is a cut as well. We show that

△S meets every finite cycle C in an even number of edges. With Lemma 2.3

it then follows that △S is a cut.

So, let H = r1, L1, . . . , rk, Lk, r1 be any given ladder with respect to L.

Let C be any given finite cycle in G, and let R:={r1, . . . , rk} denote the set

of rungs of H. We define H to be the plane subgraph of G consisting of C

and all the edges in R together with their incident vertices. Since now it

is enough to consider a finite subgraph that behaves locally like G, we can

apply Lemma 5.3 to H and the LRTs {L1, . . . , Lk} in H. This gives us a

finite plane supergraph H ′ of H, and a set L′:={L′
1, . . . , L

′
k} of LRTs of H ′

so that Li and L′
i agree on H for all i.

By our construction, not every edge in H ′ \ H is covered twice by LRTs.

Hence, in order to obtain a properly defined ladder of H ′, let us apply

Lemma 5.4 (i) which extends L′ to a double cover L′′:={L′
1, . . . , L

′
k, . . . , L

′
l}

of tours in H ′. We now claim that H′:=r1, L
′
1, . . . , rk, L

′
k, r1 is a ladder in H ′

with respect to L′′. Indeed, by our construction, L′′ is a double cover of tours

in H ′, and L′
i ∈ L′′ for every i = 1, . . . , k. Furthermore, since the tours Li

and L′
i agree on H ⊇ R, the L′

i remain distinct, and every L′
i contains the

distinct rungs ri and ri+1 for all i.

Altogether we now have the ladder H with respect to the

LRTs {L1, . . . , Lk} in G, and the ladder H′ with respect to the

LRTs {L′
1, . . . , L

′
k, . . . , L

′
l} in H ′, such that on H, the tours Li and L′

i agree

for all i, and so do the rungs ri. Thus, the ladder H′ also has a side S ′

which agrees with the side S (of the ladder H) on H. Indeed, since every

tour
→

Li induces a direction on its corresponding finite counterpart
→

L
′

i, we



56 The ABL Planarity Criterion

obtain paths P ′
i which agree with Pi on H for all i. On the other hand, the

set of inconsistent rungs Rin is a subset of R and hence is contained in E(H).

Therefore the side S ′:=
⋃

i=1,...,k P ′
i ∪Rin agrees with S on H. Hence, we have

that △S ′∩E(H) = △S∩E(H). Now we can apply Theorem 7.1 to the finite

side S ′ and obtain that △S ′ is a cut. Thus, the intersection △S ′ ∩ E(C) is

an even set by Lemma 2.3. Therefore, |△S ∩E(C)| = |△S ′ ∩E(C)| is even,

too (since C ⊆ H), which shows that △S is a cut as well. This proves L to

be a diagonal.

For the reverse implication, let us first note that given a diagonal D of

tours Di in |G|, for any ladder H with a side S, the assertion that △S is a cut

does not depend on the side of H, meaning that it does not depend on the

orientations
→

Di of the tours in D. Indeed, let us change the orientation of one

tour, say Di, and let S ′ be the resulting side of H. Then the rung ri becomes

consistent if it was inconsistent before, or vice versa, and the same holds

for ri+1. Hence, the number of consistent (resp. inconsistent) edges changes

by 0 or 2. Therefore, S ′ = S + Pi + P̃i mod 2, and thus, △S ′ = △S + △Di.

So we see that in general, the residues of two sides of a ladder only differ in

the sum of residues of some Di. Now, since D is a diagonal, we know that

△Di is a cut for every i. Hence, for two different sides S and T of a ladder

it holds that △S is a cut if and only if △T is a cut.

Having said that, let us suppose that G has a diagonal D but also contains

a subdivision X of K3,3 or of K5. We denote by H the (finite) induced

subgraph of G on V (X), and let F :=E(H,G−H), which is a finite cut. Our

idea is to delete, one by one, all edges of F from G. Using arguments of

Archdeacon, Bonnington, and Little [1], we will show that after each edge

deletion, our graph still has a diagonal. Then, once we have deleted all of

F , the diagonal will split into two parts: into the set D′ of those tours that

are completely contained in H, and into the tours that are disjoint from H.

As D′ remains (by what we will show) a diagonal of the finite non-planar

graph H, we obtain a contradiction to Theorem 7.1.

We now show that deleting an edge still leaves a diagonal of the remaining

graph. We will distinguish three cases, depending on whether the edge e
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occurs in two different tours of D, or whether it is traversed twice by the

same tour D, in which case it is either consistent or inconsistent with respect

to the orientation of D.

Case 1: e is traversed twice by the same tour D and is consistent with

respect to
→

D.

Let Q1 and Q2 be the two topological subpaths in D between the two

occurrences of e, with the orientation induced by
→

D. Hence,
→

D=e
→

Q1e
→

Q2. By

Q−1
2 we denote the topological path Q2 with the reverse direction of

→

Q2. Then
→

D
′

:=
→

Q1Q
−1
2 also describes a tour in |G|. Now, we claim that after deleting

the edge e, the set D′:=(D \ {D}) ∪ {D′} is a diagonal of G′:=G \ {e}.

Clearly, D′ still forms a double cover of the edges of G′. For any tour Di 6=

D′ its residue remains the same (since e was not contained in any other tour

of the double cover), and hence still forms a cut in G′. On the other hand,

for D′ it holds that △D′ = △Q1 +△Q2 = △D, since e occurred twice in D.

Thus, △D′ is also a cut in G′.

Now, let H′ be any ladder in D′. If H′ does not contain D′, clearly any

side of H′ is a side of the corresponding ladder in G, and hence their residues

remain cuts (not containing e). So let us assume that D′ appears in H′. Let

H be its corresponding ladder in G, obtained by replacing D′ by D in H′

(with the respective orientations), as described above. Let any side S of H

be given. Then, by hypothesis, △S is a cut in G.

Let H′ = r1, D1, . . . , rl, Dl, r1. Then D′ = Dj for some j. Hence, D′

contains the two rungs rj =: f and rj+1 =: g. Again, we need to consider

different cases. First, let us assume that both f and g are contained in the

same Qi, say Q1. Then let Q′ be the topological subpath of Q1 between f

and g. Hence, the subpath in D corresponding to Q′ does not contain e.

Therefore H has a side S which does not contain e and which is identical to

a side of H′. Hence, its residue cannot contain e and remains a cut in G′.

So let us now consider the case that (without loss of generality) f ∈ Q1

and g ∈ Q2. Then the orientations of the ladders H and H′ are the same for

every Di with i 6= j, and for the subpath Q1. We would like to determine the
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difference between △S and △S ′ for the corresponding side S ′ of H′. From

the orientations we can conclude that all rungs ri 6= g remain inconsistent in

G′ if and only if they were inconsistent in G. For the rung g the consistency

changes. For every tour Di 6= D the orientations remain the same, and hence

so do their contributions to S ′.

So let us consider the tour D. We denote the different subpaths of D

between the edges e, f and g by different Ri; thus, let
→

D = eR1fR2eR3gR4.

Then
→

D
′

= R1fR2R
−1
4 g−1R−1

3 with the orientation of R4gR3 reversed. But

this reversal does not influence the residue of a side, hence we can ignore it

here. Let us denote by Y the change between the residues of the sides S

and S ′, ie. let Y = △S + △S ′. Then Y = {g} + △(R2eR3) + △(R2R4) =

△(R3gR4e).

We will show that △(R3gR4) is a cut in G. Since D is, by hypothesis, a

diagonal of G and contains the tour D, it also contains the ladder e,D, e of

length one. We note that R3gR4 is a side of this ladder, and hence, △(R3gR4)

is a cut in G. Thus, since △(R3gR4e) = Y = △S + △S ′, it follows that

Y + {e} + △S = △S ′ + {e}, and therefore △(R3gR4) + △S = △S ′ + {e}.

Since both △(R3gR4) and △S are cuts in G, we obtain that △S ′ + {e} is a

cut in G as well, and thus △S ′ is a cut in G′. This shows D′ to be a diagonal

of G′.

Case 2: e is traversed twice by the same tour D and is inconsistent with

respect to
→

D.

Again, we denote by Q1 and Q2 the two topological subpaths in D between

the two occurrences of e, with the orientation induced by
→

D. Then the Q1, Q2

form two closed walks in G not containing e, and hence they remain closed

walks in G \ {e}. We set D′:=(D \ {D}) ∪ {Q1, Q2}. We claim that after

deleting the edge e, the set D′ is a diagonal of G′:=G \ {e}.

Clearly D′ is a double cover of G′. For any tour Di 6= Q1, Q2 in D′, we

know that △Di is a cut in G and does not contain e. Hence, it remains a

cut in G′. So we still need to show that both △Q1 and △Q2 are cuts in G′.

Let us consider the ladder e,D, e of length one in G. Since e is inconsistent,
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both {e} ∪ Q1 and {e} ∪ Q2 can occur as sides of this ladder. Hence, by

hypothesis, △(eQ1) and △(eQ2) are both cuts in G. Therefore △(Q1) and

△(Q2) are cuts in G′.

At this point, we need to refine our definition of a ladder (as mentioned

before). For a double cover of tours Wi, a ladder remains a cyclic sequence

r1,W1, . . . , rl,Wl, rl+1 = r1 as described above. The difference now is that the

tours Wi and the rungs ri need not be distinct. More precisely, a multi-ladder

is such a cyclic sequence where the Wi need not be distinct, and every Wi

(still) contains the rungs ri and ri+1 with ri 6= ri+1. So far, the Wi have

always been distinct, in which case we speak of a simple ladder. Now, when

we only refer to ladders, we mean both, multi- and simple ladders. We note

that the assertion in the theorem refers to simple ladders, thus it suffices to

consider simple ladders here.

Next, let H′ be any simple ladder in D′. Let H be the corresponding

ladder in G which we obtain from replacing both Q1 and Q2 in H′, each

by D (with the respective orientations). We see that if H′ contains neither

Q1 nor Q2, then H is simple, and any side of H′ is a side of H in G. Hence

their residues remain cuts (not containing e) in G′. Now, let us assume that

exactly one of the Qi, say Q1, appears in H′. In this case, too, H is a simple

ladder in G. Then let Q′ be the topological subpath of Q1 between its two

rungs f and g, that does not contain an endvertex of e. Hence, the subpath

in D corresponding to Q′ does not contain e. Therefore H has a side S which

does not contain e and which is identical to a side of H′. It follows that its

residue cannot contain e and remains a cut in G′.

So, let us assume that both Q1 and Q2 are tours in H′. We distinguish two

cases, depending on whether Q1 and Q2 appear consecutively or not. First,

let us assume they are not consecutive in H′. Hence, we may assume that

Q1 = D1 and Q2 = Dj for some j. For simplicity, let us denote the rungs

of the Qi by a, b, c, d meaning a = r1, b = r2, c = rj and d = rj+1. Let H

denote the ladder (of length, say l) in G corresponding to H′. Then H is not

simple. Let us consider the subsequences L1:=b,D2, r3, . . . , ri−1, Di−1, c,D, b

and L2:=d,Di+1, . . . , rl, Dl, a,D, d of H. Then L1 and L2 are simple ladders
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in G since H′ is simple. Now, orient the tours in L1 and L2 arbitrarily,

and let every Di 6= Qk have the same direction in H′. Give Q1 and Q2 the

orientation induced by D. Then this gives us a side S ′ of H′ which induces

a side S of H. Let Si denote the side of Li corresponding to S for i = 1, 2.

As in Case 1, we ask ourselves how the sides S1, S2 and S ′ differ. The

set of inconsistent edges remains the same. For all Di except Q1 and Q2, the

subpaths in S appear in either S1 or S2. Hence, the Si differ from S only in

the subpaths from D, Q1, and Q2. For simplicity, let us label them. We have

two subcases.

First, let
→

D = R1aR2bR3eR4cR5dR6e
−1. Since the sequence between the

rungs c and b is included in S1, we have R5dR6e
−1R1aR2 ∈ S1. Similarly,

R2bR3eR4cR5 ∈ S2, and R2, R5 ∈ S ′. Now, let Y :=△S ′ +△S1 +△S2. Then

△Y = △R2 + △R5 + △(R5dR6eR1aR2) + △(R2bR3eR4cR5) = △D which

is a cut in G since D ∈ D, and D is a diagonal in G by hypothesis. Since

e /∈ △D, we have that Y = △D is also a cut in G′.

Since L1 and L2 are simple ladders in G, we know that △S1 and △S2

are both cuts in G, and they both contain the inconsistent edge e. Hence,

△S1 +△S2 is also a cut in G which does not contain e. Therefore △S1+△S2

is a cut in G′ as well, and it follows that △S ′ = Y + △S1 + △S2 is a cut

in G′.

For the other subcase, in which the rungs c and d are reversed in Q2, we

let
→

D = R1aR2bR3eR4dR5cR6e
−1, and in a similar way we obtain that △S ′

is a cut in G′.

Now, to complete our (main) Case 2, assume that the tours Q1 and Q2 are

consecutive in H′. Let H′ = r1, Q1, r2, Q2, r3, D3, . . . , rl, Dl. For simplicity,

we set a:=r1, b:=r2 and c:=r3. Then b occurs once in Q1 and once in Q2.

We denote these two occurrences by b1 and b2, respectively. Note that the

ladder H = a,D, c,D3 . . . , rl, Dl in G is simple. We direct D arbitrarily and

let the Qi have the directions induced by
→

D. Let every tour Di 6= D have

the same directions in H′ as in H. As before, the consistency of the rungs

does not change in G′ and hence we only have to examine the subpaths of

D,Q1, and Q2, which we will again label with some Ri. Again, we consider
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two subcases.

First, let
→

D = R1aR2b1R3eR4b2R5cR6e
−1. Then, as before, we know that

in G, the side S of H that corresponds to the side S ′ of H′ contains the

topological subpath of
→

D that lies between the two rungs a and c. Thus, we

have R2b1R3eR4b2R5 ∈ S. Similarly, we obtain R2, R5 ∈ S ′. As before, let

Y :=△S + △S ′. Then Y = △(R2b1R3eR4b2R5) + △R2 + △R5.

If the ‘new rung’ b is consistent in
→

D, then it will not contribute to the

side S ′. Hence, we have Y = △(R2b1R3eR4b2R5)+△R2+△R5 = △(R3eR4).

Else, if b is inconsistent in
→

D, we have that b /∈ S, but b ∈ S ′ and thus, b ∈ Y .

Therefore, Y = △(R3eR4) + b. Note furthermore that b,D, b is a ladder of

length one in G. Therefore, it has a side T = R3eR4 or T = R3eR4b,

depending on whether b is consistent or not. In either case, Y is the residue

of the corresponding side and is therefore a cut in G. Since e ∈ △S and

e ∈ Y , we know that △S ′ = △S + Y does not contain e. Since we have

shown that both △S and Y are cuts in G, it follows that △S ′ is a cut in G

not containing e, and hence it is also a cut in G′.

For the other subcase, we have
→

D = R1aR2b1R3eR4cR5b2R6e
−1. In a

similar fashion we can show that in this case as well, for a side S ′ of H′ it

holds that △S ′ is a cut in G′. Thus we have shown that after deleting e, the

set D′ is a diagonal of G′.

Case 3: e is traversed by two different tours D1 and D2.

Let Q1 and Q2 be the two topological subpaths in D1, resp. D2 between e,

with the orientation induced by
→

D1, resp.
→

D2; thus,
→

Di = e
→

Qi. By Q−1
2

we denote the topological path Q2 with the reverse direction of
→

Q2. If e is

inconsistent with respect to D1 and D2, we let
→

D
′

:=
→

Q1

→

Q2. Otherwise, if e is

consistent, let
→

D
′

:=
→

Q1Q
−1
2 . Then

→

D
′

also describes a tour in |G|. Now, we

claim that after deleting the edge e, the set D′:=(D \ ({D1} ∪ {D2}))∪ {D′}

is a diagonal of G′:=G \ {e}.

It is clear that D′ still forms a double cover of the edges of G′. For

any tour Di with i /∈ {1, 2}, its residue remains the same (since e was not

contained in any other tour of the double cover) and hence still forms a cut
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in G′. On the other hand, for D′ it holds that △D′ = △D1 + △D2 where

△D1 and △D2 are cuts in G containing e. Hence, △D′ does not contain e

and is a cut in G′.

Let H′ be any simple ladder in D′. If H′ does not contain D′, clearly any

side of H′ is a side of the corresponding ladder in G, and hence their residues

remain cuts (not containing e). So let us assume that D′ appears in H′. We

may assume that H′ = r1, D
′, r2 . . . , rl, Dl, r1. Let f :=r1 and g:=r2. We need

to consider two subcases.

First, let us assume that both f and g are contained in the same sub-

path Qi of D′, say Q1. Then let H be the ladder in G which we obtain from

replacing D′ by D1. We direct all tour in H arbitrarily, and let every Di for

i 6= 1 have the same orientation in H′ as in H. We orient D′ according to

the direction induced by D1, and depending on whether e is consistent in H

or not, as described above.

Now, let Q′ be the topological subpath of Q1 between f and g. Hence,

the subpath in D1 corresponding to Q′ does not contain e. Therefore H has

a side S which does not contain e and which is identical to a side of H′

(remember here that since D2 /∈ H, the edge e cannot be a rung). Hence, its

residue cannot contain e and remains a cut in G′.

So let us now consider the case (without loss of generality) that f ∈ Q1 and

g ∈ Q2. Then let H be the ladder of length l + 1 in G which we obtain from

replacing D′ by D1, e,D2. Again, we direct all tours in H arbitrarily, and let

the corresponding tours in H′ inherit their orientations. First, assume that e

is consistent in H. Thus we direct D′ as
→

D
′

:=
→

Q1Q
−1
2 . Since e is a (consistent)

rung of H, it is not contained in any side S of H, and moreover, there exists

a side S ′ of H′ with S ′ = S. Since △S is a cut in G by assumption, and it

does not contain e, it follows that △S ′ is a cut in G′.

On the other hand, let us assume that e is inconsistent in H. Then we

direct D′ as
→

D
′

:=
→

Q1

→

Q2. Let S be a side of H that corresponds to a side S ′

of H′. Then, since e is inconsistent, it follows that S = S ′ ∪ {e}. Since △S

is a cut in G, we have that △(S ′ ∪ {e}) is also a cut in G. Hence, △S ′ is a

cut in G′ = G \ {e}.
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Furthermore we remark that since a diagonal forms a double cover, all

considered sums are thin and therefore well-defined.

Altogether we have shown that if G contains a diagonal, then so does G \

{e}. The reverse implication of our theorem therefore follows. This completes

the proof.

For pedestrian graphs, ie. those graphs G for which B(G) = {∅}, Rosen-

stiehl and Read [24] gave a slightly simpler planarity criterion (which led

Archdeacon, Bonnington and Little to prove their extension in the form of

Theorem 7.1). Let a tour W traverse an edge e = uv twice. If e is consistent

and is traversed from u to v, say, then W decomposes into four topologi-

cal subpaths uv, H1, uv and H2. We call each of H1 and H2 a half of W

(with respect to e). If e is inconsistent, then W is equally comprised of four

topological subpaths: namely of uv, H ′
1, vu and H ′

2. In this case we call the

topological subpaths uvH ′
1:=H1 and vuH ′

2:=H2 halves of W .

We note two facts. First, e is contained in each half of W if and only if

e is inconsistent in W . This results from the idea that a half should connect

the two endvertices of e. Second, if e,W, e is seen as a ladder (of length one),

then a half is simply a side of this ladder (more precisely, they have the same

residues).

We say that a tour D in |G| is an algebraic diagonal of G if D is a double

cover and if for every edge e it holds that the residue of every half of D is a

cut.

Theorem 7.3 (Rosenstiehl & Read [24]).

A finite connected pedestrian graph is planar if and only if it has an algebraic

diagonal.

Let us extend this theorem to locally finite graphs.

Theorem 7.4. [5]

A locally finite connected pedestrian graph is planar if and only if it has an

algebraic diagonal.
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Proof. Let G be a locally finite connected pedestrian graph. If G is pla-

nar, then |G| can be embedded in the sphere (recall Theorem 2.7), and by

Lemma 6.3 there exists a family L of LRTs in |G| that forms a double cover

of E(G).

We already know (from the proof of Theorem 7.2) that L is a diagonal

of G. If L has only a single member D, then D is an algebraic diagonal of G.

Indeed, let any edge e be given. Then (since e is inconsistent in D if and only

if it is contained in each half of D) a half H of D with respect to e has the

same residue as a side S of the (simple) ladder e,D, e. Since L is a diagonal

of G, we know that △S is a cut, and hence it follows that △H = △S is a

cut, too.

So, assume that L has at least two members, and denote one of them

by L. Since G is pedestrian and L is a left-right tour in |G|, Theorem 5.5

implies that △L = ∅. Thus, since G is connected, there is a vertex v ∈ V (G)

which is incident with edges traversed by L and with edges not lying in L.

Consider an edge e incident with v that lies in L. Without loss of gener-

ality, let η be the half of e with v /∈ ∂η, and let σ be a side of e. Since L

traverses e twice (since △L = ∅), we know that L (or, more precisely, the LRS

lying in L that traverses e) contains one corner of the set {(e, η, σ), (e, η, σ)},

and one corner of {(e, η, σ), (e, η, σ)}. Let (e1, η1, σ1) be the corner that is

matched with (e, η, σ), and let (e2, η2, σ2) be the one matched with (e, η, σ).

By definition, if L contains (e, η, σ), then it also contains (e1, η1, σ1). If, on

the other hand, (e, η, σ) lies in L, then (e1, η1, σ1) is also a corner of L. Hence,

in any case, e1 is traversed by L. Similarly, if (e, η, σ) is contained in L, then

so is (e2, η2, σ2); and else, if (e, η, σ) is a corner of L, then (e2, η2, σ2) is also

in L.

Hence, it follows that the predecessor and the successor of e in the local

rotation of the edges at v both lie in L, and thus all of E(v) is covered by L,

which contradicts our assumption.

So, conversely, let us assume that G has an algebraic diagonal D. Then

the set {D} is a diagonal. By assumption, D is a double cover of G. For the

only tour D in {D} it holds that for any side S of D, we have △S = △H for
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any half H of D, and △H is a cut by assumption. Last, we have to check

that △D is also a cut. Let any edge e be given (consistent or inconsistent),

and consider the two halves H1, H2 of D with respect to e. Then we obtain

△D = △H1 + △H2 which is a cut since △H1 and △H2 are cuts, since D is

an algebraic diagonal.

Thus, {D} is a diagonal of G which by Theorem 7.2 implies that G is

planar.

We come to the third and last result in this chapter that we will extend

to locally finite graphs. Richter and Shank proved the following theorem for

arbitrary surfaces:

Theorem 7.5 (Richter & Shank [22]).

Let G be a finite plane graph with a double cover consisting of LRTs. Orient

each LRT arbitrarily. The edges that are traversed both times in the same

direction form an element of the cycle space, while those traversed once in

each direction form a cut.

We will show a similar result for locally finite plane graphs.

Theorem 7.6.

Let G be a locally finite graph, and let |G| be embedded in the sphere. Let

L1, . . . , Lk be a set of LRTs of G so that every LRS of G lies in exactly

one Li. Orient each LRT arbitrarily. Then the edges that are traversed both

times in the same direction by some LRT form an element of the cycle space,

while those traversed once in each direction by some LRT form a cut.

Proof. First, note that by Lemma 5.1 (iii) the set of all LRSs forms a double

cover of G, and hence, by assumption, so does the set of LRTs. Thus, every

edge is indeed traversed exactly twice. Let us denote by Y the set of edges

that are traversed both times in the same direction by some LRT, and let K

denote the set of edges that are traversed once in each direction.

First, we will show that K ∈ C∗(G). By Lemma 2.3, we know that K is a

cut in G if and only if |K ∩ Z| is even for every finite circuit Z ⊆ E(G). So
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let Z be given. Since Z is finite, there exists a finite subgraph H of G with

Z ⊆ E(H).

We will use Lemma 5.3 on G and H to obtain a finite plane supergraph H ′

of H and a set L′
1, . . . , L

′
k of LRTs of H ′ such that Li and L′

i agree on H for

all i. Furthermore, Lemma 5.4 (i) yields a double cover L′′ of LRTs of H ′

that maintains this property.

Now, let K ′ be the set of edges in H ′ that are traversed once in each

direction by the LRTs in L′′. Since H ′ is finite, we can apply Theorem 7.5

to it and see that K ′ is a cut in H ′. From Lemma 5.4 (ii) we know that Z

is also a circuit in H ′ and thus, with Lemma 2.3, we obtain that |Z ∩ K ′| is

even. But since Z ⊆ E(H), we have that |Z ∩ K| = |(Z ∩ E(H)) ∩ K| =

|Z ∩ (E(H) ∩ K)| = |Z ∩ (E(H) ∩ K ′)| = |(Z ∩ E(H)) ∩ K ′)| = |Z ∩ K ′|,

which is even, and thus K ∈ C∗(G).

Similarly, we will show that Y ∈ C(G). From Theorem 2.2 we know that

Y ∈ C(G) if and only if |Y ∩ F | is even for every finite cut F in G. So let F

be given. Then let H be a finite subgraph of G such that F ⊆ E(H).

By using Lemma 5.3 on G and H, we obtain a finite plane supergraph H ′

of H and a set L′
1, . . . , L

′
k of LRTs of H ′ such that Li and L′

i agree on H.

Furthermore, Lemma 5.4 (i) yields a double cover L′′ of LRTs of H ′ that

maintains this property.

Let Y ′ denote those edges of the LRTs L′′
i ∈ L′′ in H ′ that are traversed

both times in the same direction by some L′′
i . Since H ′ is finite, Theorem 7.5

yields that Y ′ ∈ C(H ′). Using Lemma 5.4 (iii), we obtain that F is also a

cut in H ′ and thus, by Theorem 2.2, we see that |F ∩ Y ′| is even. But since

F ⊆ E(H), we have |F∩Y | = |F∩(E(H)∩Y )| = |F∩(E(H)∩Y ′)| = |F∩Y ′|,

which is even. Therefore Y ∈ C(G), which concludes the proof.

As Richter and Shank already noted, their theorem gives another proof —

for the case of plane graphs — of the well-known fact that the edges of any

finite graph may be partitioned into a cycle space element and a cut. This

follows from a theorem of Gallai (T. Gallai (unpublished), we refer the reader



67

to [20]). The same is true for Theorem 7.6. Using the cycle space as defined

by Diestel and Kühn, Gallai’s theorem has been extended to the infinite case:

Theorem 7.7 (Bruhn, Diestel & Stein [4]).

For every locally finite graph G there is a partition of its vertex set into

two (possibly empty) sets V1, V2 such that both E(G[V1]) and E(G[V2]) are

elements of the cycle space of G.

The edges of a locally finite graph G thus may be partitioned into the

sets Z:=E(G[V1])∪E(G[V2]) and F , where F is the set of G[V1]−G[V2] edges.

By Theorem 7.7, we obtain that Z ∈ C(G), while by the definition of a cut,

it holds that F ∈ C∗(G). Hence, the edge set of a locally finite graph may be

partitioned into an element of the cycle space and a (possibly empty) cut, for

which Theorem 7.6 provides an alternate proof in the case of plane graphs.





Chapter 8

Pedestrian Graphs

In the last chapter we have seen that things become a little easier if we

consider the special case of pedestrian graphs. We have also seen examples

of locally finite graphs where we lose a certain uniqueness that was given in

the finite case:

Figures 1.2 and 3.1 show an edge e that is in some sense ambiguous — it

is contained in an infinite bicycle, but there also exist infinite Y, Z ∈ C(G)

such that e ∈ Y with Y + e ∈ C∗(G), and also Z ∈ C(G) with e /∈ Z and

Z + e ∈ C∗(G). Hence, the tripartition of edges ceases to be a partition if all

of B, Y, Z are infinite.

Another example is given at the end of Chapter 6: As opposed to finite

graphs, a locally finite graph can contain ‘more’ LRTs in the sense that they

cover the entire edge set more than twice, yet there is still no distinguished

double cover of LRTs, since in the example of the double ladder none of the

double covers suffices to generate all of B.

There is another theorem which, when extended to locally finite graphs,

fails because a certain ambiguity arises. Recall from Chapter 7 that H1, H2

denote the two halves of a tour with respect to the edge e.

Theorem 8.1 (Richter & Shank [22]).

Let G be a finite plane graph, and let e be an edge of G.

(i) If e lies in two distinct LRTs, say L and L′, then e is a bicycle edge

and both △L and △L′ are bicycles.
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(ii) If e is consistent in an LRT L, then e is of cycle-type, and △H1 and

△H2 are each a principal cut of e.

(iii) If e is inconsistent in an LRT L, then e is of cut-type, and △H1 and

△H2 are each a principal cut of e.

In finite graphs, LRTs are also LRSs and hence form a double cover.

Assuming that L is a double cover of tours in |G|, assertion (i) remains true in

locally finite graphs. We have already shown in Theorem 5.5 that the residue

of any LRT is a bicycle. If e is contained in two different LRTs L,L′ ∈ L it can

appear only once in each of them, and therefore, in particular, e ∈ △L ∈ B.

However, (ii) and (iii) may become false — even when only considering

LRTs that form a double cover. Indeed, the edge e in Figure 8.1 lies twice

in the drawn LRT, but it is neither of cycle- nor of cut-type but instead is a

bicycle edge. Yet there is a double cover containing this LRT.

e

e

Figure 8.1: A counterexample to (ii) in Theorem 8.1

Furthermore, in Figure 8.2 the edge e is consistent in the drawn LRT L

and is of cycle-type. Yet the residue of each half △H1,△H2 is an infinite cut,

which is therefore not principal. In addition, any other LRS not contained

in L is of the form S and is therefore finite. Thus, there exists no other LRT

containing e only once.
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e

e

S L

Figure 8.2: The edge e is of cycle-type, yet neither △H1 nor △H2 is
a principal cut.

Let us note that given a plane graph G not containing any nonempty

bicycle, we know by Theorem 5.5 that for any LRT L of |G| its residue is

empty, hence it traverses every edge of G exactly twice. Therefore, for any

edge e in G it holds that △L = △H1 + △H2 for the two halves of L with

respect to e. Since B(G) = {∅}, we have that △L = ∅ and obtain △H1 =

△H2. In this chapter, we therefore use the notation △He:=△H1 = △H2.

So let us return to Theorem 8.1 that fails for locally finite graphs. We can

show that it does not fail completely, but instead extends to locally finite

graphs when considering pedestrian graphs.

Lemma 8.2.

Let G be a locally finite plane pedestrian graph, and let e be an edge of G.

Then the following hold:

(i) The edge e does not lie in two distinct LRTs.



72 Pedestrian Graphs

(ii) If e is consistent in the LRT L, then e is of cycle-type, and △He is the

principal cut of e.

(iii) If e is inconsistent in the LRT L, then e is of cut-type, and △He is the

principal cut of e.

Proof. For (i), we assume that e lies in two different LRTs, one of which we

call L. Then, by Theorem 5.5, we have e ∈ △L ∈ B. Since G is pedestrian,

we know that B is empty. Hence we obtain a contradiction.

To see (ii) and (iii), we first recall that in a pedestrian graph the prin-

cipal cuts are unique. Since G is pedestrian, Theorem 5.5 tells us that the

residue of any LRT in G must be empty. We may assume that G is connected

since otherwise we could consider the connected component of G which con-

tains e. Thus, all edges of G are traversed twice by the same LRT L. Using

Lemma 5.1 (iii), we see that L forms a double cover of E(G), and since G is

plane, Theorem 7.4 then implies that this is an algebraic diagonal. Therefore,

△He is a cut. Since He + e is a closed walk in G (whether e is consistent in

L or not), the sum of its edges modulo 2 is an element of the cycle space,

and hence △He + e ∈ C(G).

Now, suppose that △He is an infinite set. Since e is not a bicycle edge,

by Theorem 3.2 there exist Z ∈ Cfin(G) and K ∈ C∗
fin(G) with e = Z +K. By

assumption, △He is infinite and thus, in particular, △He 6= K. Then, since

e+Z = K, we obtain △He+e+Z = △He+K, or, (△He+e)+Z = △He+K.

Since △He +e ∈ C(G) and Z ∈ C(G) while △He ∈ C∗(G) and K ∈ C∗(G), we

see that (△He + e) + Z = △He + K is a non-empty bicycle since △He 6= K.

Since G is pedestrian, this is a contradiction. Therefore, |△He| is finite, and

because the principal cut in a pedestrian graph is unique, it follows that

△He = K = e + Z. Hence, △He is the principal cut of e.

Furthermore, if e is consistent in L, we know that e /∈ △He, and therefore

△He+e is a principal cycle of e since e ∈ (△He+e) ∈ C(G) and △He ∈ C∗(G).

Thus, e is of cycle-type. Similarly, if e is inconsistent in L, we have e ∈ △He,

and therefore △He is a principal cut of e since e ∈ △He ∈ C∗(G) and

(△He + e) ∈ C(G). Thus, e is of cut-type.
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These observations motivate us to further examine the class of locally

finite pedestrian graphs. In finite graphs there is a simple characterization

for pedestrian graphs:

Theorem 8.3 (Chen [9]).

A finite graph G is pedestrian if and only if the number of spanning forests

of G is odd.

Since the number of spanning trees in a locally finite graph is usually

infinite, this theorem certainly cannot hold for infinite graphs. In addition,

the usual definition of a (finite) spanning tree fails to comprise the notion of

spanning trees properly when used for infinite graphs: It is possible that an

edge set T is a tree and covers all vertices of the graph, and yet |T | contains

an infinite cycle (cf. for example Figure 2 in [12]).

This motivates the definition of a topological spanning tree of a graph G:

this is an arc-connected standard subspace of |G| that contains every vertex

and every end, but contains no circle. And indeed, fundamental properties

such as the fact that the fundamental cycles with respect to a spanning tree

generate the entire cycle space of the underlying graph hold in locally finite

graphs precisely for the topological spanning trees.

Theorem 8.4 (Diestel & Kühn [12]).

Let G be a locally finite connected graph, and let T be any spanning tree of G.

Then the closure of T in |G| is a topological spanning tree of G if and only

if the fundamental circuits of T generate C(G).

But the notion of a topological spanning tree still does nothing to fix the

theorem for locally finite graphs. In general, the number of their topological

spanning trees is infinite.

Consider for example the double ladder in Figure 8.3. Simply taking all

edges of the form uiui+1 from the upper double ray and all edges of the form

wiwi+1 from the lower double ray, together with all ‘half rungs’ uivi would

be our approach to constructing a spanning tree with the notion of finite

spanning trees in mind. In this case though, this edge set would contain an
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u0 u1 u2

v0 v1 v2

w0 w1 w2

Figure 8.3: A graph with infinitely many topological spanning trees.

infinite cycle of its underlying graph, ie. the circle consisting of both double

rays and both ends. Therefore, this edge set is not a topological spanning tree.

But removing any edge from any of the two double rays fixes the problem: For

example, in Figure 8.3 we removed the edge u0u1 from the edge set described

above. This yields the topological spanning tree indicated in our figure. But

we note that another topological spanning tree for the same graph is obtained

by using the other ‘half’ of any rung — for example, deleting an edge uivi

from our edge set and instead adding the edge viwi results in an edge set

that still covers all vertices and all ends, and is indeed another topological

spanning tree of the graph. Since we already have infinitely many choices for

this operation (we can do this for any i), we see that the graph in Figure 8.3

has an infinite number of topological spanning trees.

Similar to the definition of topological spanning trees, a topological span-

ning forest is the closure in |G| of a spanning forest of G that does not contain

any (finite or infinite) cycles. We will show that if in a locally finite graph

the number of topological spanning forests happens to be finite, then Theo-

rem 8.3 still holds. To see this, let us cite two more results about spanning

trees in infinite graphs. Recall that a normal spanning tree T of a graph G

is, just as in finite graphs, a rooted spanning tree of G such that any two

adjacent vertices of G are comparable in the tree-order of T .

Theorem 8.5 (Jung [17]).

Every countable connected graph has a normal spanning tree.

Lemma 8.6 (Diestel & Kühn [14]).

The closure of any normal spanning tree is a topological spanning tree.
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Proofs of these statements can also be found in [11]. Now, let us return

to pedestrian graphs.

Theorem 8.7.

Let G be a locally finite graph which has only a finite number of topological

spanning forests. Then G is pedestrian if and only if the number of topological

spanning forests of G is odd.

Proof. Since G has only finitely many topological spanning forests, every

component Ki of G can have only finitely many topological spanning trees.

So let us consider such a connected component Ki whose number τ(Ki) of

topological spanning trees is finite. We will first show that there exist only

finitely many finite cycles in Ki.

Since Ki is locally finite, it is in particular countable. Hence, by Theo-

rem 8.5, there exists a normal spanning tree T of Ki. Applying Lemma 8.6,

we know that its closure T in |Ki| is a topological spanning tree. Let F con-

sist of the edges of E(Ki) that are not in E(T ), ie. F :={e | e ∈ E(Ki)\E(T )}.

We now show that F is finite. For assume that this is not the case. Then for

every edge f ∈ F we may consider its fundamental circuit Cf with respect

to T . Thus there exists at least one other edge f 6= f ′ ∈ C such that the

closure of T ′:=(T \{f ′})∪{f} is also a topological spanning tree of Ki. If |F |

is infinite, then there exist infinitely many such T ′, similar to our argument

above (see also Figure 8.3). But this contradicts the fact that τ(Ki) is finite.

Since T is a tree, every finite cycle C in Ki contains an edge e ∈ F . Since

|F | is finite and Ki is locally finite, it follows that there exist only finitely

many finite cycles in Ki.

Therefore, there exists a finite subgraph H of Ki such that Ki\H contains

no finite cycle. We will show that Ki also contains no infinite cycle and

therefore, C(Ki) = C(H). The fundamental circuits of T and T are the same,

and since T is connected, every fundamental circuit with respect to T is finite.

From Theorem 8.4 we know that every circuit in Ki is a sum of fundamental

circuits with respect to T . Since there are only finitely many finite cycles

in Ki, in particular, there exist only finitely many fundamental circuits with
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respect to T in Ki. Thus, any sum of these circuits needs to be finite as well.

Therefore Ki cannot contain an infinite cycle.

So Ki \ H is a forest, and hence there exists exactly one set of edges,

say E ′, such that E ′ covers all vertices of Ki \ H (if Ki \ H is connected

then this is the edge set of the unique topological spanning tree, otherwise

E ′ induces a forest). Let β(H) be the number of topological spanning forests

of H. Then every such forest corresponds to exactly one topological spanning

tree of Ki since they all agree on Ki \H. Hence, we have τ(Ki) = β(H) and

therefore τ(Ki) is odd if and only if β(H) is odd. Applying Theorem 8.3 to

the finite graph H we know that β(H) is odd if and only if H is pedestrian,

which again holds if and only if Ki is pedestrian because B(H) = B(Ki) since

C(H) = C(Ki) and every cut in H induces a cut in Ki. Thus, τ(Ki) is odd if

and only if Ki is pedestrian.

Let β(G) be the number of topological spanning forests of G. Then it

holds that β(G) =
∏

i τ(Ki) and therefore we conclude that β(G) is odd if

and only if τ(Ki) is odd for every i. It remains to show that G is pedestrian

if and only if every component Ki of G is pedestrian.

Since C(Ki) ⊆ C(G) and C∗(Ki) ⊆ C∗(G) for all i, we obtain that B(Ki) ⊆

B(G). Hence, we have that every Ki is pedestrian if G is pedestrian. On the

other hand, if G is not pedestrian, then there exists some bicycle B in G.

By Theorem 2.4 it follows that B would also meet some Bi ∈ C(Ki), and

since B ∈ C∗(G) and B ∩ C∗(Ki) 6= ∅, it holds that Bi ∈ C∗(Ki), too. Thus,

B(Ki) 6= ∅, and Ki is not pedestrian. Hence, Ki is pedestrian for every i

if and only if G is pedestrian. Altogether we have thus shown that G is

pedestrian if and only if Ki is pedestrian for every i which holds if and only

if τ(Ki) is odd for every i (by our above argument), which is the case if and

only if β(G) is odd, meaning the number of topological spanning forests of G

is odd.

Our aim is to obtain a better idea of what locally finite pedestrian graphs

look like. Theorem 8.7 tells us that the number of their spanning forests
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must be odd in case it is finite. So if a locally finite graph contains only

finitely many finite cycles, then we know that it is pedestrian if and only if

the number of its spanning forests is odd.

There is another characterization of pedestrian graphs which can be found

in [16].

Lemma 8.8.

A finite graph G is pedestrian if and only if for every subgraph H of G it

holds that E(H) = Z + K for some Z ∈ C(G) and some K ∈ C∗(G).

This extends to the locally finite case as follows:

Lemma 8.9.

A locally finite graph G is pedestrian if and only if for every finite subgraph H

of G it holds that E(H) = Z+K for some Z ∈ Cfin(G) and some K ∈ C∗
fin(G).

Proof. First, let us assume that G is pedestrian. Then by Theorem 3.2 we

know that for every edge e ∈ E(G) there exist Ze ∈ Cfin(G) and Ke ∈ C∗
fin(G)

such that e = Ze+Ke. Now let H be some given finite subgraph of G, and let

F :=E(H). Then F =
∑

e∈F e =
∑

e∈F (Ze + Ke) =
∑

e∈F Ze +
∑

e∈F Ke =:

ZF +KF , with ZF ∈ Cfin(G) and KF ∈ C∗
fin(G) since F is finite by assumption.

For the reverse implication, let us assume that G is not pedestrian. Hence,

the graph G contains some bicycle B. Then, again by Theorem 3.2, we know

that for every edge e ∈ E(B) there exist no Z ∈ Cfin(G) and K ∈ C∗
fin(G)

such that e = Z + K. Thus the set {e} induces a finite subgraph H of G

such that its edge set cannot be represented in the form E(H) = Z +K with

Z ∈ Cfin(G) and K ∈ C∗
fin(G).

We remark that the lemma holds not only for finite subgraphs H of G, but

more generally for arbitrary finite subsets of E(G), with the same proof.

We note that the restriction to finite subgraphs in Lemma 8.9 is indeed

necessary. When also admitting infinite subgraphs, for example the graph G

itself, we certainly need to allow infinite cuts and cycle space elements as

well, since otherwise there is no hope of finding two edge sets constituting
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an infinite set of edges. As a counterexample, consider Figure 8.5. Choosing

the graph G as our subgraph, we know that there exist no finite Z ∈ Cfin(G)

and K ∈ C∗
fin(G) such that E(G) = Z + K, since E(G) is an infinite set. Yet

the graph G is pedestrian. There do, however, exist infinite elements of C(G)

and C∗(G) which together constitute all edges of G: Let Z be the edges of the

upper and lower rays together with the leftmost rung of G. Then this edge

set forms an infinite cycle. On the other hand, the remaining edges (ie. all

rungs except for the leftmost) form an infinite cut: let the middle vertices on

these rungs form one partition class and let all other vertices constitute the

other partition class. Thus, there exist infinite sets Z ∈ C(G) and K ∈ C∗(G)

with E(G) = Z + K.

But the theorem will not extend to arbitrary subgraphs if we allow the

infinite elements in C(G) and C∗(G) as summands. Figure 1.2 will serve

as a counterexample. Here, the infinite graph G is not pedestrian, yet there

exists an infinite element of the cycle space and an infinite cut which together

constitute all edges of G: Let Z ∈ C(G) be the edges of the two double rays,

which form a circle in the space |G|, and let K ∈ C∗(G) be the set of all

rungs. Then K is an infinite cut since all vertices on the upper double ray

provide one partition class, while the vertices on the lower double ray form

the other partition class. Thus, there exist Z ∈ C(G) and K ∈ C∗(G) with

E(G) = Z + K, yet the graph G contains a bicycle indicated by the bold

edges in Figure 1.2.

For planar graphs, we can choose a different approach to characterize

pedestrian graphs. From Theorem 5.5 we know that since plane pedestrian

graphs do not contain any nonempty bicycles, the residue of every left-right

tour must be empty. This means that the entire edge set of the graph is

covered twice by only a single LRT. Intuitively one might think that this

limits the number of ends a locally finite pedestrian graph can contain, and

it seems even more likely that an end cannot have too large a degree.

Figure 8.4 gives an example of a locally finite pedestrian graph with a

single end that has degree one; Figure 8.5 shows a locally finite pedestrian

graph which is 2-connected and has a single end of degree two. The dotted
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lines indicate the single LRT in each graph.

Figure 8.4: A pedestrian graph with an end of degree one.

Figure 8.5: A pedestrian graph can have an end of degree two.

Surprisingly though, there is no limit to the degree of an end in a locally

finite pedestrian graph. Figure 8.6 gives an example of a locally finite pedes-

trian graph with a (single) thick end, ie. an end that contains infinitely many

disjoint rays. One can see that the subgraphs in this graph follow a certain

structure and that with every vertical level towards the right in our figure,

the number of these subgraphs increases by one. Hence for every k ∈ N there

exists a ‘next’ level (further right) in which k + 1 disjoint rays belonging to

ω begin.

By modifying the graph in Figure 8.6 a little we can stop the ‘growth’

that comes from adding subgraphs in every level and attain an end which

contains any desired number of disjoint rays (at least three). Together with

the examples from Figure 8.4 and Figure 8.5 this shows:

A locally finite pedestrian graph can contain an end of arbi-

trary (including infinite) degree.
(8.1)
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Figure 8.6: A locally finite pedestrian graph can have a thick end.
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So is it possible, on the other hand, to control the number of ends in

a locally finite pedestrian graph? Unfortunately, again, the answer is no.

Figure 8.7 shows how we can pick any number of our illustrated locally finite

pedestrian graphs with a certain end degree (in this case it is the graph

from Figure 8.4 with degree one), connect them in the illustrated way with

edges and obtain again a locally finite pedestrian graph. This construction

also works for the other pedestrian graphs we have presented; the left-right

strings ‘connect up’ properly as long as we add zero or an even number of

edges to the new path that joins the different copies of the graphs. The new

left-right strings thus obtained will then still form a single left-right tour.

Figure 8.7: Constructing a pedestrian graph with any number of ends.

Thus, we see that:

A locally finite pedestrian graph can contain an arbitrary (in-

cluding infinite) number of ends, each of which can be of ar-

bitrary (including infinite) degree.

(8.2)

In Chapter 2 we have introduced the degree of an end as the maximum

number of disjoint rays it contains. This is sometimes, more precisely, referred

to as the vertex-degree, as opposed to the edge-degree of an end, which is
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the maximum number of edge-disjoint rays it contains. Our observations,

however, hold for both the vertex- and the edge-degree since the number of

edge-disjoint rays is the same as the number of (vertex-) disjoint rays in our

examples.

In hope of finding some other characterization of locally finite pedestrian

graphs, we have studied their subgraphs. Figure 8.7 suggests that some sub-

graphs of locally finite pedestrian graphs should again be pedestrian, but we

have not succeeded at finding a good characterization of this type. Consider

the example in Figure 8.8:

Figure 8.8: A pedestrian graph can have induced subgraphs that are
not pedestrian.

The graph in Figure 8.8 is locally finite and pedestrian (in this case we do

without the LRT since it would blur the structure of the illustrated graph).

And yet, it has the following finite subgraph:

The graph in Figure 8.9 is an induced, 2-connected subgraph of the locally

finite pedestrian graph from Figure 8.8. Furthermore, it is a subgraph whose

deletion yields a collection of infinite components. Yet this graph is not

pedestrian, as the bicycle indicated in Figure 8.9 shows.
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Figure 8.9: An induced subgraph of the graph in Figure 8.8 that
contains a bicycle.
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