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Abstract. Using topological circles in the Freudenthal compactification of a
graph as infinite cycles, we extend to locally finite graphs a result of Oberly

and Sumner on the Hamiltonicity of finite graphs. This answers a question of

Stein, and gives a sufficient condition for Hamiltonicity in locally finite graphs.

1. Introduction

Determining whether a finite graph is Hamiltonian is an active field in graph
theory. The problem to decide whether a finite graph is Hamiltonian is difficult.
This indicates that it should not be easy to find a necessary and sufficient condition
for a graph to be Hamiltonian which can easily be checked. On the other hand,
there are a lot of conditions that are either necessary or sufficient for Hamiltonicity.
In this paper we consider a sufficient condition in terms of forbidden subgraphs,
due to Oberly and Sumner (1979).

In order to state their theorem, we need two definitions. We call a graph lo-
cally connected if the neighbourhood of each vertex induces a connected subgraph.
A graph is called claw-free if it does not contain the graph K1,3 as an induced
subgraph. Now the theorem of Oberly and Sumner is as follows:

Theorem 1.1. [18, Thm. 1] Every finite, connected, locally connected, claw-free
graph on at least three vertices is Hamiltonian.

Most Hamiltonicity results consider only finite graphs. The reason for this is
that it is not obvious what a Hamilton cycle in an infinite graph should be. We
follow the topological approach of [7, 8], which is to take as the infinite cycles of
a graph G the circles in its Freudenthal compactification |G|. It is then natural to
call G Hamiltonian if there is a circle in |G| that contains all vertices of G.

Based on this notion of Hamiltonicity for locally finite connected graphs, some
Hamiltonicity results for finite graphs have already been generalized to locally finite
graphs, see [3, 5, 13, 15]. The most natural candidates for Hamiltonicity theorems
that might generalize to locally finite graphs are probably those based on a local
condition, such as Theorem 1.1: such conditions will be well defined also in infinite
graphs and tend to be susceptible to compactness arguments.

In [19, Question 5.1.3] Stein asks whether Theorem 1.1 can be generalized to
locally finite graphs. We answer this question positively by the following theorem,
which is the main result of this paper.

Theorem 1.2. Every locally finite, connected, locally connected, claw-free graph
on at least three vertices is Hamiltonian.

The structure of this paper is as follows. In Section 2 we recall some basic
definitions and fix some further notation we shall need in this paper. Section 3
contains some facts, lemmas and theorems which we shall need in the proof of the
main result. The proof of Theorem 1.2 together with some corollaries is the content
of Section 4.
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While I was writing this paper, I noticed that Hamann, Lehner and Pott [14] are
investigating similar questions.

2. Basic definitions and notation

In this section, important definitions and notation are listed. Furthermore, some
basic definitions are recalled in order to avoid confusion with regard to the notation.
In general, we will follow the graph theoretical notation of [7] in this paper if nothing
different is stated. For basic facts about graph theory, the reader is also referred
to [7]. Beside finite graph theory, a topological approach to locally finite graphs is
covered in [7, Ch. 8.5]. For a wider survey in this field, see [8].

All graphs which are considered in this paper are undirected and simple. In
general, we do not assume a graph to be finite. For this section, we fix an arbitrary
graph G = (V,E).

The graph G is called locally finite if every vertex of G has only finitely many
neighbours.

For a vertex set X of G, we denote by G[X] the induced subgraph graph of G
with vertex set X. For vertex sets with up to four vertices, we omit the set brackets
and write G[v, w, x, y] instead of G[{v, w, x, y}] where {v, w, x, y} ⊆ V . We write
G−X for the graph G[V \X] and for singleton sets, we omit the set brackets and
write just G − v instead of G − {v} where v ∈ V . For the cut which consists of
all edges of G that have one endvertex in X and the other endvertex in V \X, we
write δ(X).

Let C be a cycle of G and u be a vertex of C. Then we write u+ and u− for the
neighbour of u in C in positive and negative, respectively, direction of C using a
fixed orientation of C. Later on we will not mention that we fix an orientation for
the considered cycle using this notation. We implicitly fix an arbitrary orientation
of the cycle.

Let P be a path in G and T be a tree in G. We write P̊ for the subpath of P which
we obtain from P by removing the endvertices of P . If s and t are vertices of T , we
write sT t for the unique path in T with endvertices s and t. Note that this covers
also the case where T is a path. If Pv = v0 . . . vn and Pw = w0 . . . wk are paths in G
with n, k ∈ N where vn and w0 may be equal but apart from that these paths are
disjoint and the vertices vn, w0 are the only vertices of Pv and Pw which lie in T , we
write v0 . . . vnTw0 . . . wk for the path with vertex set V (Pv) ∪ V (vnTw0) ∪ V (Pw)
and edge set E(Pv) ∪ E(vnTw0) ∪ E(Pw).

For a vertex set X ⊆ V and an integer k ≥ 1, we denote with Nk(X) the set of
vertices in G from which the distance is at least 1 and at most k to X in G. We
write N(X) instead of N1(X), which denotes the usual neighbourhood of X in G.
For a singleton set {v} ⊆ V , we omit the set brackets and write just Nk(v) and
N(v) instead of Nk({v}) and N({v}), respectively. If H is a subgraph of G, we just
write Nk(H) and N(H) instead of Nk(V (H)) and N(V (H)), respectively.

We call G locally connected if for every vertex v ∈ V the subgraph G[N(v)] is
connected.

We refer to the graph K1,3 also as claw. The graph G is called claw-free if it
does not contain the claw as an induced subgraph.

A one-way infinite path in G is called a ray of G. Now an equivalence relation can
be defined on the set of all rays of G by saying that two rays in G are equivalent
if they cannot be separated by finitely many vertices. It is easy to check that
this relation really defines an equivalence relation. The corresponding equivalence
classes of rays under this relation are called the ends of G.

For the rest of this section, we assume G to be locally finite and connected.
A topology can be defined on G together with its ends to obtain a topological



3

space which we call |G|. For a precise definition of |G|, see [7, Ch. 8.5]. It should be
pointed out that, inside |G|, every ray of G converges to the end of G it is contained
in.

Apart from the definition of |G| as in [7, Ch. 8.5], there is an equivalent way of
defining the topological space |G|, namely, by endowing G with the topology of a
1-complex (also called CW complex of dimension 1) and considering the Freudenthal
compactification of G. This connection was examined in [9]. For the original paper
of Freudenthal about the Freudenthal compactification, see [12].

For a point set X in |G|, we denote its closure in |G| by X.
A subspace Z of |G| is called standard subspace of |G| if Z = H where H is a

subgraph of G.
A circle in |G| is the image of a homeomorphism which maps from the unit circle

S1 in R2 to |G|. The graph G is called Hamiltonian if there exists a circle in |G|
which contains all vertices of G. We call such a circle a Hamilton circle of G. For
G being finite, this coincides with the usual meaning, namely that there is a cycle
in G which contains all vertices of G. Such cycles are called Hamilton cycles of G.

The image of a homeomorphism which maps from the closed real unit interval
[0, 1] to |G| is called an arc in |G|. For an arc α in |G|, we call a point x of |G|
an endpoint of α if 0 or 1 is mapped to x by the homeomorphism which defines α.
Furthermore, we say that α ends in a point x of |G| if x is an endpoint of α. A ray
together with the end it converges to is a simple example of an arc. In general, the
structure of arcs is more complicated. An arc may contain 2ℵ0 many ends.

A subspace Z of |G| is called arc-connected if for every two points of Z there is
an arc in Z which has these two points as its endpoints.

Let ω be an end of G and Z be a standard subspace of |G|. Then we define the
degree of ω in Z as a value in N ∪ {∞}, namely the supremum of the number of
edge-disjoint arcs in Z that end in ω. The next definition is due to Bruhn and Stein
(see [4]) and allows us to distinguish the parity of degrees of ends also in the case
where their degrees are infinite. We call the degree of ω even in Z if there exists
a finite set S ⊆ V such that for every finite set S′ ⊆ V with S ⊆ S′ the maximum
number of edge-disjoint arcs in Z whose endpoints are ω and some s ∈ S′ is even.
Otherwise, we call the degree of ω odd in Z.

3. Toolkit

This section covers some facts which we shall need later or for the proofs of the
last two lemmas of this section, Lemma 3.10 and Lemma 3.11. These two lemmas
are very important tools for the proof of the main result. We begin with a basic
proposition about infinite graphs.

Proposition 3.1. [7, Prop. 8.2.1] Every infinite connected graph has a vertex of
infinite degree or contains a ray.

Especially for infinite connected graphs which are locally finite, Proposition 3.1
shows the existence of rays. The proof of this proposition bases on a compactness
argument and is not difficult. Anyhow, we do not state a proof here.

We proceed with a couple of lemmas about connectedness in the topological
space |G| of a locally finite connected graph G.

Lemma 3.2. [11, Thm. 2.6] If G is a locally finite connected graph, then every
closed topologically connected subset of |G| is arc-connected.

It follows from this lemma that being connected is equivalent to being arc-
connected for closed topologically connected subsets of |G|. We shall use this fact
for topologically connected standard subspaces, which are closed by definition.
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The next lemma is a basic tool and gives a necessary condition for the existence
of certain arcs in |G|. To formulate the lemma, we use the following notation. For

an edge set F ⊆ E(G), we denote by F̊ the point set in |G| which consists of all
inner points of edges of F .

Lemma 3.3. [7, Lemma 8.5.3] Let G be a locally finite connected graph and
F ⊆ E(G) be a cut with the sides V1 and V2.

(i) If F is finite, then V1∩V2 = ∅, and there is no arc in |G|\F̊ with one endpoint
in V1 and the other in V2.

(ii) If F is infinite, then V1 ∩ V2 6= ∅, and there may be such an arc.

The following lemma states a graph-theoretical characterization of topologically
connected standard subspaces. By Lemma 3.2, we get also a characterization of
arc-connected standard subspaces.

Lemma 3.4. [7, Lemma 8.5.5] If G is a locally finite connected graph, then a
standard subspace of |G| is topologically connected (equivalently: arc-connected) if
and only if it contains an edge from every finite cut of G of which it meets both
sides.

Now we state a theorem which helps us to verify when every vertex and every
end of a graph has even degree in a standard subspace.

Theorem 3.5. [8, Thm. 2.5] Let G be a locally finite connected graph. Then the
following are equivalent for D ⊆ E(G):

(i) D meets every finite cut in an even number of edges.
(ii) Every vertex and every end of G has even degree in D.

In [8, Thm. 2.5] are actually four equivalent statements involved, but we need
only two of them here. Theorem 3.5 follows from a result of Diestel and
Kühn [10, Thm. 7.1] together with a result of Berger and Bruhn [2, Thm. 5].

Bruhn and Stein showed the following characterization of circles in terms of
vertex and end degrees.

Lemma 3.6. [4, Prop. 3] Let C be a subgraph of a locally finite connected graph
G. Then C is a circle if and only if C is topologically connected and every vertex
or end x of G with x ∈ C has degree two in C.

It should be noted at this point that Theorem 3.5 and Lemma 3.6 are crucial for
the proof of Lemma 3.11.

Now we turn towards claw-free graphs and prove two basic facts about minimal
vertex separators in such graphs.

Proposition 3.7. Let G be a connected claw-free graph and S be a minimal vertex
separator in G. Then G− S has exactly two components.

Proof. Suppose G− S has at least three components. Since S is a minimal vertex
separator, every vertex of S has at least one neighbour in each component of G−S.
Now pick an s ∈ S and neighbours v1, v2, v3 of s which lie in different components
of G−S. Then G[s, v1, v2, v3] is an induced claw. This contradicts our assumption
on G. �

The next lemma is a cornerstone of the constructive proof of Lemma 4.3.

Lemma 3.8. Let G be a connected claw-free graph and S be a minimal vertex
separator in G. For every vertex s ∈ S and every component K of G−S, the graph
G[N(s) ∩ V (K)] is complete.
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Proof. By Proposition 3.7, we know that G− S has precisely two components, say
K1 and K2. Now suppose for a contradiction that the statement of the lemma is
false. Then there exists a vertex s ∈ S such that s has two distinct neighbours
v1, v2 which are not adjacent and lie both in K1 or K2, say in K1. Since S is a
minimal separator, it has at least one neighbour in each component of G− S. Let
v3 be a neighbour of s in K2. Now the graph G[s, v1, v2, v3] is an induced claw in
G, which is a contradiction. �

Before we turn towards the two main lemmas of this section, let us prove a basic
fact about locally connected graphs.

Proposition 3.9. Every connected, locally connected graph on at least three vertices
is 2-connected.

Proof. Let G be a connected, locally connected graph on at least three vertices
and suppose it is not 2-connected. Then G can not be complete. So there exists
a minimal vertex separator which consists just of one vertex, say s, because G is
connected. By minimality, s has neighbours in all components of G− s. Let v1 and
v2 be neighbours of s which lie in different components of G− s. Since G is locally
connected, there exists a path in the neighbourhood of s from v1 to v2. This path
does not meet s but connects two components of G− s. This contradicts that {s}
is a separator in G. �

The following lemma deals with the structure of an infinite, locally finite, con-
nected, claw-free graph G. Roughly speaking, the lemma says that if we separate
any finite connected subgraph from all ends by a finite set S , then this separator
decomposes into minimal vertex separators each of which has neighbours in pre-
cisely two components of G−S , namely in the unique finite component of G−S
and in an infinite component (see Figure 1).

Lemma 3.10. Let G be an infinite, locally finite, connected, claw-free graph and X
be a finite vertex set of G such that G[X] is connected. Furthermore, let S ⊆ V (G)
be a finite minimal vertex set such that S ∩X = ∅ and every ray starting in X has
to meet S . Then the following holds:

(i) G−S has k ≥ 1 infinite components K1, . . . ,Kk and the set S is the disjoint
union of minimal vertex separators S1, . . . , Sk in G such that for every i with
1 ≤ i ≤ k each vertex in Si has a neighbour in Kj if and only if j = i.

(ii) G −S has precisely one finite component K0. This component contains all
vertices of X and every vertex of S has a neighbour in K0.

Proof. Since G[X] is connected, there must be a component of G−S that contains
all vertices of X. Let K0 be this component. We show first that K0 is finite.
Suppose not for a contradiction. Then there is a ray in K0 by Proposition 3.1 since
K0 is locally finite and connected. Using the connectedness of K0 again, there exists
also a ray in K0 that starts in X. No ray in K0 meets the set S because K0 is a
component of G−S . This contradicts the definition of S . By the minimality of
S , we get that every vertex s ∈ S has at least one neighbour in K0. If this would
not be the case, then S − s would be a proper subset of S which no ray can avoid
that starts in X. By the same argument, we also know that every vertex s ∈ S has
at least one neighbour in an infinite component of G−S . Furthermore, we know
that every vertex s ∈ S can have only two neighbours in different components
because G is claw-free. Since G is locally finite and S is finite, G −S has only
finitely many components. So let K1, . . . ,Kk be the infinite components of G−S .
Using that G is infinite, locally finite and connected, the graph G contains a ray
by Proposition 3.1, which implies that k ≥ 1 holds. The previous observations
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ensure that we can partition the set S into vertex sets S1, . . . , Sk where a vertex
s ∈ S lies in Si if and only if s has a neighbour in Ki for every i with 1 ≤ i ≤ k.
This definition implies that Si is a separator in G for each i with 1 ≤ i ≤ k.
Using the minimality of S , we obtain furthermore that each set Si is a minimal
vertex separator in G. This completes the proof of statement (i). It remains to
check that K0 is the only finite component of G−S . Let us consider an arbitrary
vertex s ∈ S . We know that s lies in Si for some i with 1 ≤ i ≤ k. So s has a
neighbour in two components of G−S , namely K0 and Ki. Since G is claw-free,
the vertex s cannot have a neighbour in any other component of G−S . As s was
chosen arbitrarily, we obtain that K0,K1, . . . ,Kk are all components of G − S .
Especially, K0 is the only finite component of G −S and contains all vertices of
X by definition. �

S1

S2

S3

K0

K1

K3

K2

X

Figure 1. Example for Lemma 3.10 with k = 3.

The next lemma is our main tool to prove that an infinite, locally finite, con-
nected graph G is Hamiltonian. In order to apply this lemma, we need a sequence
of cycles of G and a set of vertex sets which fulfill a couple of conditions. While we
obtain a Hamilton circle as a limit object from the sequence of cycles, the vertex
sets act as witnesses to verify that the limit object is really a circle. Let us look
more closely at the idea of the lemma before we state it. We define a limit object
from a sequence of cycles of G by saying that a vertex or an edge of G is contained
in the limit if it lies in all but finitely many cycles of the sequence. Conversely, we
say that a vertex or an edge of G is not in the limit if it lies in only finitely many of
the cycles. Since we have to be able to tell for each vertex and for each edge of G
whether it shall be contained in the limit or not, we have the conditions (i) and (iv)
in the lemma. Condition (i) takes care of even more. It forces every vertex of G to
be in the limit, which must be the case if we want to end up with a Hamilton circle.
To ensure that the limit object becomes a circle, it is enough by Lemma 3.6 to take
care that the limit is topologically connected and that the degree of each vertex and
end is two in the limit. Everything except the right end degree is no problem using
the cycles in the sequence and condition (iv). However, without further conditions
the limit might have ends with degree larger than two. To prevent this problem, we
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use the conditions (ii), (iii) and (v). They guaranty the existence of a sequence of
finite cuts for each end such that each sequence converges to its corresponding end
and the limit object meets each of the cuts precisely twice. This bounds the end
degree by two. Note that it is not easy to get such cycles and vertex sets. The main
work to prove Theorem 1.2 is to construct cycles and vertex sets which fulfill the
required conditions. The way of constructing these objects relies on the structure
of the graph as described in Lemma 3.10.

Lemma 3.11. Let G be an infinite, locally finite, connected graph and (Ci)i∈N be
a sequence of cycles of G. Now G is Hamiltonian if there exists an integer ki ≥ 1
for every i ≥ 1 and vertex sets M i

j ⊆ V (G) for every i ≥ 1 and j with 1 ≤ j ≤ ki
such that the following is true:

(i) For every vertex v of G, there exists an integer j ≥ 0 such that v ∈ V (Ci)
holds for every i ≥ j.

(ii) For every i ≥ 1 and j with 1 ≤ j ≤ ki, the cut δ(M i
j) is finite.

(iii) For every end ω of G, there is a function f : N \ {0} −→ N such that the

inclusion M j
f(j) ⊆M

i
f(i) holds for all integers i, j with 1 ≤ i ≤ j and the

equation Mω :=
⋂∞

i=1M
i
f(i) = {ω} is true.

(iv) E(Ci) ∩ E(Cj) ⊆ E(Cj+1) holds for all integers i and j with 0 ≤ i < j.
(v) The equations E(Ci)∩ δ(Mp

j ) = E(Cp)∩ δ(Mp
j ) and |E(Ci)∩ δ(Mp

j )| = 2 hold

for each triple (i, p, j) which satisfies 1 ≤ p ≤ i and 1 ≤ j ≤ kp.

Proof. We define a subgraph C of G and show that its closure is a Hamilton circle
of G. Let

V (C) =

∞⋃
i=0

V (Ci),

E(C) = {e ∈ E(G) : e ∈ E(Ci) for infinitely many i ≥ 0}.

Note that condition (i) implies V (C) = V (G). So the closure C contains all ends
of G. We get also immediately that E(C) 6= ∅ by condition (v). Furthermore,
condition (iv) implies that for every edge e ∈ E(C) there exists an integer j ≥ 0
such that e ∈ E(Ci) for every i ≥ j. In order to prove that C is a Hamilton circle of
G, we want to apply Lemma 3.6. So we need C to be topologically connected and
that every vertex and every end of C has degree two in C. We prove both of these
statements with two claims. Before we can do this, we need the following claim.

Claim 1. Let X ⊆ V (G) be a finite set of vertices and D ⊆ E(G) be a finite set
of edges. Then there exists an integer j ≥ 0 such that X ⊆ V (Ci) holds for every
i ≥ j and that each edge of D is either contained in E(Ci) for every i ≥ j or not
contained in any E(Ci) for i ≥ j.

SinceX is finite, we can use condition (i) to find an integer q such thatX ⊆ V (Ci)
holds for every i ≥ q. Each edge e of D lies either in at most one cycle C`−1 of the
sequence with ` ≥ 1 or in at least two, say in Cm and Cn with m,n ≥ 0. In the first
case, we know that e does not lie in any E(Ci) for i ≥ `. Using condition (iv), we
obtain in the latter case that e lies in E(Ci) for every i ≥ `′ where `′ = max{m,n}.
Using these observations, we can define a function g : D −→ N by

g(e) =

{
` if ` is the least integer such that e /∈ E(Ci) for every i ≥ `
`′ if `′ is the least integer such that e ∈ E(Ci) for every i ≥ `′.

Since D is finite, we can set j = max{{q}∪{g(e) : e ∈ D}}. The conditions (i) and
(iv) imply that j has the desired properties. This completes the proof of Claim 1.

Now we state and prove the two claims which allow us to apply Lemma 3.6.



8

Claim 2. C is topologically connected and every vertex as well as every end of G
has even degree in C.

Since C is a standard subspace of |G| and contains all vertices of G, it suffices to
show, by Lemma 3.4 and Theorem 3.5, that E(C) meets every nonempty finite cut
in an even number of edges and at least twice. So fix any nonempty finite cut D.
Now take an integer j such that Cj contains vertices from each side of the partition
which induces D and that each edge of D is either contained in E(Ci) for every
i ≥ j or not contained in any E(Ci) for i ≥ j. Since D is finite, we obtain by
Claim 1 that it is possible to find such an integer j. Now we use that the cycle
Cj has vertices in both sides of the partition which induces D. So it must hit the
cut D in an even number of edges and at least twice. The same holds for C by its
definition. This completes the proof of Claim 2.

Claim 3. Every vertex and every end in C has degree two in C.

As noted before, C contains all vertices and ends of G. First, we check that
every vertex has degree two in C. For this purpose, we fix an arbitrary vertex v of
G. Let j be an integer such that v is a vertex of Cj and that each edge which is
incident with v is either contained in E(Ci) for every i ≥ j or not contained in any
E(Ci) for i ≥ j. We can find such an integer j because of Claim 1 and because G
is locally finite, which implies that the cut δ({v}) is finite. Since Cj is a cycle and
v is one of its vertices, v has degree two in Cj and therefore also in C by definition.

For the statement about the ends, we have to show that for every end the max-
imum number of edge-disjoint arcs in C ending in this end is two. We prove first
that the degree of every end must be at least two in C. Afterwards, we show that
the degree of every end is less or equal to two in C.

We already know by Claim 2 that the standard subspace C is topologically
connected. So C is also arc-connected by Lemma 3.2. Therefore, no end has degree
zero in C. Additionally, we know by Claim 2 that every end has even degree in C.
Combining these facts, the degree of every end must be at least two in C.

Now let us fix an arbitrary end ω of G. In order to bound the degree of ω in C
from above by two, we use the cuts δ(M i

j). We know by condition (iii) that there
exists a function f such that Mω = {ω} holds. We prove first that for every arc α
in |G| which ends in ω there exists an integer i′ such that α uses an edge of δ(M i

f(i))

for every i ≥ i′. It is an easy consequence of Lemma 3.3 that every arc that does
not only consist of inner points of edges must contain a vertex. So we fix a vertex
v of α. Now choose i′ such that v does not lie in M i

f(i) for any i ≥ i′. This is

possible because of condition (iii). We know by condition (ii) that the cut δ(M i
f(i))

is finite for every i ≥ i′. Now α is an arc such that v is on one side of the finite cut
δ(M i

f(i)) and ω is in the closure of the other side for every i ≥ i′. So by Lemma 3.3,

the arc α must use one of the edges of δ(M i
f(i)) for every i ≥ i′. Since C contains

only two edges of the cut δ(M i
f(i)) for every i ≥ 1 by condition (v), there can be at

most two edge-disjoint arcs in C that end in ω. This completes the proof of Claim 3.

As mentioned before, we can use Claim 2 and Claim 3 to deduce from Lemma 3.6
that C is a circle in |G|. Furthermore, C is a Hamilton circle since C contains all
vertices of G as we have seen before. �

4. Locally connected claw-free graphs

We begin this section with a lemma that contains the essence of the proof of
Theorem 1.1 which Oberly and Sumner presented in [18, Thm. 1].
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Lemma 4.1. Let G be a locally connected claw-free graph and C be a cycle in G.
Furthermore, let v ∈ N(C) and u ∈ N(v)∩V (C). Then one of the following holds:

(i) For some x ∈ {u+, u−}, there exists a v–x path Px in G whose vertices lie
completely in N(u) such that V (Px) ∩ {u+, u−} = {x} and for every vertex

z ∈ V (P̊x) ∩ V (C) the relations V (Px) ∩ {z+, z, z−} = {z} and z+z− ∈ E(G)
hold.

(ii) The vertices u+ and u− are adjacent in G and there exists a certain vertex
w ∈ (N(u) ∩ V (C)) \ {u+, u−} together with a v–w path Pw in G whose ver-
tices lie completely in N(u) such that u is adjacent to w+ or w−, the vertices

u+, u−, w+, w− do not lie on Pw and for every vertex q ∈ V (P̊w) ∩ V (C) the
relations V (Pw) ∩ {q+, q, q−} = {q} and q+q− ∈ E(G) hold.

Proof. Since G is locally connected, there exists a v–u+ path Q whose vertices lie
entirely in N(u). Let x be the first vertex on Q, in the direction from v to u+,
which lies in {u+, u−}. Now we set Px = vQx.

Before we proceed, we define the following notation. A vertex z ∈ V (P̊x) ∩ V (C)
is called singular if neither z+ nor z− is a neighbour of u. Note that the vertices
z+ and z− are adjacent in G for every singular vertex z ∈ V (P̊x) ∩ V (C) because
otherwise G[z, z+, z−, u] is a claw, which contradicts the assumption on G.

Now we distinguish two cases:

Case 1. Every vertex in V (P̊x) ∩ V (C) is singular.

In this case, we know that the edge z−z+ has to be present for every vertex
z ∈ V (P̊x) ∩ V (C) as noted above. Now the objects x and Px verify that state-
ment (i) of the lemma is true.

Case 2. There exists a vertex in V (P̊x) ∩ V (C) which is not singular.

We may assume that u− and u+ are adjacent because otherwise the edge vu−

or the edge vu+ must exist to avoid that G[u, v, u−, u+] is a claw. Every such edge

corresponds to another path Py with V (P̊y)∩V (C) = ∅ which we could use instead
of Px. Hence, we would be done by Case 1.

Let w be the first vertex in V (P̊x) ∩ V (C) which is not singular by traversing

Px and starting at v. Since w lies in V (P̊x) ∩ V (C), it cannot be equal to u+ or
u−. Additionally, w+ or w− is adjacent to u because w is not singular. Now set
Pw = vPxw. Since V (Px) ∩ {u+, u−} = {x} and x is an endvertex of Px, we get
that neither u+ nor u− lie on Pw. Furthermore, we get that V (Pw) does neither

contain w+ nor w− and each vertex q ∈ V (P̊w) ∩ V (C) is singular because w has

been chosen as the first vertex in V (P̊x)∩V (C) which is not singular by traversing
Px and starting at v. To prove that statement (ii) of the lemma holds in this case, it

remains to show that the edge q+q− is present for every vertex q ∈ V (P̊w)∩ V (C).

By the choice of w, we know that every vertex q ∈ V (P̊w)∩V (C) is a singular vertex

in V (P̊x) ∩ V (C). So all required edges are present by the remark from above. �

To each of the statements (i) and (ii) of Lemma 4.1 corresponds a cycle that
contains the vertex v and all vertices of C. In statement (i), we get such a cycle
using C where we replace the path z−zz+ in C by the edge z−z+ for every vertex
z ∈ V (P̊x) ∩ V (C) and the edge ux of C by the path uvPxx. In statement (ii), we
take C and replace the path u−uu+ of C by the edge u−u+, the edge yw of C by
the path yuvPww for some y ∈ {w+, w−} ∩ N(u) and each path q−qq+ in C by

the edge q−q+ for every vertex q ∈ V (P̊w) ∩ V (C). We call each of these resulting
cycles a path extension of C. A finite sequence of cycles (Ci), where 0 ≤ i ≤ n for
some n ∈ N, is called a path extension sequence of C if C0 = C and Ci is a path
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extension of Ci−1 for every i ∈ {1, . . . , n}. A path Px or Pw as in statement (i)
or (ii), respectively, of Lemma 4.1 is called extension path. The vertices v and u
from Lemma 4.1 are called target and base, respectively, of the path extension (see
Figure 2).

v

uu−
Pu−

C

v

u
u−Pw

C

u+

w

w+

Figure 2. Path extensions of a cycle C with target v, base u and
extension paths Pu− and Pw, respectively.

Note that Theorem 1.1 can be easily deduced from Lemma 4.1 together with
Proposition 3.9.

Now we turn towards the proof of Theorem 1.2, which is the main result of this
paper. The plan to prove this theorem is to construct a sequence of cycles together
with certain vertex sets carefully such that we obtain a Hamilton circle as a limit
object of the sequence of cycles using Lemma 3.11. Lemma 4.3 will be the main
tool for constructing such objects and relies on path extensions of cycles, which we
get as in Lemma 4.1. Before we turn to Lemma 4.3, we state a definition which
captures when a cycle and vertex sets are appropriate for our purpose and prove a
technical lemma about these objects.

Let G = (V,E) be an infinite locally finite, connected, claw-free graph, C be a
cycle of G and S ⊆ N(C) be a minimal vertex set such that every ray starting in
C meets S . Furthermore, let k, Sj and Kj be defined as in Lemma 3.10, f be a
permutation of {1, . . . , k} and m be an integer which satisfies 0 ≤ m ≤ k. Now we
call a tuple (D,Mf(1), . . . ,Mf(m)) good if the following properties hold for every
j ∈ {f(1), . . . , f(m)}:

(a) D is a cycle of G which contains all vertices of C and Si ∪ (N3(Si) ∩ V (Ki))
for each i ∈ {f(1), . . . , f(m)}.

(b) V (Kj) ⊆Mj ⊆ (V \ V (C)) ∪N2(N(C)).
(c) |E(D) ∩ δ(Mj)| = 2.
(d) All vertices of Mj lie either on D or in V \N4(K0).
(e) G[Mj ] is connected.
(f) Mj contains either no or all vertices of Kp for each p ∈ {1, . . . , k}.

We continue with a technical lemma which shows how to get a new good tuple
from an old one using path extensions (see Figure 3 for a sketch of the situation).

Lemma 4.2. Let G = (V,E) be an infinite locally finite, connected, locally con-
nected, claw-free graph, C be a cycle of G which has a vertex of distance at least 3
to N(C) and S ⊆ N(C) be a minimal vertex set such that every ray starting in
C meets S . Furthermore, let k, Sj and Kj be defined as in Lemma 3.10, f be
a permutation of {1, . . . , k} and m be an integer which satisfies 0 ≤ m ≤ k. If
(D,Mf(1), . . . ,Mf(m)) is a good tuple, then (D′,M ′f(1), . . . ,M

′
f(m)) is a good tuple
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too where D′ is a path extension of D with extension path Pz whose
endvertex different from the target let be z and whose base let be u such that
V (Pz) ∪ {u} ⊆ V (K0) \ V (C) ∪S ∪ (N2(N(C)) ∩ V (K0)), and M ′j is defined as
follows for every j ∈ {f(1), . . . , f(m)}:

M ′j =

{
Mj ∪ V (Pz) ∪ {u} if z ∈Mj

Mj \ (V (Pz) ∪ {u}) otherwise.

Proof. We fix an arbitrary integer j ∈ {f(1), . . . , f(m)} and check that the tuple
(D′,M ′f(1), . . . ,M

′
f(m)) is good. Property (a) is valid since (D,Mf(1), . . . ,Mf(m))

is a good tuple and D′ is a path extension of D.
We use the inclusion V (Pz) ∪ {u} ⊆ V (K0) \ V (C) ∪S ∪ (N2(N(C)) ∩ V (K0)),

which holds by assumption, to verify property (b). Since S is a subset of N(C)
and the inclusion V (Kj) ⊆Mj ⊆ (V \ V (C)) ∪N2(N(C)) holds because the tuple
(D,Mf(1), . . . ,Mf(m)) is good, the definition of M ′j implies property (b).

Note for property (c) that D′ has vertices in M ′j and V \M ′j . To see this, we
use property (a) and know therefore that D′ contains vertices with distance at
least 3 to N(C) in N3(S ) ∩ V (Kj) as well as in V (C). These vertices lie in M ′j
and V \M ′j , respectively, because of statement (b). So the cycle D′ hits the cut
δ(M ′j) at least twice, but using the equation |E(D) ∩ δ(Mj)| = 2, which is true since
(D,Mf(1), . . . ,Mf(m)) is a good tuple, and the definition of M ′j , we get that D′ hits
δ(M ′j) precisely twice.

For property (d) we use that D′ is a path extension of D. So it contains all
vertices of D and of V (Pz)∪{u}. Now the statement follows because all vertices in
Mj which have distance at most 4 to K0 are vertices of D by the assumption that
(D,Mf(1), . . . ,Mf(m)) is a good tuple.

Property (e) is obviously valid if M ′j = Mj ∪ V (Pz) ∪ {u} using that G[Mj ] is
connected. So let us consider the case where M ′j = Mj \ (V (Pz)∪{u}). Combining
property (c) and (d), we get that all vertices in M ′j with distance at most 4 to K0

lie on a path P in G[M ′j ] which is induced by the cycle D′. We know by assump-
tion that the inclusion V (Pz) ∪ {u} ⊆ V (K0) \ V (C) ∪S ∪ (N2(N(C)) ∩ V (K0))
holds. Hence, all vertices in N(V (Pz) ∪ {u}) ∩M ′j lie on the path P . Using that
G[Mj ] is connected, we know that each component of G[M ′j ] contains a vertex of
N(V (Pz) ∪ {u}) ∩M ′j . Now the path P ensures that G[M ′j ] consists of precisely
one component, which means that G[M ′j ] is connected.

To show that property (f) holds, we use that the corresponding property with Mj

instead ofM ′j is valid. By the assumption on the extension path, we get the inclusion
V (Pz) ∪ {u} ⊆ V (K0) \ V (C) ∪S ∪ (N2(N(C)) ∩ V (K0)) ⊆ V (K0) ∪S . Now the
definition of M ′j implies that property (f) holds. �

Using Lemma 4.2 we prove the following lemma which, together with Lemma 3.11,
will be the key for the proof of the main theorem.

Lemma 4.3. Let G = (V,E) be an infinite locally finite, connected, locally con-
nected, claw-free graph, C be a cycle of G which has a vertex of distance at least 3
to N(C) and S ⊆ N(C) be a minimal vertex set such that every ray starting in C
meets S . Furthermore, let k, Sj and Kj be defined as in Lemma 3.10. Then there
exists a cycle C ′ with the properties:

(i) V (K0) ∪S ∪N3(S ) ⊆ V (C ′).
(ii) There are vertex sets M1, . . . ,Mk ⊆ V such that the tuple (C ′,M1, . . . ,Mk) is

good.
(iii) E(C−N2(N(C))) ⊆ E(C ′) and the inclusion {u, v} ⊆ (V \V (C))∪N3(N(C))

holds for every edge uv ∈ E(C ′) \ E(C).
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Proof. First we define inductively a sequence of k+1 cycles (C0, . . . , Ck), a bijection
f : {1, . . . , k} −→ {1, . . . , k} and vertex sets M i

j for all integers i ∈ {1, . . . , k} and
j ∈ {f(1), . . . , f(i)} such that each cycle Ci contains no vertices from any Sq for
q ∈ {1, . . . , k} \ {f(1), . . . , f(i)} and each tuple (Ci,M

i
f(1), . . .M

i
f(i)) is good. We

start by setting C0 = C. The tuple which consists only of C and does not contain
any further vertex sets is good because no requirements have to be fulfilled. Since
S ⊆ N(C) holds by definition, we have checked everything for i = 0.

Now suppose we have already defined the sequence of cycles up to Cm with
0 ≤ m < k, the values of f(i) for every i ∈ {1, . . . ,m} and the sets M i

j for all
i ∈ {1, . . . ,m} and j ∈ {f(1), . . . , f(m)}. The definitions of the cycle Cm+1, of the
value of f(m + 1) and of the sets Mm+1

j for each j ∈ {f(1), . . . , f(m + 1)} need
some work. We state and prove two claims before we define these objects.

Claim 1. There are an integer ` ∈ {1, . . . , k} \ {f(1), . . . , f(m)}, a path exten-
sion D1 of Cm which contains precisely one vertex from S` but no vertices from
any Sp with p ∈ {1, . . . , k} \ {f(1), . . . , f(m), `} and vertex sets Aj for every
j ∈ {f(1), . . . , f(m)} such that (D1, Af(1), . . . , Af(m)) is a good tuple.

First we pick a vertex v ∈ S`′ as target of a path extension of Cm where
`′ ∈ {1, . . . , k} \ {f(1), . . . , f(m)}, which is possible since S ⊆ N(C). Let the ver-
tex u ∈ V (C) be the base of the extension and Pz be the corresponding extension
path with endvertices v and z. Furthermore, let s be the last vertex on Pz which lies
in S \

⋃m
i=1 Sf(i), say s ∈ S` with ` ∈ {1, . . . , k}\{f(1), . . . , f(m)}. Now we consider

the path extension D1 of Cm where we choose u again as base but with s as target
together with the path P ′z = sPzz which we use as extension path (see Figure 3).
This way it is ensured that D1 contains precisely one vertex from S \

⋃m
i=1 Sf(i),

namely s.

u
u−

s

v

S`

S`′

Cm

Sf(i)

Pu−

Mm
f(i)

Kf(i) K`

K`′

u
u−

s

v

S`

S`′

Cm

Sf(i)

Pw

Mm
f(i)

Kf(i) K`

K`′
w+

w

u+

Figure 3. Application of Lemma 4.2 with the good tuple
(Cm,M

m
f(1), . . . ,M

m
f(m)) and with the path sPu−u

− or sPww as

extension path whose base and target are u and s, respectively.

To show that we get a good tuple, we apply Lemma 4.2 and define the sets Aj for
every integer j ∈ {f(1), . . . , f(m)} also as in Lemma 4.2 using Mm

j and P ′z. This
completes the proof of Claim 1. Note that the application of Lemma 4.2 is possible
since u was chosen from V (C) ⊆ V (K0) and has a neighbour in S ⊆ N(C). With
the inclusion V (P ′z) ⊆ N(u) we get that V (P ′z) ∪ {u} ⊆ S ∪ (N2(N(C)) ∩ V (K0))
holds.

For the rest of the proof of the lemma, we fix an integer `, a cycle D1 and vertex
sets Aj for every j ∈ {f(1), . . . , f(m)} with the properties as in Claim 1. Now we
proceed with the next claim, which uses these objects.
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Claim 2. There are a path extension D2 of D1 which contains precisely two vertices
from S` and these vertices are adjacent in D2 but contains no vertices from any
Sp where p lies in {1, . . . , k} \ {f(1), . . . , f(m), `} and vertex sets Bj for every
j ∈ {f(1), . . . , f(m)} such that (D2, Bf(1), . . . , Bf(m)) is a good tuple and each Bj

contains either two vertices of S` ∩ V (D2) or no vertex of S` ∪ V (K`).

Let s be the only vertex of D1 which lies in S`. Now we pick a neighbour v of
s in V (K`). There is one because S` is a minimal separator in G and K` is one of
the components of G− S` by Lemma 3.10. Let Pz be the extension path of a path
extension of D1 with target v and base s and let v and z be the endvertices of Pz.
The path Pz must contain vertices in S` because it starts in v ∈ V (K`) and ends in
z, which lies in another component of G − S` since D1 contains only the vertex s
from S` and V (Pz) ⊆ N(s). So let t be the last vertex on Pz starting at v which is
an element of S`. Furthermore, let w be the vertex after t on tPzz. By the choice
of t, we know that w and z lie in the same component of G−S`. Since s lies in the
minimal separator S` and V (Pz) ⊆ N(s), we get by Lemma 3.8 that w and z are
adjacent. Now we define D2 where we distinguish two cases.

Case 1. The vertex w lies in Sj′ for some j′ ∈ {1, . . . , k} \ {f(1), . . . , f(m)}.

Since D1 contains no vertices from Sj′ , we know that t and z lie in N(w) and in
the same component of G−Sj′ . So we get by Lemma 3.8 that t and z are adjacent.
We take the path P ′z = tz as extension path of a path extension of D1 with target t
and base s. Furthermore, we set this path extension of D1 to be D2 (see Figure 4).
Then s and t are the only vertices from S` in D2 and they are adjacent in D2

too. Additionally, we get that D2 contains no vertices from any Sp where p lies in
{1, . . . , k} \ {f(1), . . . , f(m), `} because of the construction of D2 and because D1

has this property too. This completes the definition of the cycle D2 in Case 1.

s S`

D1

Sf(i)

Af(i)

Kf(i)

K` v

t

s+

w

Sj′

Ps+

Kj′

Figure 4. Situation in Case 1 of Claim 2.

Case 2. The vertex w does not lie in Sj for any j ∈ {1, . . . , k} \ {f(1), . . . , f(m)}.

Here we take the path P ′z = twz as extension path of a path extension of D1 with
target t and base s. We set this path extension of D1 to be D2. Note that w cannot
be a vertex of S` due to its choice. So we get that s and t are the only vertices from
S` in D2 and they are adjacent in D2 too. Here we get that D2 contains no vertices
from any Sp where p lies in {1, . . . , k} \ {f(1), . . . , f(m), `} using the assumption
on w together with the construction of D2 and that D1 has this property as well.
With this we complete the definition of D2 for Case 2.
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It remains to define the sets Bj for every j ∈ {f(1), . . . , f(m)} and to check that
all requirements are fulfilled. We do this for both cases in one step where we use the
different definitions of the extension path P ′z. We define Bj as in Lemma 4.2 using
Aj and P ′z. In order to show that (D2, Bf(1), . . . , Bf(m)) is a good tuple, we want
to apply Lemma 4.2 again. We can do this because the definition of P ′z ensures in
each of both cases that the inclusion V (P ′z)∪{s} ⊆ S ∪ (N(N(C))∩V (K0)) holds.

The last thing we have to check is that each set Bj contains either two vertices of
S`∩V (D2) or no vertex of S`∪V (K`). So let us fix an arbitrary j ∈ {f(1), . . . , f(m)}.
Note that Bj cannot contain vertices from S` ∪ (N3(S`) ∩ V (K`)) except s and t
because each such vertex has distance at most 4 to K0 and must therefore lie on
the cycle D2 by property (d) of a good tuple. This is not possible since D2 contains
only s and t from S`. The fact that G[Bj ] is connected by property (e) of a good
tuple and contains no vertices from S` ∪ (N3(S`) ∩ V (K`)) except s and t implies
that Bj does not contain any of the vertices in S`∪V (K`)\{s, t}. The definition of
Bj ensures furthermore that s lies in Bj if and only if t lies in Bj . This completes
the proof of Claim 2.

Let us fix a cycle D2 and vertex sets Bj for every j ∈ {f(1), . . . , f(m)} as in
Claim 2 for the rest of the proof. Now we are able to define the desired cy-
cle Cm+1 together with the value f(m + 1) and the vertex sets Mm+1

j for every

j ∈ {f(1), . . . , f(m+ 1)}. We begin by setting

f(m+ 1) = `.

Before we build the cycle Cm+1, we take a finite tree T` in K` such that the inclusion
N3(S`) ∩ V (K`) ⊆ V (T`) holds. This is possible because K` is connected and G is
locally finite, which implies together with the finiteness of S` that N3(S`) is finite.
To build the cycle Cm+1, we take first D2 and replace the edge st of D2 with
s, t ∈ S` by the path snsT`ntt where ns and nt are vertices in N(s) ∩ V (T`) and

N(t) ∩ V (T`), respectively. Let us call the resulting cycle C̃. Now we build a path

extension sequence (C̃i) of C̃ where we choose the targets always from S` ∪ V (T`)
and the bases always from V (T`) until a cycle in this sequence contains all vertices
of S` ∪ V (T`). This is possible by Lemma 4.1 and because S` ∪ V (T`) is finite. Let

C̃n be the last cycle of the sequence. Then we set

Cm+1 = C̃n.

Since V (Cm) ∪ S` ∪ V (T`) ⊆ V (Cm+1) holds by construction, we obtain that

V (C) ∪
m+1⋃
p=1

(Sf(p) ∪ (N3(Sf(p)) ∩ V (Kf(p)))) ⊆ V (Cm+1)

is true, which is one of the desired properties. Moreover, we get that Cm+1 does
not contain vertices from Sq for any q ∈ {1, . . . , k} \ {f(1), . . . , f(m + 1)}. To see
this, note that all vertices of D2 which lie in S are contained in some Sj where

j ∈ {f(1), . . . , f(m+1)} by definition of D2 and Claim 2. Since C̃ does not contain
any other vertices from S than D2 and we choose the bases of the path extensions
for the sequence (C̃i) always from V (T`) ⊆ V (K`), all vertices of Cm+1 which lie
in S must also be contained in some Sj where j ∈ {f(1), . . . , f(m+ 1)}.

Next we define the sets Mm+1
j for every j ∈ {f(1), . . . , f(m+1)} and verify that

they have the desired properties. We begin by setting

Mm+1
f(m+1) = S` ∪ V (K`).

It is obvious that the inclusions V (K`) ⊆Mm+1
f(m+1) ⊆ (V \ V (C)) ∪N2(N(C)) hold

and that G[Mm+1
f(m+1)] is connected. Furthermore, the definition of Mm+1

f(m+1) implies
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that Mm+1
f(m+1) contains either no or all vertices of Kp for every p ∈ {1, . . . , k}. Since

V (Cm+1) contains all vertices of the set S` ∪V (T`) and N3(S`)∩V (K`) is a subset
of V (T`), we get that all vertices in Mm+1

f(m+1) with distance at most 4 to K0 lie on

Cm+1. It remains to check that the equation |E(Cm+1) ∩ δ(Mm+1
f(m+1))| = 2 holds.

Note that |E(D2) ∩ δ(Mm+1
f(m+1))| = 2 is true because D2 contains only two vertices

of S` and these vertices are adjacent in D2 by Claim 2. The construction of Cm+1

ensures that all edges in E(Cm+1) \E(D2) lie in G[Mm+1
f(m+1)]. So only two edges of

Cm+1 meet the cut δ(Mm+1
f(m+1)).

By Claim 2, we know that D2 contains precisely two vertices s, t which lie in
S`. We know furthermore by Claim 2 that either s and t or none of them is an
element of Bj for every j ∈ {f(1), . . . , f(m)}. Now we make the following definition
for every j ∈ {f(1), . . . , f(m)}:

Mm+1
j =

{
Bj ∪ S` ∪ V (K`) if s, t ∈ Bj

Bj otherwise.

Let us fix an arbitrary j ∈ {f(1), . . . , f(m)} and verify the desired properties. It
is obvious that G[Mm+1

j ] is connected because G[Bj ] is connected by Claim 2

and property (e) of a good tuple. It is also easy to see that the two inclusions
V (Kj) ⊆Mm+1

j ⊆ (V \ V (C)) ∪N2(N(C)) are true since the corresponding result

with Bj instead of Mm+1
j holds by Claim 2 and property (b) of a good tuple.

To show that all vertices in Mm+1
j which have distance at most 4 to K0 lie on

Cm+1, it suffices to check the case where Mm+1
j = Bj ∪S` ∪V (K`) by Claim 2 and

property (d) of a good tuple. Since all vertices in Bj which have distance at most 4
to K0 lie on Cm+1 as well as all vertices in S`∪V (T`) where N3(S`)∩V (K`) ⊆ V (T`),
we get that all vertices in Mm+1

j with distance at most 4 to K0 lie on Cm+1.

Now we check that the cycle Cm+1 meets precisely two edges of the cut δ(Mm+1
j ).

In the case where Mm+1
j = Bj holds, we know that Bj does not contain any vertices

of S` ∪ V (K`) because of Claim 2. The equation |E(D2) ∩ δ(Bj)| = 2 is also true
by Claim 2 and property (c) of a good tuple. Since all edges of E(Cm+1) \ E(D2)
lie in G[S` ∪ V (K`)], the cycle Cm+1 hits still precisely two edges of the cut δ(Bj).

So let us consider the case where Mm+1
j = Bj ∪ S` ∪ V (K`). Here we know by

Claim 2 that Bj contains the vertices s and t from S` ∪ V (K`) but no other vertex
of this set. By Claim 2 and property (c) of a good tuple, we know additionally that
the equation |E(D2) ∩ δ(Bj)| = 2 holds. In this case, the equation implies that also

|E(D2) ∩ δ(Mm+1
j )| = 2 is true. Since all edges of E(Cm+1) \E(D2) lie completely

in G[Mm+1
j ], the cycle Cm+1 meets the cut δ(Mm+1

j ) precisely twice.

It remains to prove that Mm+1
j has the property that it contains either no or all

vertices of Kp for each p ∈ {1, . . . , k}. We know that this is true for Bj by Claim 2

together with property (e) of a good tuple and so the definition of Mm+1
j implies

again that Mm+1
j has this property. So the tuple (Cm+1,M

m+1
f(1) , . . .M

m+1
f(m+1)) has

all desired properties. This completes the construction of the sequence (C0, . . . , Ck)
of cycles.

To complete the proof of this lemma, we take now a path extension sequence (Ĉi)
of Ck where we choose the targets and bases always from V (K0) until a cycle in
this sequence contains all vertices of K0. Note that V (K0) is finite by its choice and

Lemma 3.10. Let ĈM be the last cycle of the sequence. Then we set C ′ = ĈM . The
construction of the cycle Ck ensures that V (C) ∪S ∪ (N3(S ) \ V (K0)) ⊆ V (Ck)
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holds. Hence, the inclusion V (K0) ∪ S ∪ N3(S ) ⊆ V (C ′) is true as desired for
statement (i) of this lemma.

For each cycle Ĉi, we define now vertex sets M̂ i
j for every j ∈ {1, . . . , k} such

that each tuple (Ĉi, M̂
i
1, . . . , M̂

i
k) is good. If we have constructed these vertex sets,

statement (ii) of this lemma holds by setting Mj = M̂M
j for every j ∈ {1, . . . , k}.

For i = 0, the construction of Ck ensures that M̂0
j = Mk

j is a valid choice for every
j ∈ {1, . . . , k}.

Now assume we have already defined for every cycle Ĉi with 0 ≤ i ≤ N < M
the corresponding vertex sets M̂ i

j . Let PN be the extension path of the path exten-

sion ĈN+1 of ĈN with base u and endvertex x which is different from the target.

We define the set M̂N+1
j as in Lemma 4.2 for every j ∈ {1, . . . , k} using M̂N

j and
PN together with the base u. With this definition, we only have to check that
we can apply Lemma 4.2, which then ensures that the tuple (Ĉi, M̂

i
1, . . . , M̂

i
k) is

good. Since V (PN ) is a subset of N(u) and u lies in K0 but has a neighbour,
the target of the path extension, which lies in V (K0) \ V (C), we obtain that the
inclusion V (PN ) ∪ {u} ⊆ V (K0) \ V (C) ∪S ∪ (N2(N(C)) ∩ V (K0)) holds. Hence,

Lemma 4.2 is applicable and so the construction of the path extension sequence (Ĉi)
is done. As mentioned before, this finishes the proof of statement (ii) of this lemma.

Finally, we have to show that statement (iii) of the lemma is true. Note that
we have only lost edges of the cycle C by building path extensions. Edges of some
cycle we lose by building a path extension of this cycle have always a neighbour on
the extension path or are incident with the base of the path extension. Since the
bases we have chosen have always a neighbour which does not lie on C and each
extension path lies in the neighbourhood of the corresponding base, we obtain that
all edges of C −N2(N(C)) must also be edges of C ′.

Note for the other part of statement (iii) that each edge e = uv ∈ E(C ′) \E(C)
lies either on a path whose endvertices are in S and whose inner vertices lie in
some of the trees Tj with 1 ≤ j ≤ k or lies on a path extension we have built during
the construction of C ′. In the first case, the inclusion {u, v} ⊆ V \ V (C) is valid.
So let us consider the second case. It is easy to see that for any cycle Z and any
path extension Z ′ of Z with base b each edge f = v1v2 ∈ E(Z ′) \ E(Z) satisfies
{v1, v2} ⊆ N2(b). Either the edge f lies on the corresponding extension path which
lies in the neighbourhood of b or the vertices v1 and v2 are the two neighbours of b
or of some neighbour of b in Z. Now note that during the construction of C ′ we have
always chosen the bases of the path extensions from the set N(N(C)) ∪ V \ V (C).
So the inclusion {u, v} ⊆ N3(N(C))∪ V \ V (C) holds, which proves the other part
of statement (iii) and completes the proof of the lemma. �

Now we are able to prove Theorem 1.2. As remarked earlier, we want to apply
Lemma 3.11 to prove this theorem. For this purpose, we will use Lemma 4.3 to
obtain a sequence of cycles and vertex sets such that all conditions for the use of
Lemma 3.11 are fulfilled.

Proof of Theorem 1.2. Let G = (V,E) be a locally finite, connected, locally con-
nected, claw-free graph on at least three vertices. For the proof, we may assume
further that V is infinite because Theorem 1.1 deals with the finite case.

We want to define a sequence (Ci)i∈N of cycles of G where each cycle Ci has
a vertex with distance at least 3 to N(Ci). Furthermore, we define an integer
sequence (ki)i∈N\{0} and vertex sets M i

j ⊆ V (G) for every i ∈ N \ {0} and j with
1 ≤ j ≤ ki.
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We start by taking a finite cycle C̃ in G. There exists one since G is 2-connected
by Proposition 3.9. Now we build a path extension sequence of C̃ where we choose
the targets always from N2(C̃) until a cycle in this sequence contains all vertices of

V (C̃) ∪N2(C̃). This is possible by Lemma 4.1 and since G is locally finite, which

implies that V (C̃) ∪ N2(C̃) contains only finitely many vertices. We define C0 to
be the last cycle in the sequence.

Now assume that we have already defined the sequence of cycles up to the cycle
Cm for some m ≥ 0 together with the integer sequence up to km and the vertex sets
M i

j for every i ≤ m where j satisfies always 1 ≤ j ≤ ki. Then let S m+1 ⊆ N(Cm)
be a finite minimal vertex set such that every ray starting in V (Cm) must meet
S m+1. Such a set exists because G is locally finite, which implies that N(Cm) is
finite. Hence, we could get S m+1 by sorting out vertices from N(Cm). Next we set
km+1 as the integer we get from Lemma 3.10. Furthermore, let Sm+1

1 , . . . , Sm+1
km+1

be the minimal separators and Km+1
0 , . . . ,Km+1

km+1
be the components of G−S m+1

which we get from Lemma 3.10. With these objects and the cycle Cm, we can apply
Lemma 4.3 and obtain a new cycle which we set as Cm+1 and vertex sets for every
j, which we set as Mm+1

j where 1 ≤ j ≤ km+1 holds.

Sm
i

Km
i

Sm+1
j

Sm+1
`

Km+1
`

Km+1
j

Mm+1
j

Mm+1
`

Mm
i

Cm+1

Figure 5. The cycle Cm+1 together with the vertex sets from Lemma 4.3.

In order to prove that G is Hamiltonian, we want to use Lemma 3.11. For this
purpose, we show the following claim which tells us that the cycles and vertex sets
are arranged in a correct way (see Figure 5).

Claim 1.

(a) For every vertex v of G, there exists an integer j ≥ 0 such that v ∈ V (Ci) holds
for every i ≥ j.

(b) For every i ≥ 1 and j with 1 ≤ j ≤ ki, the cut δ(M i
j) is finite.

(c) For every end ω of G, there is a function f : N \ {0} −→ N such that the inclu-

sion M j
f(j) ⊆M

i
f(i) holds for all integers i, j with 1 ≤ i ≤ j and the equation

Mω :=
⋂∞

i=1M
i
f(i) = {ω} is true.

(d) E(Ci) ∩ E(Cj) ⊆ E(Cj+1) holds for all integers i and j with 0 ≤ i < j.
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(e) The equations E(Ci) ∩ δ(Mp
j ) = E(Cp) ∩ δ(Mp

j ) and |E(Ci) ∩ δ(Mp
j )| = 2 hold

for each triple (i, p, j) which satisfies 1 ≤ p ≤ i and 1 ≤ j ≤ kp.

We begin the proof of this claim with statement (a). Here we use that the inclu-
sions V (Ki

0) ∪S i ∪N3(S i) ⊆ V (Ci) ⊆ V (Ki+1
0 ) hold for every i ≥ 1 by construc-

tion and Lemma 4.3 (i). Since N(Ki
0) = S i is true by definition and Lemma 3.10,

statement (a) follows.
We fix an arbitrary integer i ≥ 1 and some j which satisfies 1 ≤ j ≤ ki to prove

statement (b). By definition and Lemma 4.3 (ii), we know that M i
j contains either

all or no vertices of Ki
p for every p with 1 ≤ p ≤ ki. Using Lemma 3.10, we obtain

that N(M i
j) ⊆ V (Ki

0)∪S i ∪N(S i). Since Ki
0 and S i are finite by definition and

Lemma 3.10 and G is locally finite by assumption, we obtain that δ(M i
j) is finite.

Let us fix an arbitrary end ω of G for statement (c). We use that for every

i ≥ 1 the end ω lies in precisely one of the closures Ki
1, . . . ,K

i
ki

, say ω ∈ Ki
j where

1 ≤ j ≤ ki, since Ki
0 and S i are finite by definition and Lemma 3.10. Then

we set f(i) = j. Now we show that M j
f(j) ⊆M

i
f(i) holds for all integers i, j with

1 ≤ i ≤ j. Note that it suffices to prove the inclusion M i+1
f(i+1) ⊆M

i
f(i) for every

i ≥ 1. The definition of M i
f(i) and Lemma 4.3 (ii) ensure that G[M i

f(i)] is con-

nected and that the inclusions V (Ki
f(i)) ⊆M

i
f(i) ⊆ (V \ V (Ci−1)) ∪N2(N(Ci−1))

are valid for every i ≥ 1. Note that the definition of f implies the inclusion
V (Ki+1

f(i+1)) ⊆ V (Ki
f(i)) for every i ≥ 1. We need furthermore the observation

that M i+1
f(i+1) does not contain a vertex of S i for any i ≥ 1. To see this, note that

V (Ki
0) ∪S i ∪N3(S i) ⊆ V (Ci) holds for every i ≥ 1 by definition of Ci together

with Lemma 4.3 (i). So the distance between S i and S i+1 is at least 4 for every
i ≥ 1. Now the inclusion M i+1

f(i+1) ⊆ (V \ V (Ci)) ∪N2(N(Ci)) implies that M i+1
f(i+1)

cannot contain a vertex of S i for any i ≥ 1. Since we know for every i ≥ 1
that G[M i+1

f(i+1)] is connected, V (Ki+1
f(i+1)) is a subset of M i+1

f(i+1) and S i separates

V \ (V (Ki
f(i)) ∪S i) from V (Ki

f(i)) by definition and Lemma 3.10, we obtain that

M i+1
f(i+1) ⊆ V (Ki

f(i)) ⊆M
i
f(i) holds for every i ≥ 1.

It remains to prove the equation Mω = {ω}. As noted above, the inclusions
V (Ki

f(i)) ⊆M
i
f(i) ⊆ (V \ V (Ci−1)) ∪N2(N(Ci−1)) are true for every i ≥ 1. So the

definition of f ensures that ω is an element of Mω. Next we show that Mω does
not contain a vertex of G or any other end of G than ω. So let v ∈ V (G) and
ω′ 6= ω be an end of G. This means we can find a finite set of vertices F ⊆ V (G)
such that ω and ω′ lie in closures of different components of G− F . Let q ≥ 1
be an integer such that all vertices of F ∪ {v} are contained in Kq

0 . We can find
such an integer because each vertex w ∈ F ∪ {v} lies in some cycle C`w with
`w ≥ 0 by statement (a). Using that V (Ci) ⊆ V (Ci+1) is true for every i ≥ 0
by construction and Lemma 4.3 (i) together with the fact that the set F ∪ {v}
is finite, we can set q − 1 as the maximum of all integers `w. By definition of
Kq

0 and Lemma 3.10, we obtain that the inclusion F ∪ {v} ⊆ V (Kq
0) holds. This

implies that ω and ω′ lie also in closures of different components of G−V (Kq
0). By

construction and Lemma 4.3 (ii), we know that the graph G[Mq+1
f(q+1)] is connected.

Furthermore, we get that the inclusions Mq+1
f(q+1) ⊆ (V \ V (Cq)) ∪N2(N(Cq)) and

V (Kq
0) ∪S q ∪N3(S q) ⊆ V (Cq) are true. Since the distance from Kq

0 to N(Cq) is

at least 5 by construction, the set Mq+1
f(q+1) cannot contain vertices of Kq

0 . So v is no

element of Mq+1
f(q+1). Now the connectedness of G[Mq+1

f(q+1)] implies that G[Mq+1
f(q+1)]

is a subgraph of the component of G− V (Kq
0) whose closure contains ω. As ω and

ω′ lie in closures of different components of G− V (Kq
0), the end ω′ does not lie in
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the closure of Mq+1
f(q+1) and we obtain that v and ω′ are no elements of Mω. Since

each M i
f(i) is a vertex set, the intersection Mω cannot contain inner points of edges.

Therefore, the equation Mω = {ω} is valid, which shows statement (c).
To prove statement (d), take an edge e ∈ E(Ci) ∩E(Cj) for arbitrary integers i

and j that satisfy 0 ≤ i < j. So both endvertices of e lie in V (Ci) ⊆ V (Ki+1
0 ). Addi-

tionally, the inclusions V (Ki+1
0 ) ∪S i+1 ∪N3(S i+1) ⊆ V (Ci+1) ⊆ V (Cj) are true

by definition of the cycles and Lemma 4.3 (i). Using the equality N(Ki+1
0 ) = S i+1,

we conclude that e ∈ E(Cj −N2(N(Cj))) holds. So we get by definition of the
cycles and Lemma 4.3 (iii) that e lies in E(Cj+1). This completes the proof of
statement (d).

Let us fix an arbitrary p ≥ 1 and j with 1 ≤ j ≤ kp for statement (e). We know
that |E(Cp)∩δ(Mp

j )| = 2 holds by definition of the cycles and Lemma 4.3 (ii). So it

suffices to prove that E(Cp) ∩ δ(Mp
j ) = E(Ci) ∩ δ(Mp

j ) holds for every i ≥ p. Next

let us consider an arbitrary edge e = uv ∈ δ(Mp
j ). We prove now that u and v are

contained in V (Kp
0 ) ∪S p ∪N(S p) where at most one of these two vertices lies in

N(S p) \ V (Kp
0 ). If one of the endvertices of e lies in N(S p) \ V (Kp

0 ), it must be
contained in V (Kp

j′) ∩M
p
j for some j′ which satisfies 1 ≤ j′ ≤ kp. Then the other

endvertex of e lies in N(Kp
j′) ⊆ S p because the set Mp

j must contain all vertices of

Kp
j′ by definition and Lemma 4.3 (ii). So the inclusion {u, v} ⊆ S p∪N(S p) is true.

Otherwise, neither u nor v is a vertex of N(S p)\V (Kp
0 ). As precisely one endvertex

of e lies in V \Mp
j and Mp

j contains either no or all vertices of Kp
q for each q with

1 ≤ q ≤ kp by definition and Lemma 4.3 (ii), we get that neither u nor v lies in any
Kp

q with 1 ≤ q ≤ kp. So both vertices must lie in V (Kp
0 ) ∪S p. Now we prove by

induction on i that every edge e′ = u′v′ ∈ E(Cp)∩ δ(Mp
j ) is an edge of Ci for every

i ≥ p. For i = p, this is obvious. So assume that e′ is an edge of Ci for some i ≥ p.
Note that V (Kp

0 ) ∪S p ∪N3(S p) ⊆ V (Ci) is true for every i ≥ p by definition and
Lemma 4.3 (i). Therefore, the edge e′ lies in E(Ci−N2(N(Ci))), which means that
e′ is also an edge of Ci+1 by definition of the cycles and Lemma 4.3 (iii). This com-
pletes the induction and shows that e′ is an edge of Ci for every i ≥ p. So the inclu-
sion E(Cp)∩δ(Mp

j ) ⊆ E(Ci)∩δ(Mp
j ) is true. We complete the proof of statement (e)

by showing by induction on i that for every i ≥ p the cycle Ci contains no edges of
δ(Mp

j ) but the two which are also edges of Cp. For i = p, this is obvious by defini-

tion of Cp and Lemma 4.3 (ii). So let i > p and e = uv ∈ δ(Mp
j )\E(Cp) be fixed for

this purpose. Using the induction hypothesis, we know that e /∈ E(Ci−1). Now sup-
pose for a contradiction that e is an edge of Ci. Then the definition of Ci together
with Lemma 4.3 (iii) implies that {u, v} ⊆ (V \ V (Ci−1)) ∪ N3(N(Ci−1)) holds.
This leads towards a contradiction because we already know that the inclusion
{u, v} ⊆ V (Kp

0 )∪S p∪N(S p) is valid where {u, v} is no subset of N(S p)\V (Kp
0 ).

That cannot be true since Ci−1 contains all vertices of V (Kp
0 ) ∪S p ∪N3(S p) by

definition of the cycle and Lemma 4.3 (i). This completes the induction and we
get that E(Cp) ∩ δ(Mp

j ) = E(Ci) ∩ δ(Mp
j ) holds for every i ≥ p. So the proof of

statement (e) is done and the claim is proved.

Using the sequence of cycles (Ci)i∈N, the integer sequence (ki)i∈N\{0} and the

vertex sets M i
j for every i ∈ N\{0} and j with 1 ≤ j ≤ ki, we can apply Lemma 3.11

because of Claim 1. So we get that G is Hamiltonian. �

Next we state a couple of corollaries of Theorem 1.2. In order to do this, we
need another definition. For an integer k ≥ 1 and a graph G, the k-th power Gk

of G is the graph with vertex set V (G) where two vertices are adjacent if and only
if the distance between them in G is at least 1 and at most k. The analogues of
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the corollaries for finite graphs are all known and the proofs for the finite versions
are the same as for the locally finite versions. The finite version of the following
corollary is due to Matthews and Sumner [16, Cor. 1].

Corollary 4.4. Let G be a locally finite connected graph with at least three vertices.
If G2 is claw-free, then G2 is Hamiltonian.

The following three corollaries deal with line graphs. It is well known that this
class of graphs forms a subclass of all claw-free graphs. The finite versions of
Corollary 4.5 and Corollary 4.6 are due to Oberly and Sumner (see [18, Cor. 1 and
Cor. 3]).

Corollary 4.5. Let G be a locally finite connected graph with at least three edges.
If its line graph L(G) is locally connected, then L(G) is Hamiltonian.

The proof of the finite version of the next corollary in [18, Cor. 3] shows that for
a graph, the property of being locally connected is preserved under taking the line
graph.

Corollary 4.6. For every locally finite, connected, locally connected graph with at
least three vertices, its line graph is Hamiltonian.

The finite analogue of the next corollary has appeared in a paper of Nebesky
(see [17, Thm. 1]). In [18, Cor. 5] a proof of the finite version of the next corollary
can be found using Theorem 1.1, the finite version of Theorem 1.2.

Corollary 4.7. Let G be a locally finite connected graph with at least three vertices.
Then L(G2) is Hamiltonian.

The finite version of the next corollary is due to Chartrand and Wall (see [6]).
A proof of the finite result using Theorem 1.1 can be found in [18, Cor. 4].

Corollary 4.8. Let G be a locally finite connected graph with δ(G) ≥ 3. Then
L(L(G)) is Hamiltonian.

The following corollary involves another class of graphs. We call a graph chordal
if it has no induced cycle with more than three vertices. Balakrishnan and
Paulraja [1, Thm. 5] proved the finite analogue of the following corollary. They
showed first that a graph which is 2-connected and chordal has also the property
of being locally connected. Then they applied Theorem 1.1.

Corollary 4.9. Every locally finite, 2-connected, chordal, claw-free graph is
Hamiltonian.
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graph, Časopis Pěst. Mat. 98 (1973) 285–287.

[18] D. J. Oberly and D. P. Sumner, Every connected, locally connected nontrivial graph with no

induced claw is hamiltonian, J. Graph Theory 3 (1979) 351–356.
[19] M. Stein, Extremal infinite graph theory, Discrete Math. 311 (2011) 1472–1496.

Karl Heuer, Fachbereich Mathematik, Universität Hamburg, Bundesstraße 55, 20146

Hamburg, Germany


