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Abstract

Solving a problem of Diestel [8] we show that the Freudenthal com-
pactification of a locally finite graph can have connected subsets that
are not path-connected. However we prove that connectedness and path-
connectedness do coincide for all but a few sets, which have a complicated
structure.

1 Introduction

The Freudenthal compactification |G| of a locally finite graph G is a well-studied
space with several applications. For example Cartwright, Soardi and Woess [7]
study it in the context of random walks on infinite graphs and show that it
coincides with the Martin compactification whenever G is a tree (see also Woess
[18]). Polat [17] investigates its subspace topology on the set of vertices and
ends, and relates the existence of certain spanning trees to the metrizability of
this space. Finally Bruhn, Diestel, Kühn and Stein [2-6,8,10-12] use it in order
to define topological notions of paths, cycles and spanning trees, that permit
the extension of classical theorems about finite graphs to infinite ones.

However, the following fundamental problem has remained unsolved:

Problem 1 ([8]). Is every connected subspace of |G| path-connected?

This problem is important: while connectedness is often easy to show, the
construction of topological paths tends to be complicated and technical. Ex-
amples include the construction in [13] of topological spanning trees (defined
as path-connected acirclic subspaces of |G|), or the construction of cycle de-
compositions in [12]: in all these cases the knowledge that ‘connected’ implies
‘path-connected’ for the subspaces considered simplifies the proofs greatly [9].

Diestel and Kühn [13] have shown that every closed connected subspace
of |G| is path-connected, and expressed a belief that the answer to Problem 1
should be positive also in general. However, we shall construct a counterexample
(Section 3):

Theorem 1. There exists a locally finite graph G such that |G| has a connected
subspace which is not path-connected.

While the construction for the proof of Theorem 1 is our main result, we
also prove that ‘most’ connected subsets as above are indeed path-connected
(Section 4):
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Theorem 2. Given any locally finite connected graph G, a connected subspace
X of |G| is path-connected unless it satisfies the following assertions:

• X has uncountably many path-components that consist of one end only;

• X has infinitely many path-components that contain a vertex; and

• every path-component of X contains an end.

Since the existence of a connected but not path-connected subspace was
rather unexpected, I consider it as the main result of this paper and present it
first. The counterexample can well be read by itself, but it may look somewhat
surprising. However, the proof of Theorem 2 will make it less surprising with
hindsight: it will show why the example had to be the way it is.

2 Definitions

We are using the terminology of [9] for graph theoretical concepts and that of
[1] for topological ones.

A 1-way infinite path is called a ray, a 2-way infinite path is a double ray.
Let G = (V, E) be a locally finite graph — i.e. every vertex has a finite degree
— fixed throughout this section. Two rays in G are equivalent if no finite set
of vertices separates them; the corresponding equivalence classes of rays are the
ends of G. We denote the set of these ends by Ω = Ω(G).

Let G bear the topology of a 1-complex1. To extend this topology to Ω, let
us define for each end ω ∈ Ω a basis of open neighbourhoods. Given any finite
set S ⊂ V , let C = C(S, ω) denote the component of G− S that contains some
(and hence a subray of every) ray in ω, and let Ω(S, ω) denote the set of all ends
of G with a ray in C(S, ω). As our basis of open neighbourhoods of ω we now
take all sets of the form

C(S, ω) ∪ Ω(S, ω) ∪ E′(S, ω) (1)

where S ranges over the finite subsets of V and E′(S, ω) is any union of half-
edges (z, y], one for every S–C edge e = xy of G, with z an inner point of e. For
any given such ω and S, pick one of these sets and denote it by O(S, ω). Let
|G| denote the topological space of G∪Ω endowed with the topology generated
by the open sets of the form (1) together with those of the 1-complex G.

It can be proved (see [10]) that in fact |G| is the Freudenthal compactification
[14] of the 1-complex G.

An inner point of an edge of the 1-complex G will be called an edge point.
For any vertex u ∈ V let N i(u) denote the set of vertices of G whose distance

from u is at most i (including u).
A continuous map from the real unit interval [0, 1] to a topological space X

is a (topological) path in X. A homeomorphic image (in the subspace topology)
of [0, 1] in a topological space X will be called an arc in X. We will need the
following lemma from elementary topology [15, p. 208]:

Lemma 1. Every path with distinct endpoints x, y in a Hausdorff space X con-
tains an arc in X between x and y.

1Every edge is homeomorphic to the real interval [0, 1], the basic open sets around an inner
point being just the open intervals on the edge. The basic open neighbourhoods of a vertex x
are the unions of half-open intervals [x, z), one from every edge [x, y] at x.
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3 The counterexample: proof of Theorem 1

In this section we prove Theorem 1. Let G = (V, E) be a graph. A subgraph
consisting of a path xyz of order 3 and three disjoint rays starting at x, y, z
respectively will be called a trident. The path xyz is the spine of the trident,
and the rays are its spikes. The ends of G that contain the rays of the trident
will be called, with slight abuse of terminology, the ends of the trident.

We will now recursively construct an infinite locally finite graph G and a
subgraph X∗, which will be a collection of disjoint double rays of G. At the
same time we will define a sequence of trees {Ti}i<ω of auxiliary use. All vertices
of any Ti, apart from their common root r, will be tridents in G.

Start with two tridents t0, t1 with a common spine, but otherwise disjoint
(Figure 2). Put the three disjoint double rays formed by their spikes in X∗. Let
T0 consist of its root r and t0, t1 each joined to r.

Now perform ω steps of the following type. At step i, consider separately
every trident v in G that is a leaf of Ti. Denote the spikes of v as α, β, γ and
add to G three disjoint double rays and 6 further edges as in Figure 1 (these 6
edges are shown in thin continuous lines) to obtain the three new tridents with
spikes µ, α, ν, and κ, β, λ, and o, γ, ξ. Add these tridents to Ti as neighbours of
v. Let Ti+1 be the tree resulting from such addition of three new tridents at
every leaf of Ti; then Ti+1 has no leaves in common with Ti. For every leaf of
Ti, add to X∗ the three double rays µeµξξ, νeνκκ and λeλoo shown in dashed
lines in Figure 1. (Note that the spikes α, β, γ of the old trident each contain a
spike of one of the new tridents. Thus each ray will eventually participate in an
infinite number of tridents.) Figure 2 shows the graph after the first and part
of the second step.

α
β

γ

µ

ν κ λ o

ξ

eµξ

eνκ eλo

Figure 1: Three new tridents, with spikes µ, α, ν, and κ, β, λ, and o, γ, ξ

Let G be the graph obtained after ω steps, let Ω denote its set of ends, and
put T =

⋃
n∈N

Tn. The vertices of T other than r will be called the T -tridents.
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Figure 2: The first steps of the construction of G. The thick lines depict t0 and t1.

We will call the countably many ends of G that contain some ray of a T -trident
the explicit ends of G. Apart from them, G has continuum many other ends,
which we will call implicit. They consist of rays that each meets infinitely many
double rays of X∗.

We now construct a connected set X ⊂ |G| that is not path-connected. To
start with, let X be the disjoint union of all the double rays in X∗ together
with all explicit ends. The path-components of this preliminary version of X,
each the closure of a double ray, will be the path-components of X containing
vertices, demanded by Theorem 2. In order to supply the singleton ends, we
will now divide the implicit ends between X and its complement in |G|, in such
a way that

neither X nor Ω\X contains a closed set of continuum many ends. (∗)

Since Ω has a countable basis (as a topological subspace of |G|), it has at
most continuum many closed subsets. So we may index those closed subsets of
Ω that contain continuum many ends as Aα, α < γ where γ is at most the initial
ordinal of the continuum.

Then perform γ steps of the following type. At step α, use the fact that
|Aα| ≥ |γ| > |α|, and that only countably many ends in Aα are explicit, to pick
two implicit ends from Aα that were not picked at any of the α earlier steps.
Put one of these in X and the other in Ω\X.

Finally divide the ends that did not get classified during this procedure
arbitrarily between X and Ω\X.

This completes the construction of X, which clearly satisfies (∗). We will
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show that X is a connected but not path-connected subspace of |G|, by proving
the following implications:

• If X is not connected, then Ω\X contains a closed set of continuum many
ends.

• If X is path-connected, then X contains a closed set of continuum many
ends.

In both cases, the validity of condition (∗) is contradicted.
Let us prove the first implication. Suppose X is not connected; then X is

contained in the union of two open sets Or, Og of |G| which both meet X but
whose intersection does not. Colour all points in Or ∩ X red and all points in
Og ∩ X green. Note that every path-component of X, and in particular every
double ray in X∗, is monochromatic, because it is a connected subspace of X.

If t is any T -trident with spine xyz and α one of its ends, then U(t) :=
O({x, y, z}, α) is a basic open set that does not depend on the choice of α; note
that, by virtue of the ‘6 additional edges’ of Figure 1, all three spikes of t have
a subray in the same component of G − {x, y, z}. Then U := {U(t)|t is a T -
trident} is a basis of the open neighbourhoods of the ends of G, because for
every end and every finite S ⊂ V (G) there is a U(t) that contains the end and
misses S.

Let us show that at least one of the T -tridents must contain vertices of both
colours. If not, then all the vertices of t0 and t1 have the same colour, since
double rays in X∗ must be monochromatic. Moreover, every T -trident meets
all its children in T , so all vertices of all T -tridents have the same colour, which
means that X∗∩V is monochromatic. As U is a basis of the open neighbourhoods
of the ends, every open neighbourhood of an end meets X∗ ∩ V , so all ends in
X (as well as, clearly, all edge points in X) also bear the colour of X∗ ∩ V ,
contradicting our assumption that both Or, Og meet X.

Next, we show that if a T -trident t is two-coloured, then there are two-
coloured T -tridents r, s such that U(r), U(s) are disjoint proper subsets of U(t)
(In other words r and s are both descendants of t, but not of each other). Let
the tridents x, y, z be the children of t in T . We may assume that the spike of
t that meets y is green, while its other two spikes are red (Figure 3).

Now consider the three thin double rays in Figure 3. If any of these is green,
then at least two of the tridents x, y, z will be two-coloured. So let us assume
that all those three double rays are red. But now y is coloured like t (one spike
green, the other two red), and we may repeat the argument with y in the place of
t. We continue recursively to find a descending ray y0y1y2 . . . in T (with y0 = t
and y1 = y) of two-coloured tridents. But the sets U(yi) form a neighbourhood
basis of the end ω of the green spike of t. This contradicts the fact that ω ∈ Og

and Og is open.
We have thus shown that T contains a subdivision B of the infinite binary

tree all whose branch vertices are 2-coloured tridents. Let σ = x1x2 . . . be
any descending sequence of branch vertices of B. Then

⋂
i∈N

U(xi) contains a
unique end, ω(σ). As the U(xi) form a neighbourhood basis of ω(σ) and are
all 2-coloured, so σ ∈ Ω\(Or ∪ Og). Since B contains continuum many such
sequences σ, and their corresponding ends ω(σ) are clearly distinct, the set Ω′

of all these ends ω(σ) is a subset of Ω\(Or ∪ Og) containing continuum many
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U(t) =

U(x

U(y

U(z)
)

)
ν

κ λ
o

Figure 3: U(t) and its subneighbourhoods.

ends. As Or ∪ Og is open, the closure of Ω′ still lies in Ω\(Or ∪ Og) ⊆ Ω\X.
This contradicts (∗), and completes our proof that X is connected.

It remains to prove that X is not path-connected. Suppose it is. Then
any two distinct implicit ends x, y ∈ X are connected by a path in X, and by
Lemma 1 there is also an x–y arc A in X. We show that A contains continuum
many ends, which will contradict (∗).

It is easy to confirm (see Lemma 4 below) that A must contain a vertex
of X∗. Clearly, the double ray R ∈ X∗ containing this vertex is a subarc of
A. Let A′ and A′′ denote the path-components of A\R, which are subarcs of A
preceding and following R. As before, A′ and A′′ each contain a double ray from
X∗, R′ and R′′ say. These double rays cannot share an end with R, because by
construction no end contains more than one ray of X∗, hence R′ and R′′ split
A′ and A′′ in two smaller subarcs.

Repeating recursively on each subarc of the previous step, we see that A
contains a set R of infinitely many double rays, arranged like the segments of
the unit interval removed to form the Cantor set. Imitating the corresponding
proof, we see that A contains a set C of continuum many points that are limits
of the ends of the double rays in R. But only ends can be limits of ends, so C
is a set of ends of X.

The arc A is closed because it is compact (as image of the compact space
[0, 1]) and |G| is a Hausdorf space (see [11] for a proof of this fact). The set of
ends that lie on A is also closed, because its complement in |G| consists of the
complement of A in |G| plus a set of vertex and edge points, and each of the
later has an open neighbourhood that avoids all ends. Since this set contains
C, it follows that A contains a closed subset of Ω ∩ X with continuum many
elements contradicting (∗).

This completes the proof that X is not path-connected and hence the proof
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of Theorem 1.

4 Positive results

In this section, X will denote an arbitrary connected subspace of |G|, where
G = (V, E) is an arbitrary locally finite connected graph. We assume that
X does not entirely lie on an edge of G, in which case it would obviously be
path-connected.

The aim of this section is to prove Theorem 2. To this end we will first have
to develop some intermediate results.

For x ∈ X, let c(x) denote the path-component of X that contains x.

Lemma 2. For every point x ∈ X\Ω there is an open neighbourhood U = U(x)
of x such that U ∩ X ⊆ c(x).

Proof.
First assume that x is an inner point of the edge [u, v]. We claim that

one of the closed intervals [u, x], [x, v] lies in X as well. (2)

For suppose not. Then there is a point u′ ∈ [u, x) and a point v′ ∈ (x, v] that do
not belong to X. But then (u′, v′) and |G|\[u′, v′] are disjoint open subsets of |G|
that both meet X and whose union contains X, contradicting the connectedness
of X.

Thus (2) holds and we may assume without loss of generality that [u, x] ⊂
X. Now if X contains an interval (x, w) ⊂ [x, v] we can set U(x) = (u, w).
Otherwise there is a point v′ ∈ (x, v) such that (x, v′) ∩ X = ∅, and we can set
U(x) = (u, v′). For if no such v′ exists, then there are points of X on (x, v)
arbitrarily close to x. But for every such point y we can prove that [y, v] ⊂ X the
same way we proved (2) ([u, y] 	⊂ X because then we would have the previous
case) and thus [x, v] ⊂ X contradicting the assumption that X contains no
interval (x, w) ⊂ [x, v].

Now assume x is a vertex. By a similar argument as above we can prove that
for every edge xv ∈ E(G) there is a point v′ ∈ (x, v) such that either (x, v′) ⊂ X
or (x, v′) ∩ X = ∅. Let S be a set that contains one such point for each edge
incident with x. Then we can set U(x) =

⋃
v′∈S [x, v′).

For an end ω ∈ X we cannot in general find a neighbourhood of ω that meets
X only in c(ω). However, we can always find one that avoids any specified path-
component other than c(ω):

Lemma 3. For every end ω ∈ X and every path-component c′ 	= c(ω) of X
there is an open neighbourhood U = U(c′, ω) of ω such that U ∩ c′ = ∅.

In order to prove this lemma, we will suppose that there is a path-component
c′ of X and an end ω ∈ X\c′ every neighbourhood of which meets c′. To
construct a path from c′ to ω in X contradicting c′ 	= c(ω), we shall pick a
sequence a0, a1, a2, . . . of vertices in c′ converging to ω, link ai to ai+1 by a
path in c′ for each i, and concatenate all these paths to a map f : [0, 1) → c′.
Adding f(1) := ω yields an a0-ω path in X as long as f is continuous at 1.
To ensure this, we have to choose our ai–ai+1 paths inside smaller and smaller
neighbourhoods Ui of ω.
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The following will be needed for the proof of Lemma 3. We will say that a
topological path traverses an edge xy if it contains [x, y] as a subpath.

Lemma 4. Any topological path that connects some point of a basic open neigh-
bourhood U of an end to a point outside U must traverse some edge xy with
x ∈ U, y 	∈ U .

Proof. Let R be the image of such a path, and suppose it avoids all edges
between U and V \U (It is easy to see that, without loss of generality, R either
traverses any given edge xy or does not meet (x, y) at all). Then both U ∩ R
and (|G|\U)∩R are open in the subspace topology of R, which shows that R is
disconnected. But this cannot be true since R is a continuous image of [0, 1].

Proof of Lemma 3. Suppose there is a path-component c′ of X and an end ω ∈
X\c′ every open neighbourhood of which meets c′. By Lemma 4, c′ must contain
a vertex u.

Define S0 = ∅, and for every i > 0 let Si = N i−1(u). Let Ui = O(Si, ω).
Note that S0 ⊂ S1 ⊂ S2 ⊂ . . . , and thus U0 ⊃ U1 ⊃ U2 ⊃ . . . .

Define Mi = (Si+1\Si) ∩ c′ ∩ Ui, for all i ≥ 0 (Figure 4). Each Mi is a
set of candidates for the vertex ai mentioned above. Instead of choosing them
arbitrarily, we will make use of Konig’s infinity lemma [16] to find a sequence
of appropriate ai.

M0

M1

M2

U1

U2

ω

u c′

Figure 4: Ui and Mi.

Define the graph G with V (G) =
⋃

i Mi and xy ∈ E(G) if for some i, x ∈
Mi, y ∈ Mi−1 and there is a x–y topological path in c′ ∩ Ui−1.

We need to show that G satisfies the conditions of the infinity lemma. Since
G is locally finite, the Si are finite, and hence so are the Mi. Let us show that
they are non-empty.

For i > 0 pick any point of Ui ∩ c′ and any topological path from that point
to u. By Lemma 4, and since u /∈ Ui, this path traverses one of the edges
between a vertex w in Ui and a vertex outside it. By definition, Mi contains
this vertex w.

In order to see that every x ∈ Mi sends an edge to Mi−1, pick any z ∈ Mi−1,
and any topological path in c′ from x to z. Since Mi−1 is closed, this path has
a first point y in Mi−1. By Lemma 4, the subpath from x to y lies in Ui−1, so
xy is an edge of G.
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We can now apply the infinity lemma to get an infinite path a0(= u)a1a2 . . .
in G. For each i > 0, pick a topological path fi in c′∩Ui−1 from ai−1 to ai (which
exists because ai−1ai is an edge of G), let f : [0, 1) → c′ be the concatenation
of these paths, and put f(1) = ω.

We claim that f is continuous at 1 and hence a path in X, contradicting
our assumption that c′ 	= c(ω). To see that this is the case, let O be any open
neighbourhood of ω. Choose a basic open neighbourhood O′ = O(S, ω) ⊆ O.
Let i be the maximum distance of an element of S from u. Then Si ⊇ S, and
Ui ⊆ O′ ⊆ O. Since for j > i the path fj lies in Uj−1 ⊆ Ui, the subpath of
f from ai to f(1) lies in Ui ⊆ O which proves the continuity of f at 1. This
completes the proof.

As a consequence of Lemmas 2 and 3 we have the following:

Corollary 5. The path-components of X are closed in its subspace topology.

This implies that any counterexample to Problem 1 must contain infinitely
many path-components. In fact we can prove something stronger:

Lemma 6. Every connected but not path-connected X ⊆ |G| contains uncount-
ably many path-components.

Proof. Suppose c1, c2, . . . is an enumeration of the path-components of X. We
will divide X into two open sets Or, Og of |G| whose intersection does not meet
X contradicting its connectedness.

We will proceed recursively. Every path-component c will at some step be
coloured either red or green (Eventually, Or will be a union of open sets that
contains all points that belong to red path-components, and Og similarly for
‘green’). If c is not immediately put in one of Or, Og (as part of some open set)
at the step that it gets coloured, it will be given a natural number as handicap.
This handicap will be a competitive advantage for the ends in c against ends
whose path-component has a higher handicap, and which are also striving to
get classified in Or or Og, and will help make sure that every end in c will be
classified after a finite number of steps (but if c has infinitely many ends, it
might take infinitely many steps till they all get classified).

Once we have accommodated all ends of X in either of Or, Og it will be easy
to do the same for the vertices and edge points of X.

At the beginning of step i of the recursion we will pick a finite set Si ⊂ V ,
which grows larger at each step, and consider the (finitely many) open sets of
the form O(Si, ω), for all ω ∈ Ω. We will declare live any such open set that
contains ends of X that have not yet been classified in Or or Og. Some of these
open sets might be put in Or or Og during the current step, in which case we
will switch their state to not live. Each live open set L will have a boss, namely,
the path-component of smallest handicap meeting L. Being a boss will let a
path-component influence subsequent colouring decisions for its own ends.

Formally, we apply the following recursion. Before the first step, colour c0

red and c1 green; this will guarantee that neither of Or, Og will be empty. Give
c0 the handicap 0, and c1 the handicap 1. Declare |G| live, and let c0 be its
boss. Let u be any vertex of G.

Then for every i < ω perform the following actions (see Figures 5 and 6):
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1. Declare live all the basic open sets of the form O(N i(u), ω), with ω ∈ Ω∩X
that lie in live open sets of the previous step (note that O(N i(u), ω) �

O(N i−1(u), ω) ).

2. Colour any still uncoloured path-component c that meets more than one
live open set with the colour of the boss of the parent open set, i.e. the live
open set of the previous step in which c lies (it must lie in one, because if
it met more than one of them it would have been coloured in a previous
step). Note that there are only finitely many such path-components in
any step, because by Lemma 4 each of them must contain an edge that
crosses some basic open set and there are only finitely many such edges.
Finally give the newly coloured path-components the next free handicaps,
one to each.

3. If a live basic open set does not meet any green path-components, then
colour all path-components that lie in it red, put it in Or and declare it
not live. Proceed similarly with colours switched and Og instead of Or.

4. For every live basic open set, let the path-component of smallest handicap
that meets it be its boss.

5. If ci is still uncoloured, give it the colour of the boss of the live set in
which it lies (it lies in one since it is still uncoloured) and the next free
handicap.

We claim that after this process every end of X is put in either Or or Og.
Indeed, because of action 5, for every end e of X, c(e) gets a colour and a
handicap sometime. By Lemma 3 and the fact that there are only finitely many
path-components of smaller handicap, at some step j, e will lie in a live basic
open set U that avoids all path-components of smaller handicap (N i(u) contains
any finite vertex set for i large enough, if we assume, without loss of generality,
that G is connected).

At this point, U only meets finitely many coloured path-components (see
comment in action 2). In the steps following step j, e’s path-component will
always be the boss of the current live open set in which e lies (action 4) and
thus no path-component that meets such a set will be coloured with the opposite
colour (action 2).

Again by Lemma 3, e will at some later step lie in a basic open set U ′ that
avoids all path-components of the opposite colour that met U at step j. This
U ′ thus meets only the colour of e, so it will be classified in one of Or, Og.

Thus our claim is true and we have divided X ∩Ω into two open sets whose
intersection does not meet X. Now for each vertex or edge point of X find a
basic open set, supplied by Lemma 2, that avoids all other path-components,
and put it in Or if the point belongs to a red path-component, or in Og if it
belongs to a green one. Since X ⊆ Or ∪Og, and Or ∩Og does indeed not meet
X, the connectedness of X is contradicted.

Using the above Lemmas we can now prove Theorem 2:
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S1

C1

C2

C3

C4

c1
c0

u
ck

Figure 5: Possible colourings after step 1. Dashed lines depict red path-components
and continous lines green ones. The path-component ck meets several live sets, so it
took the colour of c0, the boss of |G|. The basic open set C1 will be put in Or and C2

will be put in Og; then they will be declared not live. The boss of both C3 and C4 is
c1.

S1

S2

C1

C2

C3

C4

c1
c0

c2

u

C3,1

C3,2

C4,1 C4,2

ck

cl

Figure 6: Possible colourings after step 2. C4,1 will be put in Or and C3,2 in Og.
The path-component c2 received the colour of c1, the boss of C4,1, and cl received the
colour of the boss of C3, again c1. The arrows show the bosses of the open sets that
are live after the completion of this step.
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Proof of Theorem 2. Suppose X is not path-connected. Since G is locally finite
and connected, X has only countably many path-components containing ver-
tices, so by Lemmas 6 and 4 there must be uncountably many path-components
that are singleton ends.

If c1, c2, . . . , cn are the only path-components of X that contain vertices,
then pick a singleton end ω ∈ X, and for each i an open neighbourhood Oi

of ω that avoids ci, supplied by Lemma 3. Let O = O(S, ω) be a basic open
neighbourhood of ω contained in

⋂
i≤n Oi (if n = 0 then let O be any basic

open neighbourhood of ω that avoids at least one end of X). Every point of
X\O has an open neighbourhood that does not meet O: for vertices and edge
points this open neighbourhood is supplied by Lemma 2 and for an end e /∈ O
the neighbourhood O = O(S, e) does indeed not meet O. Thus X ∩ O is open
and closed in the subspace topology of X, a contradiction since X is connected.
This proves that X must have infinitely many path-components that contain
vertices.

Finally, let us show that every path-component of X contains ends. By
Lemma 2, a path-component containing no end is open. Since it is also closed
(Corollary 5), the connectedness of X is contradicted if such a path-component
exists.
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