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Abstract

We extend Tutte’s result that in a finite 3-connected graph the cycle space is generated by the

peripheral circuits to locally finite graphs. Such a generalization becomes possible by the

admission of infinite circuits in the graph compactified by its ends.

r 2004 Henning Bruhn. Published by Elsevier (USA). All rights reserved.

1. Introduction

In a finite graph, the edge set of a connected 2-regular subgraph is called a circuit.
The set of symmetric differences of circuits constitutes a F2-vector space, the cycle
space. A classical result of Tutte [12] states:

Theorem 1 (Tutte [12]). Every element of the cycle space of a finite 3-connected graph

is a sum of peripheral circuits.

Here, a circuit C ¼ EðDÞ is peripheral if D is an induced non-separating subgraph
without isolated vertices. We show that despite obvious counterexamples Tutte’s
result can be generalized to locally finite graphs by admitting infinite circuits and
sums as recently proposed by Diestel and Kühn [5].
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Let us look at a simple example due to Halin [8]. Consider the cartesian product of
a double ray (an infinite 2-way path) with a pentagon (Fig. 1). The peripheral circuits
of this graph are exactly its 4-circuits. We see that the deletion of all vertices incident
with C separates the graph but C is not the sum of any peripheral circuits, so Tutte’s
theorem fails for this graph.

This can be mended, however, by allowing infinite sums. Indeed, C is clearly the
(infinite) sum of all the 4-circuits to the left of C (or to the right for that matter).

However, infinite sums of circuits can also produce edge sets of subgraphs such as
the double ray shown in Fig. 2, which should then also be legitimate elements of the
cycle space closed under (well-defined) infinite sums. This complicates matters, but
not beyond control: the subspace of the edge-space of a locally finite graph G that is
generated by (possibly) infinite sums of the (finite) circuits of G has been studied by
Diestel and Kühn [5,6], who obtained this space as an adaptation of the cycle space
to topological circles involving the ends of G: (These circles are homeomorphic
images of the unit circle in the standard compactification of G by its ends; for
example, the double ray in Fig. 2 forms an infinite circle together with the left end of
the graph.) We shall make use of the results in [5,6] throughout this paper. See also
Diestel [3] for an introduction and survey.

We state now our main result:

Theorem 2. Every element of the cycle space CðGÞ of a locally finite 3-connected graph

G is a sum of peripheral circuits.

Infinite circuits and CðGÞ will be defined in the next section. Section 3 contains a
discussion of the main result. In Section 4, we examine bridges and the overlap graph
of a circle in a 3-connected graph. In Section 5, we prove the main lemma for
Theorem 2, which then is proved in Section 6.

2. Definitions

In general our notation will be that of [4]. All our graphs will be undirected and
simple. Let G ¼ ðV ;EÞ be a fixed graph. A 1-way infinite path will be called a ray. A
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Fig. 1. The circuit C is not the finite sum of peripheral circuits.

Fig. 2. An infinite edge set that arises from an infinite sum of circuits.
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subray of a ray will be said to be a tail of that ray. Two rays in a graph are equivalent

if there is no finite vertex set separating them. The resulting equivalence classes are
called the ends of the graph. The set of ends is denoted by OðGÞ:

Let us define a topology on G,OðGÞ; in the case when G is locally finite this will
coincide with the Freudenthal compactification of G: Let G itself carry the topology of
a 1-complex, i.e. every edge is homeomorphic to the ½0; 1� interval, and the basic open
neighbourhoods of a vertex x are the unions of half-open intervals ½x; zÞ; one from
every edge ½x; y� at x: Next, let us describe the basic open neighbourhoods of the
ends. For a finite set SDV and an end o there is exactly one component of G � S

that contains a tail for every ray in o: This component will be denoted by CGðS;oÞ
and we say o belongs to CGðS;oÞ: The union of CGðS;oÞ with all the ends belonging

to it is %CGðS;oÞ: Write EGðS;oÞ for the set of all edges between S and CGðS;oÞ and
let E̊G

0ðS;oÞ be any union of half-edges ðx; y�Ce; one for every eAEGðS;oÞ; with
xAe̊ and yACGðS;oÞ: Then let the basic open neighbourhoods of o be the sets of the
form

ĈGðS;oÞ :¼ %CGðS;oÞ,E̊G
0ðS;oÞ:

Denote by jGj the resulting topological space on G,OðGÞ: We will freely view
subgraphs of G also as subspaces of jGj:

For any subset XDjGj; put VðX Þ :¼ X-V ; and denote by EðXÞ the set of edges e

of G with eDX : For an edge set ZDE; denote by Z the closure of
S

Z in jGj:
A continuous image of the unit interval ½0; 1� is a topological path. The images of 0
and 1 are the endpoints of the topological path. A homeomorphic image of ½0; 1� in
jGj is called an arc in jGj: The following lemma can be found in Hall and Spencer [9,
p. 208].

Lemma 3. Every topological path with distinct endpoints x; y in a Hausdorff space X

contains an arc between x and y:

The following two lemmas relate topological connectivity in jGj to graph-theoretic
connectivity in G:

Lemma 4. Every open topologically connected subset of jGj is path-connected.

Note that jGj is indeed Hausdorff. The lemma can be proved with standard
topological arguments. For closed topologically connected subsets this remains still
valid, provided G is locally finite, but not otherwise, see [7].

Lemma 5 (Diestel and Kühn [6]). Let ADjGj be an arc between two vertices x and y;
and let X be a closed subset of jGj which avoids A: Then G contains an x–y path P with

P-X ¼ |:

Having established a topology we may define circuits. First, we call a

homeomorphic image C of the unit circle S1DR2 in jGj a circle. In [6] it is shown
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that every edge of which C contains an inner point is completely contained in C:
The set EðCÞ of all these edges is a circuit, and it is dense in C (in the sense

that EðCÞ ¼ C), so a circuit uniquely defines a circle and vice versa. Clearly,
this definition of a circuit includes the traditional finite circuits. In contrast, the
infinite circuits are the edge set of unions of double rays whose ends fit together

nicely. We say a circuit D is peripheral if the subgraph D-G is induced and
non-separating.

We now define infinite sums of edge sets. For this, let ðAiÞiAI be a family of edge

sets. The family is called thin if every vertex is incident with at most finitely many of
the Ai; for locally finite G this is exactly the case when every edge lies in at most
finitely many of the Ai: The sum

P
iAI Ai of such a thin family is defined to be the set

of all edges that appear in exactly an odd number of the Ai: Whenever we talk about
sums we will mean sums of thin families.

Now, assume that G is locally finite, and define the cycle space CðGÞ to be the set of
sums of (thin families of) circuits. One of the results of [5, Corollary 11] is that the
cycle space of a locally finite graph is closed under taking (infinite) sums. It should be
noted that CðGÞ is a vector space over F2:

Directly using the definition of the cycle space it may be a bit awkward to identify
a given edge set as belonging to the cycle space. Fortunately, Diestel and Kühn
provided a more accessible characterization as well. For this, let fV1;V2g be a
partition of the vertex set of a graph G: Then the set of all edges with one endvertex
in V1 and the other in V2 is called a cut; the cut is called a finite cut if it consists of
finitely many edges.

Theorem 6 (Diestel and Kühn [5]). Let G be locally finite, and let ZDE: Then

ZACðGÞ if and only if Z meets every finite cut in an even number of edges.

As circuits are easier to handle than arbitrary elements of the cycle space, it turns
out to be convenient that we can always decompose such an element into constituent
circuits.

Theorem 7 (Diestel and Kühn [6]). Every element of the cycle space of G is a disjoint

union of circuits in G.

Furthermore, when dealing with sums or unions of a family F we will make use of
the shorthands

P
F (resp.

S
F ) to express the sum

P
FAF F (resp. the unionS

FAF F ).

A tree T with a distinguished vertex rAVðTÞ is called a rooted tree with root r: For
another vertex tAVðTÞ; the predecessor on the path rTt is called the parent of t: The
vertices that have t as their parent are the children of t: A vertex without children
is a leaf.

For vertices v and w of a graph G we denote by dGðv;wÞ the minimal length of
a v–w path. Similarly, for an edge e and a vertex v; dGðv; eÞ is the minimal length of a
path between v and one of the endvertices of e:
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3. Discussion of main result

First, let us briefly motivate the definition of the cycle space CðGÞ: The cycle
space of a finite graph has a number of well-known properties. Among others, these
are:

(i) an edge set is an element of the cycle space if and only if it meets every cut in an
even number of edges;

(ii) every element of the cycle space is a union of disjoint circuits;
(iii) the cycle space is generated by the fundamental circuits of every spanning tree;

and
(iv) Tutte’s generating theorem (Theorem 1).

To be useful the cycle space of an infinite graph should retain as many of these
properties as possible. For locally finite graphs, (i)–(iv) and virtually all others
remain true in CðGÞ (with some obvious adaptions; for instance, to ensure (iii) we
have to forbid spanning trees that contain infinite circuits). Moreover, CðGÞ is the
smallest cycle space to achieve this. Indeed, suppose C0ðGÞ is an alternative
cycle space. Certainly, C0ðGÞ should contain all finite circuits, and to ensure that
Theorem 1 remains valid in C0ðGÞ; the discussion of Fig. 1 seems to imply that at
least all sums of finite circuits should lie in C0ðGÞ too. But then (iii) shows that
CðGÞDC0ðGÞ: See Diestel [3] for more details, and an introduction.

Our notion of the cycle space is based on the topological space jGj; which is the
standard compactification for locally finite G: There are several other compactifica-
tions of G; each of which leads to a different cycle space. For instance, if we identify
all the ends, we obtain a cycle space, called the even cycle space, which has been
investigated by Bonnington and Richter [2]. In the even cycle space the circuits are
precisely the edge sets of 2-regular connected subgraphs. In particular, the edge set of
every double ray is a circuit.

I do not know whether properties (i)–(iv) above can be extended in a meaningful
way to cycle spaces based on compactifications of G other than the Freudenthal
compactification. General compactifications have been studied by Richter and
Thomassen [10].

In the introductory example in Section 1 we were able to generate our given circuit
C using only finite peripheral circuits. In general, however, we cannot do without
infinite circuits, as Fig. 3 demonstrates. The edge e there is not contained in any finite
peripheral circuit. Consequently, any circuit containing e cannot be generated by
finite peripheral circuits. On the other hand, it is easy to see that e lies on exactly two
infinite peripheral circuits (namely the two face boundaries that are incident with e).
Note that the graph shown is indeed 3-connected.

Next, we note that Tutte’s result cannot be extended to arbitrarily infinite graphs
using the topology as defined in Section 2. A counterexample is shown in Fig. 4: for

every circuit C containing the edge e; C-G is separating, and hence C non-
peripheral.
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Finally, let us give a rough overview of the proof of Theorem 2. Let ZACðGÞ be

given. We fix one of the topological components B of jGj\Z: By adding peripheral
circuits to Z we try to inflate B: More precisely, we want that for the sum Z0 there is a

topological component B0+! B of jGj\Z0: Continuing in this manner, we achieve
eventually (after countably many steps) that the inflated B covers all of jGj: This is
only possible if the resulting sum is the empty set. We have then found a generating
set of peripheral circuits for Z: Finding suitable peripheral circuits for the single
steps will mostly be the work of Lemma 17.

The components B (in fact, we will be interested in their closures) are also
interesting for another reason: We will observe in the next section that for a circle C;
the circuit EðCÞ is peripheral if and only if jGj\C is topologically connected.

4. Bridges and the overlap graph

A key tool in Tutte’s proof of Theorem 1 is the concept of a bridge. In a finite
graph G; a subgraph B is a bridge of another subgraph H if either B is a chord of H

(i.e. both its endvertices lie in H) or if B consists of a component K of G � H plus the
edges EðK ;HÞ between K and H together with the incident vertices. There is also an
alternative way to define bridges by introducing an equivalence relation on
EðGÞ\EðHÞ; see Bondy and Murty [1] for more details on bridges. Our aim in this
section is to transport the concept of a bridge to infinite graphs.

Let G be a fixed graph in this section.
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Fig. 4. The edge e is not contained in any peripheral circuit.

Fig. 3. There is no finite peripheral circuit containing the edge e:
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Definition 8. Let Z be an edge set in G: We call the closure B of a topological component

of jGj\Z a bridge of Z: The points in B-Z are called the attachments of B in Z:

For the subgraph H :¼ Z-G; the following can be shown: a set BDjGj is a bridge

of Z if and only if it is a chord of H or if there is a component K of G � H such that B

is the closure of K plus the edges EðK ;HÞ together with the incident vertices. Thus,
our definition coincides with the traditional definition of a bridge in a finite graph.
However, we will only need the weaker fact that B; if it is not a chord, contains a
whole component of G � H but no other vertices of G � H; see (iv) in the next lemma.

The following observation will be used repeatedly: B\Z is an open topological

component of jGj\Z; which is thus path-connected, by Lemma 4. As a consequence,

two points x; yAjGj\Z are in the same bridge if and only if there is an arc between

them that avoids Z:
Let us prove a number of basic properties.

Lemma 9. Let Z be an edge set in G, and let B be a bridge of Z: Let x be an attachment

of B. Then:

(i) x is a vertex or an end;
(ii) if x is an end then every neighbourhood of x contains attachments of B that are

vertices;
(iii) every edge of which B contains an inner point lies entirely in B; and

(iv) either B is a chord of Z (i.e. B is an edge whose endvertices lie in VðZÞ) or the

subgraph ðB-GÞ � VðZÞ is non-empty and connected.

Proof. (i) Suppose x is an inner point of an edge e: Then xAZ implies eAZ; and

hence there is a neighbourhood UDZ of x: Thus, U is disjoint from B\Z; which is a

contradiction to that x lies on the boundary of B\Z:
Let us prove (iii) before (ii): Let e be an edge of which B contains an inner point.

Then the interior of e is disjoint from Z; as otherwise eAZ: Thus, eDB:

(ii) Consider any basic open neighbourhood ĈðS;xÞ: As xAZ there is a vertex

vZAVðZ-CðS; xÞÞ: Similarly, let us find a vertex vBAVðB-CðS; xÞÞ: Since

ĈðS; xÞ-ðB\ZÞ is open, it contains an inner point of an edge e: Then, eDB; by

(ii), and hence B contains both endvertices. One of these lies also in ĈðS; xÞ; take that
to be vB: Now, the first vertex on a vB–vZ path through the connected subgraph

CðS; xÞ that lies in Z is an attachment of B:

(iv) First, suppose that B\Z consists only of inner points of edges. Take two of

those, x and y; and consider an arc in B\Z between them (which exists by Lemma 4).
Then, the arc has to lie completely in a single edge, and hence x and y are inner

points of the same edge. Thus, B is a chord of Z:

Second, if B\Z contains an end then it also contains an open neighbourhood of

that end. Consequently, K :¼ ðB-GÞ � VðZÞ is non-empty. As K is a subset of the
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path-connected set B\Z there is an arc between any two vertices of K which avoids

Z: Then, Lemma 5 yields also a path between them that is disjoint from Z:
Therefore, K is connected. &

A consequence of (iv) is that a bridge is either a chord or it has at least k

attachments when G is k-connected. The next lemma provides the main reason why
we are interested in bridges.

Lemma 10. Let G be 3-connected, and consider a circle CDjGj: Then the circuit EðCÞ
is peripheral if and only if C has at most a single bridge.

Proof. First, let EðCÞ be peripheral. By Lemma 9(iv), every bridge has a vertex in
G � VðCÞ: Since G � VðCÞ is connected, there is thus only one bridge of C:

Conversely, let C have only a single bridge B: Then B cannot be a chord as in this
case at least one of the vertices of C has degree 2 in G; and by Lemma 9(iv),
G � VðCÞ is connected. &

Consider a circle C in jGj with a bridge B: If G is finite the attachments of B divide
C into edge-disjoint paths, called the residual arcs of B (as long as B has at least two
attachments). Our aim is to reproduce this situation in an infinite graph as closely as
possible. So let G be an arbitrary graph, and define a residual arc of B in C to be the
closure of a topological component of C\B: Note that if B has at least two
attachments every residual arc is indeed an arc (if not then the circle C itself is a
residual arc, and it is the only one). As in the finite case, any two residual arcs meet at
most in their attachments. However, C does not have to be the union of its residual
arcs: consider an end oAC-B against which attachments of B converge from both
sides on C: Then o does not lie in any residual arc. Consequently, (iii) fails for ends
in the following lemma:

Lemma 11. Let G be 2-connected, and let CDjGj be a circle with a bridge B: Then:

(i) the endpoints of a residual arc L of B in C are attachments of B;
(ii) for a point xAC\B there is exactly one residual arc L of B in C containing x; and

(iii) for a vertex vAVðB-CÞ there are exactly two residual arcs of B in C with v as an

endpoint.

Proof. (i) The endpoints of L lie in B:
(ii) C is the union of the topological components of C\B and C-B; the set of

attachments. As x is not an attachment it lies in exactly one of the components of
C\B; and therefore in exactly one residual arc.

(iii) Pick in each of the two with v incident edges in C an inner point, and let L1

and L2 be the two residual arcs containing either one of them (as B has at least two
attachments no residual arc can contain both). Clearly, both L1 and L2 have v as
endpoint. &
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Definition 12. Let CDjGj be a circle with two bridges B and B0:

(i) We say that B avoids B0 if there is a residual arc of B that contains all
attachments of B0: Otherwise, they overlap.

(ii) B and B0 are called skew if C contains four points v; v0;w;w0 in that cyclic order
such that v;w are attachments of B; and v0;w0 attachments of B0:

Note that if B avoids B0 then B0 also avoids B: Indeed, let L be a residual arc of B

in which all attachments of B0 lie. Then, let xAC\L be any point, and let L0 be the
residual arc of B0 containing x (Lemma 11). As the endpoints of L0 are attachments
of B0 they lie in L: Now, if there is an attachment y of B with yeL0; then it lies in the
interior of L; which is impossible for a residual arc of B: Consequently, avoiding and
overlapping are symmetric relations.

Clearly, if two bridges are skew, they overlap. On the other hand, it is not difficult
to prove that in a 3-connected graph two overlapping bridges are either skew or 3-
equivalent, i.e. they both have only three attachments and those are the same.
However, we will not make use of this result.

For an edge set Z we define the overlap graph of Z in G as the graph on the bridges

of Z where two bridges are adjacent if they overlap. In contrast, let the skew-overlap

graph of Z in G be the graph on the same vertex set such that two bridges are
adjacent if they are skew. Clearly, the skew-overlap graph is a subgraph of the
overlap graph. See Thomassen [11] for more details on skew-overlap graphs.

It is easy to see that if G is 3-connected then it is impossible for a bridge of a circle
to avoid all other bridges (unless there is only one). Thus, the overlap graph of a
circle cannot have trivial components. It turns out, even more is true: there is only a
single component at all. This will be the main result of this section, which we shall
prove with the help of the following lemma.

Lemma 13. Let G be 3-connected, and let C be a circle in jGj: Let K be a connected

subgraph in the skew-overlap graph of C in G; and let B be a bridge of C: If there are

four points u; u0; v; v0 appearing in that cyclic order on C such that u and v are each an

attachment of a bridge in VðKÞ and such that u0; v0 are attachments of B; then B is skew

to some bridge in VðKÞ:

Proof. Pick a bridge BuAVðKÞ for which u is an attachment, and respectively a
bridge BvAVðKÞ with attachment v: Denote by Lu the topological component of
C\fu0; v0g that contains u; and by Lv the other one (which contains v). We may
assume that Bu has no attachments in Lv as otherwise Bu would clearly be skew to B:
Consider a Bu–Bv path P in K (i.e. a sequence of consecutively skew bridges). Let B0

be the first bridge on P to have attachments in Lv: As B0 is skew to its predecessor on
P; which has all its attachments in Lu,fu0; v0g; B0 must have an attachment in Lu: As
it has also one in Lv it is skew to B: &

Lemma 14. If G is 3-connected then for every circle CDjGj the overlap graph of C in

G is connected.
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Proof. First, observe that if C is a triangle then all bridges have VðCÞ as the set of
attachments and are thus mutually overlapping. So we may assume that jVðCÞjX4:

Second, let K be a component of the skew-overlap graph. Suppose there is a vertex
w in VðCÞ which is not incident with any bridge in K : Let A be the set of points of C

that are attachments for some bridge in VðKÞ: Fix an aAA; and let A1;A2DC be
arcs from w to a such that A1,A2 ¼ C: Denote by xi the first point on Ai in the

closed set A (more precisely, if si : ½0; 1�-Ai is a homeomorphism with sið0Þ ¼ w

then let xi be such that s�1
i ðxiÞ is minimal under all points in Ai-A). Note that

waxi; as weA; and as w is a vertex. Then C\fx1; x2g has two topological

components, one, Lw; which is disjoint from A and another, LA; for which ADLA:
Observe that both contain vertices. Indeed, Lw contains w: If jAjX3; then LA clearly
contains vertices (note Lemma 9(ii)). If A has cardinality two, then K consists of a
single chord with endvertices x1 and x2: But then x1 and x2 cannot be adjacent in C:

As G is 3-connected there is a path in G � fx1; x2g from a vertex u0 in VðLwÞ to a
vertex v0 in VðLAÞ which meets C only in fu0; v0g: The path is contained in a bridge of
C; denote that bridge by B: Now, we can easily find u; vAA such that u; u0; v; v0

appear in that cyclic order on C: Indeed, if we cannot choose x1 for u; then x1AA\A:
Consequently, every neighbourhood of x1 contains elements of A; and thus a
neighbourhood that is disjoint from u0 and v0 yields a suitable uAA: The same holds
for x2: Lemma 13 yields a bridge in K which is skew to B: Hence BAVðKÞ; a
contradiction since the attachment u0 of B lies in Lw; which is disjoint from A:

Finally, we show that every bridge B of C lies in VðKÞ: As C is not a triangle, B

has two attachments u0; v0 which are not adjacent vertices in C: Thus, we find two
other vertices u; v such that u; u0; v; v0 appear in that cyclic order on C: As u and v are
each an attachment of some bridge in VðKÞ; Lemma 13 shows BAVðKÞ: &

So far, the results were true for arbitrary graphs. For the final lemma of this
section, which we will need in the next one, G has to be locally finite.

Lemma 15. Assume that G is locally finite, and consider a circle CDjGj with a bridge

B: Let o be an end which is an attachment of B in C: Then B\C contains a ray of o:

For the proof we need a simple lemma which can be found in [5].

Lemma 16. Let U be an infinite set of vertices in a connected locally finite graph H:
Then there exists a ray RDH for which H contains an infinite set of disjoint R–U

paths.

Proof of Lemma 15. By Lemma 9(ii), there is a sequence x1; x2;yDVðGÞ of
attachments of B converging against o: Let U be the set of neighbours of the xi in
K :¼ ðB-GÞ � VðCÞ: Applying Lemma 16 to the graph K (which is connected by
Lemma 9(iv)) and the set U ; we obtain a ray R and infinitely many disjoint R–U

paths in KDB\C: Then every neighbourhood of o contains a tail of R; and thus
RAo: &
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5. Locally generating a circuit

In this section we prove the following lemma, which will later be used in the
induction step for the proof of our main result. For a vertex v; denote by EðvÞ the set
of edges incident with v:

Lemma 17. Consider a circle CDjGj for a locally finite 3-connected graph G: Let B be

a bridge of C; and let v be a vertex in VðC-BÞ: Then there are peripheral circuits

D1;y;Dm which are disjoint from EðBÞ and which satisfy

Xm

i¼1

Di-EðvÞ ¼ EðCÞ-EðvÞ:

Apart from being used in the proof of Theorem 2, the lemma may serve as an
indicator that the theorem itself is not unreasonable. Indeed, at the very least
one should be able to find a peripheral circuit for any given edge—and this is in fact
the case according to the lemma.

Lemma 17 and its proof are inspired by a result of Tutte [12, (2.2)]. For the
remainder of this section let us work in jGj for a fixed 3-connected locally finite
graph G:

Consider a circle CDjGj with a bridge B and a vertex vAVðC-BÞ: Let a bridge B̃

overlapping B be given, and let L be a residual arc of B̃ in C that meets v: Denote by
x and y the two endpoints of L: Our aim is to replace the arc ðC\LÞ,fx; yg by an arc

A through B̃ which is internally disjoint from C; see Fig. 5. For this, let us find a
topological path Px from x to a point x0AB\C that meets C only in x; and
analogously Py and y0: Then, as B\C is path-connected (by Lemma 4) there is a

topological path PDB\C from x0 to y0: Finally, Lemma 3 yields an arc
ADPx,P,Py between x and y:

So how do we find x0 and Px (respectively, y0 and Py)? If x is a vertex we

may simply take any edge ½x; z� in B̃ incident with x; and put Px :¼ ½x; x0�
where x0 is any inner point of the edge. Observe, that we may choose freely the edge

½x; z� (as long as it lies in B̃), and that ½x; z�DA: So assume that x is an end. Lemma 15
yields then a ray RDB\C of x: Let x0 be the starting vertex of R and
put Px :¼ R,fxg:

As a result, C0 :¼ L,A is a circle that contains v and that has a bridge B0+B: We

say ðC0;B0Þ is gained from ðC;BÞ through the extension step ðB̃;L; vÞ:
More precisely, the following basic properties hold:

Lemma 18. Let C be a circle with a bridge B; and let vAVðC-BÞ: If ðC0;B0Þ is gained

from ðC;BÞ by the extension step ðB̃;L; vÞ then:

(i) C0DL,ðB̃\CÞ;
(ii) ðB,CÞ\LDB0

\C0; and

(iii) EðC,BÞDEðC0,B0Þ:
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Proof. Assertion (i) is true by definition of A: For (ii), note that B\LDB0
\L; and

that because of (i), B meets C0 only in L: Hence B\LDB0
\C0: Also, since B and B̃

are overlapping, B cannot have all its attachments in L: Thus, there is an attachment
of B in the connected set C\L; which is disjoint from C0; by (i), and there-
fore becomes a part of B0+B: This shows (ii). Finally, for (iii), note that
C ¼ L,ðC\LÞDC0,B0: &

If B̃ contains v then there exists a second residual arc L0 of B̃ in C meeting v; by
Lemma 11(iii). In that case we find an arc A0 from v to the other endpoint y0 of L0

which meets C only in fv; y0g and which uses the same e edge incident with v as A (as
noted above). Then C00 :¼ L0,A0 is a circuit with a bridge B00 so that ðC00;B00Þ is

gained from ðC;BÞ by the extension step ðB̃;L0; vÞ: We call ðC00;B00Þ a twin of ðC0;B0Þ
with respect to ðC;BÞ: We see that the following holds

EðCÞ-EðvÞ ¼ ðEðC0Þ þ EðC00ÞÞ-EðvÞ: ð�Þ
The main idea in the proof of Lemma 17 is the following: given a circle C1 with a

bridge B1 we try to inflate the bridge B1: More precisely, we will construct a sequence
ðC1;B1Þ; ðC2;B2Þ;y of circle-bridge pairs such that ðCi;BiÞ is gained from its
predecessor by an extension step. Then, we have Bi+Bi�1 and our aim is to do the
extension in such a way that eventually Bi grows so big that it is the only bridge left.
Clearly, the corresponding circuit is then peripheral. Unfortunately, this sequential
approach may be insufficient. Rather, it is sometimes necessary to perform two
alternative extension steps simultaneously. This parallel approach is captured in the
concept of an extension tree we shall now introduce.

Definition 19. Let C be a circle with a bridge B; and consider a vertex vAVðC-BÞ:
Let T be a finite rooted tree with root r; and let there be mappings

CT : VðTÞ-fC0DjGj : C0 is a circleg

BT : VðTÞ-fB0DjGj : B0 is a bridge of a circleg
satisfying the following:

(i) for wAVðTÞ; BTðwÞ is a bridge of the circle CTðwÞ;
(ii) CTðrÞ ¼ C and BTðrÞ ¼ B;
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(iii) let pAVðTÞ be the parent of wAVðTÞ: Then there is a bridge B̃ overlapping

BTðpÞ and a residual arc L of B̃ in CTðpÞ meeting v such that ðCTðwÞ;BT ðwÞÞ is

gained from ðCTðpÞ;BTðpÞÞ by the extension step ðB̃;L; vÞ; and
(iv) let pAVðTÞ have a child u such that ðCTðuÞ;BT ðuÞÞ has a twin with respect to

ðCTðpÞ;BT ðpÞÞ: Then p has exactly one other child and that is mapped on such a
twin.

If all these conditions are satisfied we call T or, more formally, ðT ; r;CT ;BTÞ; an
extension tree with parameters ðC;B; vÞ:

Note that, firstly, (iii) and (iv) imply that a vertex in an extension tree has at most
two children. Secondly, deleting all descendants of a given vertex and restricting the
mappings to the remaining vertices will yield another extension tree with the same
parameters. And finally, the converse operation leads to an extension tree too: let
ðT1; r;CT1

;BT1
Þ be an extension tree with parameters ðC;B; vÞ; l a leaf of T1 and

ðT2; l;CT2
;BT2

Þ an extension tree with parameters ðCT1
ðlÞ;BT1

ðlÞ; vÞ: Then the tree
T :¼ T1,T2 with root r together with the mappings CT ;BT is an extension tree with
parameters ðC;B; vÞ; where CT and BT are induced by the corresponding mappings
on T1 and T2:

Lemma 20. Let T be an extension tree with parameters ðC;B; vÞ: For every vertex

tAVðTÞ the circuit EðCTðtÞÞ is disjoint from EðBÞ:

Proof. Induction on the depth of t—note that if p is the parent of t we have
BT ðpÞDBTðtÞ; and that BT ðpÞ-CT ðtÞDBTðtÞ-CT ðtÞ is a set of attachments, hence
a set of vertices and ends, by Lemma 9(i). &

The next lemma is the reason why we have introduced extension trees at all,
instead of employing a sequential algorithm: the circles associated with the leaves
sum to precisely the edges in C at v:

Lemma 21. Let T be an extension tree with parameters ðC;B; vÞ: Then the following

holds:
X

l leaf of T

EðCTðlÞÞ-EðvÞ ¼ EðCÞ-EðvÞ:

Proof. Induction on jVðTÞj and Eq. (*). &

Recall that we want to inflate the bridge B so that eventually it is the only one left.
To achieve this, we have to ensure that B grows in a relatively controlled way. In
particular, we need to be able to perform the extension steps in such a way that after

finitely many steps our favourite bridge B̃ can be used for the next step (if it is not
already contained in the inflated bridge).
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Lemma 22. Let C be a circle with bridge B; and let vAVðC-BÞ: For a bridge B̃ of C

there is an extension tree T with parameters ðC;B; vÞ such that for every leaf l of T

holds that

either B̃DBTðlÞ or B̃ is a bridge of CTðlÞ overlapping BTðlÞ:

Proof. By Lemma 14, there is a B–B̃ path P in the overlap graph of C in G: We do an
induction on the length of such a path.

If P is trivial we have B ¼ B̃; and if P has length one then B and B̃ are overlapping.
In both cases we are done. So assume that P has length k � 1; which is at least two.

Let P ¼ K1yKk; where K1 ¼ B and Kk ¼ B̃: We define an extension tree T 0 with
parameters ðC;B; vÞ as follows. For the root r we map CT 0 ðrÞ :¼ C and BT 0 ðrÞ :¼ B:
Now, let L be a residual arc of the bridge K2 in C that meets v; and let ðC0;B0Þ be
gained from ðC;BÞ by the extension step ðK2;L; vÞ: We assign a vertex c0 to be a child
of r and map CT 0 ðc0Þ :¼ C0 and BT 0 ðc0Þ :¼ B0: Should ðC0;B0Þ have a twin ðC00;B00Þ
with respect to r; we let r have a second child c00 and define the mappings accordingly.
The resulting tree T 0 is an extension tree.

Consider the child c0: The bridge K3 overlaps K2 and has therefore, by definition,
an attachment in C\L: As K3-C0DK3-C this implies together with C\LDB0

\C0 (by
Lemma 18(ii)) that K3DB0: Therefore, the greatest index ipk with KiDB0 is at least
three. Any bridge Kj with a greater index j must necessarily have all its vertices of

attachment in L and is thus still a bridge of C0: Also, if for j; j04i; Kj and Kj0 are

overlapping as bridges of C then they are overlapping as bridges of C0 as well (as this

is decided on L). If j ¼ k then B̃DB0; and we define T1 :¼ |: Otherwise, B0Kiþ1yKk

is a path in the overlap graph of C0: As it is shorter than P; induction yields an
extension tree T1 with parameters ðC0;B0; vÞ such that the associated bridge of every

leaf either contains B̃ or overlaps it. Now, if r has only one child the tree T :¼ T 0,T1

with root r satisfies the assertion. Otherwise, we obtain in a similar way an extension
tree T2 with parameters ðC00;B00; vÞ and T :¼ T 0,T1,T2 is the desired tree. &

If we can find an extension tree for which the circuit EðCTðlÞÞ for every leaf l is
peripheral, we are done, as Lemmas 20 and 21 demonstrate. We introduce a measure
of how ‘‘far’’ the leaves of an extension tree are from being peripheral.

Let T be an extension tree with parameters ðC;B; vÞ: For a vertex t of T we define

rðtÞ :¼ supfNAZ : 8eAEðGÞ; dGðv; eÞpN ) eAEðCTðtÞ,BTðtÞÞg;

where we admit N: This definition ensures that every edge e with dGðv; eÞprðtÞ lies
in EðCT ðtÞ,BTðtÞÞ: If rðtÞ ¼ N then every edge is contained in EðCT ðtÞ,BTðtÞÞ;
and EðCTðtÞÞ is therefore a peripheral circuit. With that we define

rðTÞ :¼ minfrðlÞ : l is leaf of Tg:

Thus, rewriting our statement above, if we can find an extension tree with rðTÞ ¼
N; we are done. Unfortunately, this is not always possible.
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Let us have a look at a concrete example. Consider the circle C on the left in Fig. 6. It

has two bridges, the bridge B indicated in the figure, and another one B̃ consisting of the
infinite ladder in the interior face of C: We have r ¼ 0 for the circle-bridge pair ðC;BÞ as
there are edges incident with a neighbour of v that lie in B̃: We push up r by performing

an extension step through B̃; the result of which is seen on the right of Fig. 6. Indeed, for
the circle-bridge pair ðC0;B0Þ we obtain r ¼ 1: Note that C0 is formed by replacing C\L

(where L is the residual arc of B̃ which contains v) with a finite path A using a rung of the

infinite ladder that comprises B̃: Now, the next extension step might use a similar arc A0

along another one of the rungs of the infinite ladder, and so on. Then, all the subsequently
gained circles will be finite, and consequently, we will never reach an extension tree for
which rðTÞ ¼ N; since there is no finite peripheral circuit containing e:

Lemma 23, however, shows that we can achieve the next best thing, namely finding
a sequence of nested extension trees with strictly increasing rðTÞ: First, we make the
notion of nested extension trees more precise.

To keep notation simple we will just write TDT 0 for two extension trees T and T 0

while tacitly assuming that both trees are extension trees with the same parameters
and the same root and that the mappings CT and BT of T are induced by the
corresponding mappings of T 0:

So let ðTnÞnAN be a family of extension trees with parameters ðC;B; vÞ such that

TnDTnþ1 for all nAN: Then we call the family an extension family with parameters

ðC;B; vÞ:

Lemma 23. Let C be a circle with a bridge B; and let vAVðC-BÞ: Assume that there

is no extension tree T with parameters ðC;B; vÞ and rðTÞ ¼ N: Then there is an

extension family ðTnÞnAN with parameters ðC;B; vÞ so that

rðT1ÞorðT2Þo?

Proof. We will inductively construct nested extension trees T1;y;Tn with
rðT1Þo?orðTnÞ: For T1; take any extension tree with parameters ðC;B; vÞ: For
n41; let T1;y;Tn be already constructed.

Setting d :¼ rðTnÞ þ 1 (note that rðTnÞoN) we put

mðtÞ :¼ jfeAEðGÞ\EðCTðtÞ,BTðtÞÞ : dGðv; eÞpdgj
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for a vertex t of an extension tree T ; and define

mðTÞ :¼ max
l leaf of T

mðlÞ:

Observe, that since G is locally finite, mðTÞ is always finite (and is, in particular,
defined). We see that mðTÞ ¼ 0 implies rðTÞXd: Thus, our task is to find an
extension tree T with T+Tn and mðTÞ ¼ 0: For this, it suffices to establish that

for each leaf p of Tn there is an extension tree Tp with root p and

parameters ðCTp
ðpÞ;BTp

ðpÞ; vÞ such that mðTpÞomðTnÞ:

Indeed, the union T of all those Tp and Tn is an extension tree (with parameters

ðC;B; vÞ) with T+Tn and mðTÞomðTnÞ: An induction argument then allows us to
find a Tnþ1 with mðTnþ1Þ ¼ 0:

To establish the claim, consider an edge eeEðCTn
ðpÞ,BTn

ðpÞÞ with dGðv; eÞpd:

Thus e contributes to mðpÞ: Denote by B̃ the bridge of CTn
ðpÞ containing e: With

Lemma 22 we find an extension tree T 0 with parameters ðCTn
ðpÞ;BTn

ðpÞ; vÞ such that

the associated bridge of every leaf of T 0 either contains B̃ or overlaps it.

Let l be a leaf of T 0: If B̃DBT 0 ðlÞ then e is contained in BT 0 ðlÞ as well, and we

obtain mðlÞomðpÞ: So assume B̃ and BT 0 ðlÞ to be overlapping. Let L be a residual arc

of B̃ in CT 0 ðlÞ containing v; and let ðC0;B0Þ be gained from ðCT 0 ðlÞ;BT 0 ðlÞÞ by the

extension step ðB̃;L; vÞ: Assume for the moment that ðC0;B0Þ has no twin with
respect to l: Denote by T the extension tree obtained from T 0 by adding a child c to l

and mapping CTðcÞ :¼ C0 and BT ðcÞ :¼ B0: Observe, that e has a vertex in common
with CTðlÞ; say the vertex w (every edge with lesser distance to v is contained in
CT ðlÞ,BTðlÞ). Should w be contained in CTðlÞ\L; we have by Lemma 18(ii),
eDBTðcÞ; leading to mðcÞomðpÞ: Thus, we have to deal with the case that w is one of
the two endpoints of L (being an attachment, w cannot be contained in the interior of

L). The w–B̃ edge f that is used to construct CTðcÞ clearly has the same distance to v

as e: Consequently, f contributes to mðpÞ—but not to mðcÞ: Again, this leads to
mðcÞomðpÞ: Should c have a twin with respect to l we extend T 0 in a similar way for
that twin. Modifying T 0 in this way for each leaf l we arrive at the desired extension
tree Tp: &

Let ðTnÞnAN be an extension family with parameters ðC;B; vÞ: The union T :¼S
nX1 Tn is then an infinite rooted tree. We extend the mappings CTn

and BTn
of the

Tn to mappings CT and BT of T in the natural way. T will be called an infinite

extension tree with parameters ðC;B; vÞ: To distinguish clearly between these infinite
extension trees and the extension trees defined earlier (in Definition 19) we shall
speak of finite extension trees when the latter ones are meant.

By Lemma 18(iii), rðpÞprðcÞ holds for a child c of a vertex p in an extension tree.
Thus, in the extension family ðTnÞ the sequence rðTnÞ is monotonically non-
decreasing, and hence rðTÞ :¼ limn/N rðTnÞ is well defined (if we admit N).

With this terminology Lemma 23 asserts that if we cannot find a finite extension
tree of which all the (associated circuits of the) leaves are peripheral, then there is an
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infinite extension tree T with rðTÞ ¼ N: Being infinite, T has rays starting in the
root vertex. These rays play a similar role as the leaves, and indeed we may extract a
peripheral circuit from each of these rays.

Lemma 24. Let C be a circle with a bridge B; and let vAVðC-BÞ: Let T be an infinite

extension tree with parameters ðC;B; vÞ and rðTÞ ¼ N: Consider a ray c1c2y in T

starting in the root vertex of T : Then there is a peripheral circuit D which is disjoint

from EðBÞ and for which there is an MAN such that D-EðvÞ ¼ EðCTðcnÞÞ-EðvÞ for

every nXM:

Proof. Let ðTnÞ be the T defining extension family. We may assume that
rðT1ÞorðT2Þo?: For nAN; put Cn :¼ CT ðcnÞ; Bn :¼ BTðcnÞ and Vn :¼
fwAVðGÞ : dGðv;wÞpng:

(i) First, we claim that

for all mAN there is a NmAN such that Cn-G½Vm� ¼ CNm
-G½Vm�

for all nXNm:

Then, putting

Z :¼
[

mAN

EðCNm
-G½Vm�Þ;

we see that

Z-EðvÞ ¼ EðCnÞ-EðvÞ for all nXN1 ¼: M ð2Þ

(note that for m ¼ 1 all neighbours of v and v itself lie in G½Vm�). In addition, observe
that every vertex of G is incident with at most two of the edges in Z:

So let us prove (1). For mAN; assume N1;y;Nm�1 to be already defined. With
NAN such that mprðTNÞ we observe that

Cnþ1-G½Vm�DCn-G½Vm�DCN-G½Vm� ð3Þ

holds for any nXN: Indeed, note that mrrðTNÞ implies G½Vm�DBN,CN : Let

ðCNþ1;BNþ1Þ be gained by the extension step ðB̃;L; vÞ: Then,

B̃-G½Vm�DB̃-ðBN,CNÞDB̃-CN : Hence, B̃\CN is disjoint from G½Vm�: By
Lemma 18(i), we obtain

CNþ1-G½Vm�DðL,ðB̃\CNÞÞ-G½Vm�DCN-G½Vm�:

Inductively, (3) follows.
Since Cn-G½Vm� is finite for each nXN; it follows from (3) that there is an Nm

from which point on Cn-G½Vm� does not change. This shows (1).
(ii) Next, consider a finite cut F of G: Choose m large enough for FDEðG½Vm�Þ:

We obtain

F-Z ¼ ðF-EðG½Vm�ÞÞ-Z ¼ F-ðZ-EðG½Vm�ÞÞ ¼ F-EðCNm
Þ;

ARTICLE IN PRESS

(1)

H. Bruhn / Journal of Combinatorial Theory, Series B 92 (2004) 235–256 251



where the last equality holds because of (1). Since EðCNm
ÞACðGÞ; F-EðCNm

Þ is an

even set, by Theorem 6. Therefore, by the other direction of Theorem 6, ZACðGÞ:
Consequently, it is, by Theorem 7, a disjoint union of circuits. Exactly one of
these circuits, which we denote by D; is incident with v (since v is incident
with exactly two edges of Z). Thus, (2) yields D-EðvÞ ¼ EðCnÞ-EðvÞ for all nXM;
as desired.

By Lemma 20, all the circuits EðCnÞ are disjoint from EðBÞ; so this holds for D

as well.
(iii) Finally, what remains is to show that D is peripheral. We start with the claim

that Z has a single bridge BZ: Let us show that any two points x; yAjGj\Z lie in the
same bridge. As every bridge is either a chord or contains vertices, by Lemma 9(iv),
we may assume that neither of x; y is an end. Thus, both lie in some edge and
we may choose m large enough so that at the same time x; yeCNm

and that
the distance from v to any edge x or y is incident with is at most rðTNm

Þ: Clearly,

this choice of m implies x; yABNm
\CNm

: Thus, there is an arc A with endpoints

x and y in the, by Lemma 4, path-connected set BNm
\CNm

: As BNn
+BNm

for every

nXm; it follows that ADjGj\CNn
; and therefore ADjGj\Z: Thus, Z has only one

bridge BZ:

As a subset of Z; D has a bridge BD+BZ: Note that Z has no chords as
otherwise the only bridge BZ is a chord, which implies that there is a vertex in G

with degree two (since every vertex is incident with at most two of the edges

in Z). Then also D has no chords, and if every vertex in jGj\D lies in BD\D then

D has only a single bridge, by Lemma 9(iv), and D is a peripheral circuit
(Lemma 10).

So consider a vertex vAjGj\D: If veZ then vABZ\ZDBD\D: Thus, let vAZ: Then v

has a neighbour weZ (otherwise the edge vw is a chord), which consequently lies in

BD\D: Hence, vABD\D too. &

We have seen that the desired peripheral circuits may be obtained from the leaves
and rays (starting in the root vertex) of a suitable extension tree. However, we want
only finitely many peripheral circuits, but an infinite tree can clearly have more
leaves and rays. Fortunately, this cannot happen in an extension tree:

Lemma 25. Let TN be an infinite extension tree. Then TN has only finitely many

leaves and only finitely many rays starting in its root vertex.

Proof. Let TN have the parameters ðC;B; vÞ: To establish the assertion it suffices to
show that there is a NAN such that for any finite extension tree T with parameters
ðC;B; vÞ the number of leaves is bounded by N: For a vertex t of T ; let kðtÞ be the
number of edges of G incident with v that are not contained in CT ðtÞ,BTðtÞ: We
prove by induction on jVðTÞj that

X

l leaf of T

2kðlÞp2kðrÞ;
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where r denotes the root vertex of T : Note that every leaf is counted in the sum, as

2kðlÞ
X1; and that the righthand side is the same for all extension trees with

parameters ðC;B; vÞ:
Clearly, the inequality holds for trivial trees. So assume jVðTÞj41: Then, we find

a vertex p of T all of whose children are leaves. Deleting all these children leads to an
extension tree T 0 with fewer vertices than T : If p has only a single child c; we have
kðcÞpkðpÞ by Lemma 18(iii). Now, assume that p has two children c and d: Let

ðCT ðcÞ;BTðcÞÞ be gained from its parent by the extension step ðB̃;L; vÞ: Consider the
edge fAEðCTðcÞÞ\EðCT ðpÞÞ incident with v (such an edge exists as ðCTðcÞ;BT ðcÞÞ
has a twin). We see that fAEðCTðcÞ,BTðcÞÞ but feEðCTðpÞ,BTðpÞÞ; leading to

kðcÞokðpÞ: By symmetry this holds for d as well, yielding 2kðcÞ þ 2kðdÞp2kðpÞ:
Summing over all leaves of T we obtain

X

l leaf of T

2kðlÞp
X

l leaf of T ;
no child of p

2kðlÞ þ 2kðpÞ

¼
X

l0 leaf of T 0

2kðl0Þ

p 2kðrÞ;

where the last inequality is because of the induction hypothesis. &

We can now put the pieces together.

Proof of Lemma 17. If there is a finite extension tree T with parameters ðC;B; vÞ
such that rðTÞ ¼ N then we are done, by Lemmas 20 and 21.

So assume otherwise. By Lemma 23 there is an extension family ðTnÞ with
parameters ðC;B; vÞ such that rðT1ÞorðT2Þo?: Hence, we obtain an infinite
extension tree T :¼

S
nX1 Tn with parameters ðC;B; vÞ and with rðTÞ ¼ N: The

number of leaves of T is, because of Lemma 25, finite. We denote those leaves by
l1;y; lk and put D1 :¼ EðCTðl1ÞÞ;y;Dk :¼ EðCTðlkÞÞ: The circuits Di are by
definition peripheral and, by Lemma 20, disjoint from EðBÞ: Lemma 25 also ensures
that there are only finitely many rays starting in the root vertex; let these be
Rkþ1;y;Rm: With Lemma 24 we obtain a peripheral circuit Di from each of the rays
Ri: In addition, for each iAfk þ 1;y;mg; Di is disjoint from EðBÞ and there is a
vertex ti on the ray Ri such that Di-EðvÞ ¼ EðCTðtÞÞ-EðvÞ for every vertex t on the
tail tiRi:

Choose N large enough so that TN contains all the leaves li from T ; and all the
vertices ti: The set of leaves of TN is then

fl1;y; lk; tkþ1
0;y; tm

0g;
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where ti
0 is a vertex in the tail tiRi: Together with Lemma 21 we obtain

EðCÞ-EðvÞ ¼
X

l leaf of TN

EðCTN
ðlÞÞ-EðvÞ

¼
Xk

i¼1

EðCTN
ðliÞÞ-EðvÞ þ

Xm

i¼kþ1

EðCTN
ðti

0ÞÞ-EðvÞ

¼
Xm

i¼1

Di-EðvÞ: &

6. Generating the cycle space

Theorem 2 will be proved by induction, where Lemma 17 provides the essential
part of the induction step. However, the lemma is only applicable to circuits, but we
are dealing with arbitrary elements of the cycle space. In order to overcome this, we
strengthen Lemma 17:

Lemma 26. Let G be a locally finite and 3-connected graph. Let ZACðGÞ; let B be a

bridge of Z; and let vAVðBÞ be a vertex. Then there are peripheral circuits D1;y;Dm

each of which is disjoint from EðBÞ such that for Z0 :¼ Z þ
Pm

i¼1 Di holds

(i) Z0 leaves a bridge B0+B; and

(ii) EðvÞDEðB0Þ:

Proof. By Theorem 7, Z is a union of disjoint circuits; denote by C1;y;Cn

those of these circuits which are incident with v: Since CiDZ; the circle Ci leaves a

bridge Bi containing B: Therefore, applying Lemma 17 to Ci with bridge Bi yields
peripheral circuits Di1;y;Dimi

each of which is disjoint from EðBiÞ+EðBÞ and for
which hold

Xmi

j¼1

Dij-EðvÞ ¼ Ci-EðvÞ

(for i ¼ 1;y; n). Summing up, we arrive at

Xn

i¼1

Xmi

j¼1

Dij-EðvÞ ¼
Xn

i¼1

Ci-EðvÞ ¼ Z-EðvÞ: ð4Þ

Next, observe that Dij is disjoint from B\Z; for each i; j: Indeed, B\Z cannot

contain any inner points of edges in Dij ; as Dij is disjoint from EðBÞ (note Lemma

9(iii)). Since B\Z is open this leads to ðB\ZÞ-Dij ¼ |:
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Consequently, the connected set B\Z is contained in a bridge of Dij and then also

in a bridge of Z00; for Z00 :¼ Z,
S

i;j Dij: Now, for Z0 :¼ Z þ
Pn

i¼1

Pmi

j¼1 Dij ; Z0DZ00

implies that Z0 has a bridge B0+B:
Finally, (4) shows that v is not incident with any edge in Z0: Together with vAVðBÞ

this leads to EðvÞDEðB0Þ; as required. &

We now prove our main result, which we restate.

Theorem 2. Every element of the cycle space CðGÞ of a locally finite 3-connected graph

G is a sum of peripheral circuits.

Proof. We begin by proving the following statement.

Let ZACðGÞ; and let B be a bridge of Z: Then Z is the sum of

a thin family D of peripheral circuits:

Fix a vertex b in B; and let fe1; e2;yg be an enumeration of the edge set of G such
that dGðb; eiÞodGðb; ejÞ implies ioj: We will obtain D as the union of inductively

constructed finite sets of peripheral circuits. More formally, for all nAN we
inductively show the existence of finite sets Dn of peripheral circuits and of bridges

Bn of Zn; where Zn :¼ Z þ
P

Dn; satisfying

(i) Bn�1DBn;
(ii) Dn�1DDn;
(iii) every DADn\Dn�1 is disjoint from EðBn�1Þ; and
(iv) fe1;y; engDEðBnÞ;

where D0 :¼ |; B0 :¼ B and Z0 :¼ Z:
For nAN; let Dn�1 and Bn�1 be already constructed. We claim that en is incident

with a vertex v in Bn�1: If dGðb; enÞ ¼ 0 this is obvious, so let there be an edge ei

adjacent to en with strictly lesser distance to b: By the choice of the enumeration we
obtain ion and in turn eiDEðBn�1Þ: Hence, the vertex v incident with both edges ei

and en is contained in Bn�1 as well.
By applying Lemma 26 to Zn�1; bridge Bn�1 and vertex v we obtain peripheral

circuits D1;y;Dm each of which is disjoint from EðBn�1Þ: In addition, Zn leaves a
bridge Bn+Bn�1 such that EðvÞDEðBnÞ: Since enAEðvÞ the conditions (i)–(iv) are

clearly satisfied by putting Dn :¼ Dn�1,
Sm

i¼1 Di:

We claim that D :¼
S

nX1 Dn satisfies the assertion of claim (5). To see this,

consider an edge en of G: First note that because of conditions (iii) and (iv) the
edge en may only be used by the finitely many circuits in Dn and by none other
in D—proving D to be a thin family. Furthermore, (iv) implies that

eneZ þ
X

Dn and hence eneZ þ
X

D

by the preceding argument. Thus, (5) is established.
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Now, if for ZACðGÞ; Z leaves a bridge, (5) guarantees that Z is the sum of
peripheral circuits. If that is not the case, let C be any circuit of G: Then, both and

Z þ C have at least one bridge and the statement (5) may be applied to each of them.
Clearly, the union of the two generating sets of peripheral circuit is a generating set
of Z: &
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[6] R. Diestel, D. Kühn, On infinite cycles II, Combinatorica 24 (2004) 91–116.
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