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Abstract

We study an abstract notion of tree structure which lies at the common
core of various tree-like discrete structures commonly used in combina-
torics: trees in graphs, order trees, nested subsets of a set, tree-decompo-
sitions of graphs and matroids etc.

Unlike graph-theoretical or order trees, these tree sets can provide a
suitable formalization of tree structure also for infinite graphs, matroids,
and set partitions. Order trees reappear as oriented tree sets.

We show how each of the above structures defines a tree set, and which
additional information, if any, is needed to reconstruct it from this tree set.

1 Introduction

There are a number of concepts in combinatorics that express the tree-likeness
of discrete! structures. Among these are:

e graph trees

e order trees

e nested subsets, or bipartitions, of a set.
Other notions of tree-likeness, such as tree-decompositions of graphs or ma-
troids, are modelled on these.

All these notions of tree-likeness work well in their own contexts, but some-
times less well outside them:

e graph trees need vertices, which in some desired applications — even as
close as matroids — may not exist;

e order trees need additional poset structure which is more restrictive than
the tree-likeness it implies;?

e nested sets of bipartitions require a ground set that can be partitioned,
which does not exist, say, in the case of tree-decompositions of a graph;

e tree-decompositions of infinite graphs, which are modelled on graph trees,
cannot describe separations that are limits of other separations, because
graph trees do not have edges that are limits of other edges.

1There are also non-discrete such concepts, such as R-trees, which are not our topic here.

2Finite order trees, for example, correspond to rooted graph trees, but there is nothing in
their definition from which we can abstract so that what remains corresponds to the underlying
unrooted graph tree.



The purpose of this paper is to study an abstract notion of tree structure
which is general enough to describe all these examples, yet substantial enough
that each of these instances, in their relevant context, can be recovered from it.

We shall introduce this abstract notion of ‘tree sets’ formally in Section 2. It
builds on a more general notion of ‘abstract separation systems’ developed in [3].
That paper consists of no more than some basic notions and facts we need here
anyway, and is thus required as preliminary reading.? In a nutshell, a separation
system will just be a poset with an order-reversing involution, and tree sets will
be nested separation systems: sets in which every element is comparable with
every other element or its inverse.

Tree-likeness has been modelled in many ways [15], and even the idea to
formalize it in this abstract way is not new. Abstract nested separation systems
as above were introduced by Dunwoody [9, 10] under the name of ‘protrees’,
as an abstract structure for groups to act on, and used by Hundertmark et
al [11, 5] as a basis for structure trees of graphs and matroids that can separate
their tangles and related substructures. They have not, however, been studied
systematically — which is our purpose in this paper.

Although studying abstract tree sets may seem amply justified by their ubi-
quity in different contexts, there are two concrete applications that I would like
to point out. The first of these is to order trees. These are often used in infinite
combinatorics to capture tree structure wherever it arises. The reason they
can do this better than graph-theoretical trees is that they may contain limit
points, as those tree-like structures to be captured frequently do. However, order
trees come with more information than is needed just to capture tree structure,
which can make their use cumbersome. For a finite tree structure, for example,
they correspond to a graph-theoretical tree together with the choice of a root.
A change of root will change the induced tree order but not the underlying
graph tree, which already captures that finite tree structure.

It turns out that abstract tree sets can provide an analogue of this also for
infinite order trees: these will correspond precisely to the consistently oriented
tree sets. Just as different choices of a root turn the same graph-theoretical
tree into related but different order trees, different consistent orientations of an
abstract trees set yield related but different order trees. Order trees thus appear
as something like a category of ‘pointed tree sets’,* not only when their tree
structure is represented by a graph but always, also when they have limit points.
It thus becomes possible to ‘forget’ the ordering of an order tree but retain more
than a set: the set plus exactly the information that makes it tree-like.

The application of tree sets that originally motivated this paper was one to
graphs, as follows. In graph minor theory there are duality theorems saying that
a given finite graph either has a certain highly connected substructure, such as
a bramble, or if not then this is witnessed by a tree-decomposition showing that
such a highly connected substructure cannot exist, because ‘there is no room for
it’ [6, 14]. The edges of the decomposition tree then correspond to separations
of this graph that form a tree set in our sense.

3Reference [3] started life as the preliminary sections of this paper, and it should be read
first. The reason it was split off is that abstract separation systems have since been used in
several other papers too, and will be in more to come. So it seemed sensible to have the basics
collected together in one place.

4More precisely: tree sets plus a consistent orientation. The latter can be specified by a
‘point’ — i.e., an element of the set — only when the order tree has a least element.



Conversely, a tree set of separations of a finite graph or matroid is always in-
duced by a tree-decomposition in this way. Thus, in finite graphs and matroids,
tree-decompositions and tree sets of separations amount to the same thing.

But for infinite graphs, tree sets of separations are more powerful: they need
not come from tree-decompositions, since separations can have limits but edges
in decomposition trees do not. This is why width duality theorems for infinite
graphs, such as those in [1], require tree sets of separations, rather than tree-
decompositions, to express the tree structures that witness the absence of highly
connected substructures such as tangles or brambles. See [1] for more on this.

Highly cohesive substructures can be identified not only in graphs, but also in
much more general combinatorial structures: all those that come with a sensible
notion of ‘separation’, and hence give rise to abstract separation systems. Their
highly cohesive substructures then take the form of tangles of these separation
systems: orientations of their separations that are consistent in various ways
(all including the basic consistency considered for tree sets in this paper) that
define the differences between these types of tangle [4, 7, 6, 8]. We thus obtain a
wealth of duality theorems for potentially very different combinatorial structures
all based on the abstract tree sets studied in this paper.

In Section 2 we provide just the formal definitions needed to state our theo-
rems; for all the basic facts about abstract separation systems that we shall need
in our proofs we refer the reader to [3]. In Sections 3, 4, 5 and 6, respectively,
we show how abstract tree sets can be used to describe the tree structures of
our earlier examples: of graph-theoretical trees, of order trees, of nested sets of
bipartitions of a set, and of tree-decompositions of graphs and matroids. We
shall also see how these representations of tree sets can be recovered from the
tree sets they represent. Where relevant we shall point out how, conversely, ab-
stract tree sets describe tree-like structures in these contexts that do not come
from such examples: where tree sets provide not just a convenient common lan-
guage for different kinds of tree structures but define new ones, including new
ones that are needed for applications in traditional settings such as graphs and
matroids [1].

Any terminology used but not defined in either [3] or this paper can be found
in [2].

2 Abstract separation systems and tree sets®

A separation of a set V is a set {A, B} such that AU B = V.5 The ordered
pairs (A, B) and (B, A) are its orientations. The oriented separations of V are
the orientations of its separations. Mapping every oriented separation (4, B) to
its inverse (B, A) is an involution that reverses the partial ordering

(A,B)<(C,D): ACCand B2 D,

5This section is provided only to make this paper formally self-contained; I encourage the
reader to read [3] instead of this section, or at least to refer to [3] in parallel.

6We can make further requirements here that depend on some structure on V which {4, B}
is meant to separate. If V' is the vertex set of a graph G, for example, we usually require that
G has no edge between A~ B and B~ A. But such restrictions will depend on the context and
are not needed here; in fact, even the separations of a set V' defined here is just an example
of the more abstract ‘separations’ we are about to introduce.



since the above is equivalent to (D, C) < (B, A). Informally, we think of (A, B)
as pointing towards B and away from A. B

More generally, a separation system (S, < ,*) is a partially ordered set S with
an order-reversing involution*. Its elements are called oriented separations.
An isomorphism between two separation systems is a bijection between their
underlying sets that respects both their partial orderings and their involutions.

When a given element of S is denoted as s, its inverse s* will be denoted
as §, and vice versa. The assumption that * be order-reversing means that, for
all 7,5 € S,

r<s & r>s. (1)

A separation is a set of the form {s, §}, and then denoted by s. We call
§ and § the orientations of s. The set of all such sets {s, 5} C S will be
denoted by S. If § = 5, we call both s and s degenerate.

When a separation is introduced ahead of its elements and denoted by a
single letter s, we shall use s and 5 (arbitrarily) to refer to its elements. Given
aset S’ of separations, we write S := Us’' c S for the set of all the orientations
of its elements. With the ordering and involution induced from S , this is again
a separation system.7

Separations of sets, and their orientations, are clearly an instance of this
abstract setup if we identify {A, B} with {(4, B), (B, A4)}.

A separation 1 € S is trivial in S ,and T is co-trivial, if there exists s € S
such that 7 < 5 as well as ¥ < 5. We call such an s a witness of ¥ and its
triviality. If neither orientation of r is trivial, we call r nontrivial.

Note that if 7 is trivial in S then so is every 7 < 7. If 7 is trivial, witnessed
by s, then ¥ < § < 7 by (1). Hence if 7 is trivial, then 7 cannot be trivial.
In particular, degenerate separations are nontrivial.

There can also be separations s with s < 5 that are not trivial. But any-
thing smaller than these is again trivial: if ¥ < § < 5, then s witnesses the
triviality of 7. Separations § such that § < 5, trivial or not, will be called
small; note that, by (1), if § is small then so is every s’ < 5.

The trivial oriented separations of a set V, for example, are those of the form
7 =(A,B)with AC CNDand BD CUD =V for some s = {C, D} # r in the
set S considered. The small separations (A, B) of V are all those with B = V.

Definition 2.1. A separation system is regular if it has no small elements. It
is essential if it has neither trivial elements nor degenerate elements.

Note that all regular separation systems are essential.

Definition 2.2. The essential core of a separation system S is the essential
separation system S’ obtained from S by deleting all its separations that are
degenerate, trivial, or co-trivial in S.

An essential but irregular separation system can be made regular by deleting
all pairs of the form (s, 5) from the relation < viewed as a subset of S2: the
triple (S, <’,*), where ¥ <’ § if and only if ¥ < § and r # s, is a regular
separation system [3]. We call it the regularization of S.

"When we refer to oriented separations using explicit notation that indicates orientation,
such as 3 or (A, B), we sometimes leave out the word ‘oriented’ to improve the flow of words.
Thus, when we speak of a ‘separation (A, B)’, this will in fact be an oriented separation.



A set O C S of oriented separations is antisymmetric if |0 N {5, 5} <1
for all § € S: if O does not contain the inverse of any of its nondegenerate
elements. We call O consistent if there are no distinct r, s € S with orientations
7 < § such that 7, § € O.

Two separations 7, s are nested if they have comparable orientations; other-
wise they cross. Two oriented separations 7, s are nested if r and s are nested.?
We say that 7 points towards s, and r points away from s,if ¥ < s or ¥ < §.

In this informal terminology, two oriented separations are nested if and only
if they are either comparable or point towards each other or point away from
each other. And a set O C S is consistent if and only if it does not contain
orientations of distinct separations that point away from each other.

A set of separations is nested if every two of its elements are nested.

Definition 2.3. A tree set is a nested essential separation system. An isomor-
phism of tree sets is an isomorphism of separation systems that happen to be
tree sets.

The essential core of a nested separation system S is the tree set induced by S.

Definition 2.4. A star (of separations) is a set o of nondegenerate oriented
separations whose elements point towards each other: v < 5 for all distinct
r,5 €o.

We allow ¢ = ). Note that stars of separations are nested. They are also
consistent: if distinct 7, § lie in the same star we cannot have 7 < §, since
also § < 7 by the star property.

A star o is proper if, for all distinct ¥, § € o, the relation 7 < § required by
the definition of ‘star’ is the only one among the four possible relations between
orientations of distinct  and s: if ¥ < 5 but ¥ £ s and 7 2 s and 7 Z 5.

Our partial ordering on S also relates its subsets, and in partmular its stars:
for o,7 C S we write o < 7 if for every § € o there exists some ¢ € 7 with

5 < t. This relation is obviously reflexive and transitive, but in general it is
not antisymmetric: if o contains separations 5§ < t, then for 7 = o ~ {5} we
have o < 7 < o (where < denotes ‘< but not =’). However, it is antisymmetric
on antichains, and thus in particular on proper stars [3].

We call a star o € S proper in S if it is proper and is not a singleton { 5§}
with § co-trivial in S. We shall call such stars co-trivial singletons.

When we speak of mazimal proper stars in a separation system (§, <,%), we
shall always mean stars that are <-maximal in the set of stars that are proper
in S. Maximal stars in tree sets will play a key role in describing their structure.

We refer to [3] for examples and various properties of stars in separation
systems that we shall use throughout this paper.

An orientation of a separation system §, or of a set S of separations, is a
set O C S that contains for every s € S exactly one of its orientations s, 5.
A partial orientation of S is an orientation of a subset of S: an antisymmetric
subset of S. We shall be interested particularly in consistent orientations.

Every consistent orientation O of a regular separation system S is the down-

closure R R
[o]lgz={T€S[Is€0: 7T <5}

8Terms introduced for unoriented separations may be used informally for oriented separa-
tions too if the meaning is obvious, and vice versa.



in S of the set o of its maximal elements — provided that every element of O lies
below some maximal element (which can fail when S is infinite). If S is a tree
set, then these sets o are its maximal proper stars; we call them the splitting
stars of S.

See [3] for proofs of these assertions and further background needed later.

3 Tree sets from graph-theoretical trees

The set N

E(T):={(z,y) : 2y € E(T) }
of all orientations (x,y) of the edges xy = {z,y} of a tree T form a regular
tree set with respect to the involution (z,y) — (y,z) and the natural partial
ordering on E(T): the ordering in which (z,y) < (u,v) if {z,y} # {u,v} and
the unique {z, y}—{u, v} path in T joins y to u. We call this is the edge tree set
7(T) of T. For every node t of T', we call the set

Fy:={(z,t) : 2t € E(T)}
of edges at ¢t and oriented towards ¢ the oriented star at ¢t in T

Lemma 3.1. The sets F; are the splitting stars of the edge tree set 7(T) of T'.

Proof. Let T be any tree. The down-closure in 7 = 7(T) of a set F, C E(T)
is clearly a consistent orientation of E(T') whose set of maximal elements is
precisely ﬁt

Conversely, let o C E(T ) split 7. Then o is the set of maximal elements
of some consistent orientation O of E(T'), and O C [o]. In particular, o # ()
unless E(T) = () (in which case the assertion is true), so O has a maximal
element (z,t). For every neighbour y # x of ¢, the maximality of (z,t) in O
implies that (¢,y) ¢ O and hence (y,t) € O.

Thus, Ft C O. As O is closed down in 7 and the down—closure of Ft in T
orients all of E(T'), this down-closure equals O and has F, as its set of maximal
elements, giving o = F, as desired. O

Lemma 3.1 allows us to recover a tree T' from its edge tree set 7. Indeed,
given just 7, let V' be the set of its splitting stars . Define a graph G on V by
taking 7 as its set of oriented edges and assigning to every edge s the splitting
star of 7 containing it as its terminal node. These are well defined — i.e., every
s € 7 lies in a unique splitting star — by Lemma 3.1 and our assumption that
7 = 7(T). Then, clearly, the map t — Fisa graph isomorphism between T'
and G.

Our assumption above that 7 is the edge tree set of some tree was used
heavily in the argument above. And indeed, it cannot be omitted altogether:
an arbitrary tree set need not be realizable as the edge tree set of a tree. Finite
regular tree sets are, though, and our next aim is to prove this in Theorem 3.3.

Given a tree set 7, write O = O(7) for the set of its consistent orientations.
Define a directed graph T with edge set E(T (ﬂ) = 7 as follows. For each s € 7
there is a unique ¢, € O in which s is maximal, by [3, Lemma 4.1 (iii)] applied
with P = {5}. Let T = T'() be the directed graph on {t, | § € 7} C O with
edge set 7, where s € 7 runs from t¢ to t5. Note that these are distinct, since



§ # § as 7 has no degenerate elements. Let T'= T'(7) be the underlying undi-
rected graph, with pairs s, 5 of directed edges identified into one undirected
edge s inheriting its orientations s, s from 7.

Thus, E(T) = E(T). In fact, let us remember for the definition of E(T) =
7(T) also the information from E(T') of which orientation of an edge s of T is §
and which is §. Unlike with arbitrary tree sets, the elements of tree sets of the
form 7(T'(7')) thus come with fixed names: those inherited from 7’ as defined

above.

Lemma 3.2. For every finite tree set T, the graph T(7) is a tree on O(T).

Proof. Let T := T(7) and O := O(7). By definition, V(T') is the set of those
consistent orientations of 7 that have a maximal element. Since 7 is finite, this
is the set O of all its consistent orientations, as claimed.

For every node t € T, the set o; of its incoming edges is precisely the set
of all § € 7 that are maximal in the orientation ¢ of 7. As 7 is finite, ¢ lies in
the down-closure of its maximal elements, so these o; are splitting stars of 7.
Conversely, every set o splitting 7 is clearly of this form: pick s € o, and notice
that o = oy for t := t5 by [3, Lemma 4.1 (iii)]. Let us now prove that 7" is a tree.

We noted before that t5 # ¢ for all §° € 7, so T" has no loops. In fact, T" is
acyclic. Indeed, if sg, . .., i are the edges of an oriented cycle in T'(7), then each
of these and the inverse of its (cyclic) successor lie in a common set o;. Since
these oy are stars of separations [3, Lemma 4.5], we have $§ < ... < §; < 5
with a contradiction.

To see that T is connected, let ¢, be nodes in different components, with
|t N '] maximum. Let § be maximal in ¢ \ ' (which we may assume is non-
empty). Then § is maximal also in ¢: any § € t greater than § would also
lie in ¢/, and hence so would s by the consistency of ¢ (which also orients s).
Replacing s in t with § therefore changes t into an orientation t” of T that is
again consistent, by the maximality of s in ¢. In " the separation § is maxi-
mal: for any ¥ > 5 we have ¥ < § € t, 80 ¥ € t by the consistency of ¢ and
hence also 7 € t”, giving 7 ¢ t”. Hence s = tt”, and in particular ¢” lies in the
same component of T" as t. Since it agrees with ¢’ on more separations than ¢
does, we have a contradiction to the choice of ¢t and t'. O

Our aim was to show that every finite tree set is the edge tree set of some
tree. In order for Lemma 3.2 to imply this we still need to know that 7 coincides
with E(T(7)) not only as a set, which it does by definition, but also as a poset:
that the 7 is indeed the edge tree set of T'(7). Part (i) of the Theorem 3.3 below
makes this precise.

Theorem 3.3 (ii) says that the tree T'(7) whose edge tree set represents 7, as
provided by (i), is unique up to a canonical graph isomorphism: if 7 is the edge
tree set also of some other tree T', then that tree T is isomorphic to T'(7) by an
isomorphism that can be defined just in terms of 7.

Given a tree T, write O; for the orientation of 7(T') that orients every edge
of T towards t.

Theorem 3.3. (i) For every finite reqular tree set 7/, the identity is a tree
set isomorphism between 7' and T = 7(T(7")).

(ii) For every finite tree T, the map t — Oy is a graph isomorphism between
T and T(7(T)).



Note that if (ii) is applied to a tree of the form T' = T'(7'), then t — Oy is
the identity on V(T') = O(7") = O(r(T(7"))), by (i) applied to 7’.

Proof. (1) The fact that elements s, § of 7/ are inverse to each other also in 7
was built into the definition of (7 =) E(T()) = E(T(7")).

It remains to show that elements 7, § € 7/ satisfy 7 < § in 7/ if and only
if they do so in 7. Since 7" and 7 are both regular, ¥ < § in either of them
implies that r # s, so we may assume this. The equivalence of the two assertions
follows by induction on the length ¢ of the unique r—s path in T'(7'), using the
transitivity of <, once we have shown it for £ = 0, that is, when r and s share
a vertex t of T'(77).

Since r # s by assumption, this means that the consistent orientation ¢ of 7/
has distinct maximal elements that are orientations of r and s, respectively.
These form a proper star in 7/, because they are both maximal in ¢ and ¢ is
consistent and antisymmetric (and 7/ is regular). And they form a proper star
in 7, because they are both oriented towards and incident with ¢. Since, in
any separation system, distinct elements of a proper star and their inverses are
each related as required by the star property and not in any other way, the
orientations of r and s are related in 7' as they are in 7.

(ii) For each t € T, the orientation O; of 7 = 7(T) is clearly consistent, so
it is an element of O(7) = V(T'(7)). As O; and Oy differ on every edge of T
between ¢ and t', the map is injective. To see that it is surjective, recall from
[3, Lemma 4.2] that the elements of O(7) are precisely the down-closures of the
subsets splitting 7, which by Lemma 3.1 are the sets ﬁt But the down-closure
of F, is precisely Oy. Thus, our map t — O, is a bijection from V (T') to O(r).

To see that t — Oy is a graph isomorphism, notice that for any edge tt' € T
its orientation § from ¢ to t’ is maximal in Oy, while its other orientation § is
maximal in O;. Hence s is an edge of T'(7) between its vertices O; and Oy .

For the converse note first that, given adjacent vertices O; and Oy of T(7),
the edge s joining them in T'(7) is the only edge of T which O; and Oy orient
differently. Indeed, by definition of T'(7), the edge s has an orientation s that
is maximal in Oy, and whose inverse 5 is maximal in Oy. By definition of Oy
and Oy, this means that s is the edge tt’ of T.

Now if two vertices t,¢ € T are not adjacent in T, then the t—¢ path in T
contains distinct edges 7 and s. As O; and Oy disagree on both these edges,
they cannot be adjacent in T'(7). O

Infinite tree sets need not be isomorphic to the edge tree set of a tree. Indeed,
as discussed in the introduction, one of our motivations for studying tree sets is
that they can capture tree-like structures in infinite combinatorics that actual
trees cannot represent.

For infinite tree sets 7 that can be represented by a tree T', we can still use
its splitting stars as the nodes of T' (Lemma 3.1) and define its edges as earlier.
But note that 7 may have consistent orientations that are not the down-closure
of a splitting star, and so the nodes of T" may correspond to only proper a subset
of O(7). Indeed, orienting the edges of T towards an end of T is consistent but
such orientations have no maximal elements.

Gollin and Kneip [12] have shown that Theorem 3.3 extends to precisely
those infinite tree sets that contain no chain of order type w + 1, and that all
tree sets can be represented as edge tree set of ‘tree-like’ topological spaces.



4 Tree sets from order trees

An order tree, for the purpose of this paper, is a poset (7', <) in which the down
set .
[t]:={seT|s<t}

below every element ¢ € T is a chain. We do not require this chain to be well-
ordered. To ensure that order trees induce order trees on the subsets of their
ground set, we also do not require that every two elements have a common lower
bound. Order trees that do have this property will be called connected.

Order trees are often used to describe the tree-likeness of other combinatorial
structures. In such contexts it can be unfortunate that they come with more
information than just this tree-likeness, and one has to find ways of ‘forgetting’
the irrelevant additional information.

Theorem 4.4 below offers a way to do this: it canonically splits the informa-
tion inherent in an order tree into the ‘tree part’ represented by an unoriented
tree set, and an ‘orienting part’ represented by an orientation of this tree set.
These orientations will be consistent. Indeed, we shall see that order trees cor-
respond precisely to consistently oriented tree sets, finite or infinite.

As in Section 3, let us first define for a given order tree T" a tree set 7 = 7(T')
and a consistent orientation Op of 7, and then conversely for a given tree set T
and any consistent orientation O of 7 an order tree T = T'(7,0). Applying
these two operations in turn, starting from either an arbitrary order tree or
from an arbitrary consistently oriented tree set, will yield an automorphism of
order trees or of tree sets — in fact, the identity or something as close to the
identity as is formally possible.

For the first part, let T = (X, <) be any order tree. Our aim is to extend T'
to a tree set, i.e., to find a tree set (§, <,*) such that (X, <) is a subposet
of (S, <). So we have to add some inverses. Let X* = {z* | x € X } be a set
disjoint from X and such that z* # y* whenever z # y. Extend < to X U X*
by letting

* <y* ifand only if = >y in T}
x* <y if and only if x,y are incomparable in T

For every z € X let 2** = x; this defines an involution *: z — a* on X U X*.
Let 7(T) := (X UX* <,*) and Or := X™.

Lemma 4.1. Whenever T = (X, <) is an order tree, T7(T) is a regular tree set,
and Or is a consistent orientation of 7(T').

Proof. For a proof that 7(T) is a regular tree set, the only nontrivial claim to
check is that < is transitive on X U X*.

Consider any z,y, z € X. Suppose first that * < y < z. The first inequality
implies, by our definition of <, that z and y are incomparable in X. But then
so are x and z (giving z* < z as desired): if < z then z,y < z, which makes
x and y comparable (which they are not) since X is an order tree, while if
z <z then y < z < x in X, again contradicting the incomparability of x and y.
Similarly if 2* < y* < z then 2* < y < x, which as just seen implies z* < z
and hence x* < z. This covers all cases that do not follow at once from the
transitivity of < on X.



Finally, O = X* is a consistent orientation of 7(7T'), since X N X* = @) and
we never have x < y* for any x*,y* € X*. O

We remark that, if T = (X, <) is connected, then 7(7T) is in fact the unique
smallest regular tree set to which T extends. Indeed, any tree set 7 that in-
duces T on a subset X must also contain a set X* of inverses. Let us show that
X* will be disjoint from X if 7 is regular. Suppose that y, z € X are such that
y* = z (and hence z* = y). If y and z are comparable, with y < z say, then this
makes y small, contradicting the regularity of 7. But if they are incomparable,
there will be an x € X below both (since X is connected), so our assumption of
y* = z makes x trivial (and hence small), a contradiction.

The proof of our remark will be completed by the following uniqueness
lemma, which has the disjointness of X and X* built into its premise and there-
fore holds also for disconnected order trees. Note that if (X, <) is connected and
T is as specified in the lemma, then X* is necessarily consistent in 7: otherwise
there are y,z € X are such that y < z*, and by the connectedness of X there
exists x € X with z <y and x < z,s0 2 < y < 2z* < 2* is small, contradicting
the regularity of 7.

Lemma 4.2. LetT = (§7 <,*) be a regular tree set. Let X C S be antisymmet-
ric and such that (X, <) is an order tree. If X* = {a* | x € X } is consistent
in T, then T induces 7(T) on X U X*.

Proof. The involutions in 7 and in 7(7T') agree by definition of X*.%

It remains to show that 7 and in 7(7") define the same ordering on X U X*.
Since 7 and 7(7T') are regular,  and z* are incomparable in both, for all z € X.
Now consider distinct z,y € X. If x and y are comparable, with x > y say, we
must have 2* < y* in 7 by (1), in agreement with our definition of 7(T"). Assume
now that  and y are incomparable. The consistency of X* in 7 rules out that
x < y*. But since 7 is nested, z and y must have comparable orientations. The
only case left is that 2* < y, as we defined it for 7(T'). O

Lemma 4.1 showed us how to extend, canonically, a given order tree T to a
regular tree set 7(7T) in which its complement O is consistent. We now show
that, conversely, deleting a consistent orientation from a regular tree set leaves
an order tree.

Given a regular tree set 7 and a consistent orientation O of 7, let T'(7, O) be
the subposet (X, <) of 7 induced by X := 7\ O.

Lemma 4.3. Whenever 7 = (7,<,*) is a reqular tree set and O is a consistent
orientation of T, the poset T(7,0) is an order tree.

Proof. Note first that for X := 7~ O we have X = {5 | § € O}, since 7
is regular. For our proof that (X, <) is an order tree, consider 7, 5, t € O
with 7, § < t, and let us show that 7, 5 are comparable in 7. If not, then
7 is comparable with § (and 7 with §), because r and s have comparable
orientations since 7 is a tree set. Since O is consistent we cannot have 7 > §,

9Recall that, formally, we did not specify X* precisely in the definition of 7(T"): we took
‘any’ set X* disjoint from X and with a bijection z — z* from X to X™*. The intended
reading of Lemma 4.2 is that this is now the set §\X, whose elements are specified as x* by
the involution in 7. The fact that this agrees with the involution in 7(7') is then tautological.
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so 7 < 5. But this implies that ¢ < ¥ < § < t with a contradiction, since 7
has no small elements. O

We have seen that every order tree canonically gives rise to a consistently
oriented tree set, and that every consistently oriented tree set canonically in-
duces an order tree. Let us now show that these maps are, essentially, inverse
to each other.

When we convert a given order tree T' = (X, <) into an oriented tree set,
7 = 7(T), we start by adding a set X* of inverses disjoint from X, and this
set X* will be the desired orientation O = Op of 7. Converting 7 and O back
into an order tree T(7,0) then just consists of deleting O from the poset 7.
This takes us back not only to the original ground set X of T', but the ordering
of T on X is preserved in the back-and-forth process. Theorem 4.4 (ii) below
expresses this.

Going the other way is entails a small technical complication. When we
convert a tree set 7, given with a consistent orientation O, into an order tree
T(7) by deleting O from the poset 7, we cannot hope to get T back if we then
expand T = T'(7) canonially to a tree set 7(T"), because the canonical process
of extending T has no knowledge of the actual set O we deleted. All we can
hope for is that the set we add corresponds to O as naturally as possible, and
this is what Theorem 4.4 (i) will say. Let us express this formally.

Given a regular tree set 7/ = (7/, <,*) and a consistent orientation O of 7/ let
idy,: 7/ — 7, where 7 = 7(T (7, 0)), be the identity id on 7/ \. O and commute
on O with the composition * oid o * whose two maps * are the involutions on 7
and on 7/, respectively. Call idy, the canonization of 7' given O.

Theorem 4.4. (i) Given a regular tree set 7' and a consistent orientation O
of 7', let T :=T(7',0) and 7 := 7(T'). Then the canonization 7" — T of 7’
giwen O is an isomorphism of tree sets that induces the identity on 7 ~. O
and maps O to Op.

(ii) Given an order tree T' = (X, <), the identity on X is an order isomor-
phism from T' to T :=T(v(T"), Or).

Proof. (i) As O is an orientation of 7/ which, being a tree set, has no degenerate
elements, 7' is the disjoint union of O and T'={ 5 | § € O }. The latter, with
its ordering induced by 7', is an order tree by Lemma 4.3. The assertion now
follows from Lemma 4.2.

(ii) By Lemma 4.1, 7(7") is a regular tree set of which Op is a consistent
orientation. By definition, 7(7”) induces the original ordering of 7" on its ground
set X. But T, by its definition as T'(7(T"), Ot ), also induces this ordering on X.
Hence T' and T” induce the same ordering on their common ground set X. [

5 Tree sets from nested subsets of a set

Let X be a non-empty set. The power set 2% of X is a separation system with
respect to inclusion and taking complements in X. It contains the empty set ()
as a small element, but every nested subset of 2% < {()} is a regular tree set.
For compatibility with our earlier notion of set separations, let us refer to
subsets A of X as special kinds of separations of X: those of the form (A, X \ A).
A bipartition of X, then, is an ordered pair (A, B) of disjoint non-empty subsets
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of X whose union is X. The bipartitions of X form a separation system S(X)
with respect to their natural ordering (A, B) < (C, D) defined by A C C and
the involution (A, B) — (B, A). This separation system has no small elements,
so every nested symmetric subset is a regular tree set.

Conversely, every regular tree set can be represented by set bipartitions:

Theorem 5.1. Fvery regqular tree set is isomorphic to a tree set of bipartitions
of a set.

Proof. Given a regular tree set 7, let X := 7 and consider
N:={(X;X;) | ter},

where X consists of s and the elements of 7 strictly below s and their inverses
(but not 5). The sets X+ and X ¢ forming a pair in N are disjoint because 7 has
no trivial elements, and have union all of 7 because 7 is nested. Thus, N consists
of bipartitions of X, and in particular N C S(X). Clearly, 5 — (X5, X4 ) is a
bijection from 7 to N that commutes with the involutions on 7 and S(X) and
preserves their orderings. In particular, N is a tree set isomorphic to 7. O

The set X = 7 in Theorem 5.1 is a little larger than necessary. This is best
visible when 7 is the edge tree set 7(7T") of a finite tree T'. Then the elements of 7
correspond to (oriented) bipartitions of the vertices of T'. So we could represent
7 by these oriented bipartitions of X = V(T'), which has about half as many
clements as the set 7 = E(T) chosen for X in our proof of Theorem 5.1.

Section 3 tells us how to generalize this idea to tree sets 7 that are not edge
tree sets of a finite tree: the vertices of T in the example correspond to the
consistent orientations of 7. So let us try to use these directly to form X.

Given 7, let O = O(7) be the set of consistent orientations of 7. Every
§ € 7 defines a bipartition (A, B) of O: into the set A = O of consistent
orientations of 7 containing s and the set B = O of those containing s. Note
that this is indeed a bipartition of O; in particular, A and B are non-empty by
[3, Lemma 4.1 (i)] applied to {5} and {5}, respectively.

The map

f: 5 (0‘53 O?)
from 7 to S (O) respects the involutions (obviously) and the partial orderings
on 7 and S (O0). Indeed, if 7 < § then no consistent orientation of 7 contain-
ing 7 contains 5, so O C O4.'% Conversely, let us show that if 7, § € T are
such that On C Oy, equivalently Oy C O, then 7 < 5. If not, then {7, 5}
is consistent, and hence extends by [3, Lemma 4.1 (i)] to a consistent orientation
of 7. This lies in Oy \ O, contradicting our assumption.

Let us show that f is injective. Consider distinct 7, § € 7. Swapping their
names as necessary, we may assume that ¥ £ §. Then {7, §} is consistent and
hence, by [3, Lemma 4.1 (i)], extends to a consistent orientation of 7. This lies
in Oz N\ 05, so O # O and hence f(7) # f(5) as desired.

We have shown that 7 is isomorphic, as a separation system, to the image
N (7) of 7 in S(©) under the map f of separation systems. In particular, N'() is
a tree set of set bipartitions isomorphic to 7:

10Note that we just used the regularity of 7: if 7 is small, we can have 7 < § = 7, in

—

which case ‘both’ 7 and § can occur in the same consistent orientation of 7.
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Theorem 5.2. Given any regular tree set T, the map f: § (O4,05) from
7 to N(7) is an isomorphism of tree sets.

We have seen that every symmetric nested set N of bipartitions of a set X
is a regular tree set 7, which can in turn be represented as a tree set N of
bipartitions of a set, e.g., the set O of its consistent orientations. However, in
the transition N — T N we are likely to lose some information: we shall not
be able to recover N from N , not even up to a suitable bijection between X
and O.

One reason is that X may be ‘too large’, larger than (9 This happens if X
has distinct elements z, ' that are indistinguishable by N: if no partition in N
assigns = and #’ to different partition classes.'’ For this does not happen in O:
distinct O',0"” € O are always distinguished by a separation (O’,0") € N.
Indeed, as O" # O” there exists 3 € 7 with § € O’ and 5 € O”. Then O’ € O’
but O” € 0" for (0O',0") = f( ).

But X can also be ‘too small’, smaller than @. This happens if N has
a consistent orientation that is not of the form { (4,B) € N | € B} for
any ¢ € X. For every consistent orientation of N does have this form: it
is the image under f of a consistent orientation O of 7, and hence equal to
{(0, 0" eN|Oec0O".

Example 5.3. Let X be the vertex set of a ray R, let N be the set of bipartitions
of X corresponding to the oriented edges of R, and choose from every inverse
pair of separations in N the separation that corresponds to the oriented edge
of R which points towards its tail. This is a consistent orientation of N not of
the form { (4,B) e N |z € B}.

Example 5.4. Let N = 7(T) where T is a 3-star, orient every edge towards
the centre of that star, and now consider the star of set separations that this
induces on the set X of only the leaves x1, 2, z3. Once more, this is a consistent
orientation O of N that is not of the above form, since no leaf z lies in {z;, 24}
for each of the three partitions ({z;}, {z;, zx}) of X that form O.

However, if we assume for N these two properties that N will invariably
have, we can indeed recover it from A in the best way possible, namely, up to
a specified bijection between the ground sets involved:

Theorem 5.5. Let N be a tree set of bipartitions of a set X such that

e for all distinctz,y € X there exists (A, B) € N such thatz € A andy € B;

e for every consistent orientation O of]\_f there exists an x € X such that
O={(A,B)e N|zeB}.

Consider any isomorphism g: N7 of tree sets. Let f: 1T — /\7(7’) be the tree
set isomorphism from Theorem 5.2. Then there is a bijection’? h: X — O(1)
whose natural action on N equals fog. In this way, N is canonically isomorphic,
given g, to the tree set N (7).

HThis was the case for X = 7 in our proof of Theorem 5.1: if 7 is the edge tree set of a
tree T', say, then for every node t € T the elements of F'; cannot be distinguished by any
separation of the form (X4, X ). More generally, N cannot distinguish the inverses of the
elements of any splitting star in 7.

12formally, an ‘isomorphism of sets’
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Proof. Givenz € X, let O, = {(A,B) € N | = € B}; this is clearly a consistent
orientation of N. Hence h: z — g(O,) is a well defined map from X to O(7). It
is injective by the first condition in the theorem, and surjective by the second.
Its action on the subsets of X therefore maps partitions of X to partitions
of O(r). The induced action of h on N is easily seen to be equal to f o g, which
is an isomorphism of tree sets by the choice of g and Theorem 5.2 (ii). O

Theorem 5.2 provides us with another representation of an abstract regular
tree set 7 as a tree set A of bipartitions of a set, and Theorem 5.5 shows that this
representation describes, up to isomorphisms of tree sets, all the representations
of T as a tree set N of bipartitions of a set X that is not unnecessarily large (ie,
constains no two elements indistinguishable by the tree set) but large enough
that every consistent orientation of N is induced by one of its elements z (i.e.,
has the form O, = {(4,B) € N | z € B} for some z € X).

This latter requirement is quite stringent: there are many natural tree sets
of bipartitions of a set whose consistent orientations are not all induced by an
element of that set. Among these are the bipartitions of the leaves of a finite
tree defined by its 1-edge cuts, as in the 3-star of Example 5.4:

Example 5.6. Consider the edge tree set of a finite tree T. Every edge € €
E(T) defines a bipartition (A, B) of the vertices of T into the set B of vertices
to which € points and the set A of vertices to which e points. These bipartitions
of V(T') are nested, and the tree set they form is canonically isomorphic to the
tree set 7(T) via € — (A, B). Now consider the bipartitions (A’, B’) which
these (A, B) induce just on the set of leaves of T. These (A’, B’), too, will be
distinct for different edges € € E (T') as long as T has no vertex of degree 2,
and they will be nested in the same way as the (A, B) that defined them. So
these bipartitions of the leaves of T" will still form a tree set isomorphic to 7(7T'),
via € — (A’, B’). In particular, we can recover (A4, B) from (A’, B’) from these
isomorphisms, as (A’, B') — € — (4, B).13

Let us generalize this example to arbitrary regular tree sets 7: rather than
implementing 7 as a tree set of bipartitions of the entire set O = O(7), let us
use a subset O of O which, if 7 = 7(T') for a finite tree T, corresponds to the
leaves of T' (while O corresponds to its entire vertex set).

If 7 is finite, O’ will be the set of those consistent orientations of 7 that have a
greatest element, which are precisely the down-closures of the maximal elements
of 7. In general, define O'(7) as the set of all the directed elements O of O(7):
those such that for all 7, 5 € O there exists ¢ € O such that 7, 5 < ¢.14

Lemma 5.7. Every element of a reqular'® tree set T lies in some O € O'(1).

Proof. Given s € 7, let O be the down-closure in 7 of some maximal chain
v in 7 containing §. Using the regularity of 7 it is easy to check that O is
consistent and antisymmetric.

It remains to show that O orients all of 7. By its maximality, v contains for
every given ¥ € 7 some § such that § ¢ 7. Applying this to both 7 and 7

131n fact, combining Theorems 3.3 and 5.5 we can reconstruct the entire tree 7' from the
set L of its leaves and the tree set of bipartitions of L that its edges induce.

M1f 7 = 7(T) for an infinite tree T, the orientations in O’(7) will be those towards a leaf
or towards an end of T'.

15This assumption helps shorten the proof but is not necessary.
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we obtain some § € « such that neither 7 nor 7 lies above §. But since 7

is nested, one of 7,7 is comparable with 5. It thus lies below s, and hence
in O = [~]. O

Let 05 :={0 € O'| § € O}. With the same proof as in Theorem 5.2, the

map

f'i 5= (05,0%)
from 7 to the set S(O’) of bipartitions of @' communtes with the involutions
and respects the partial orderings of the separation systems 7 and S (0). In
particular, N/(7) := f/(7) is a tree set , and f’ is an isomorphism of tree sets
whenever it is injective.

In our Example 5.6 where 7 is edge tree set of a finite tree, f/ was injective
if (and only if) that tree has no vertex of degree 2. For arbitrary regular tree
sets 7 let us say that 7 branches everywhere, or is ever-branching, if it contains
no C-maximal proper star of order 2.

Lemma 5.8. The map [ is injective if and only if T branches everywhere.

Proof. Suppose first that 7 does not branch everywhere. Let o = {7, 5} C 7
be a C-maximal proper star of order 2. Then also r # s, since T is regular. We
show that f’ is not injective, by proving that f(7) = f'(5) and f'(s) = f'(7).

We have to check that every O € O contains either both 7 and § or both
s and 7. By consistency and since o is a star, O cannot contain ¢ = {7, 5 }.
But neither can it contain ¢. Indeed, suppose 0 C O. Since O is directed, there
exists ¢ € O such that 7, 5§ < t. Since 7 is regular, this implies that t is
neither 7 nor 5. But then o U {7} is a star contradicting the maximality of o.

Conversely, assume that 7 is ever-branching, and thus contains no C-maximal
proper star of order 2. To show that f’ is injective, consider distinct 7, 8 € 7.
We shall find an O € O’ that contains one of these but not the other; then
f1(7) # f'($) by definition of f’.

If {7, s} is inconsistent, pick any O € O containing 7 (which exists by
Lemma 5.7); then s ¢ O by the consistency of O. If {7, s} is a star, pick any
O € O’ containing 5; this will also contain 7 < § but not s. Finally, assume
that ¥ < § (say). Since 7 is regular, o0 = {7, §} is a proper star of order 2
by [3, Lemma 3.4 (ii)]. As 7 is ever-branching, ¢ is not maximal, so 7 contains
a bigger star {7, 5, t}. Then ¥ < ¢ as well as 5 < . Use Lemma 5.7 to
find an orientation O € O’ containing ¢ . By consistency, then, O also contains
both 7,5 < t. Hence O contains 7 but not 5, as desired. O

We have thus proved that ever-branching regular tree sets can be represented
as tree sets of bipartitions of their directed consistent orientations:

Theorem 5.9. Let 7 be any regular tree set. The map f': s +— (O, 0%) from
7 to N'(7) is an isomorphism of tree sets if and only if it is injective, which it
is if and only if T branches everywhere.

What about an analogue of Theorem 5.5 for f’ and ever-branching 77 As
before, the tree set N’ (7) of bipartitions of @’ distinguishes every two elements
of O': they will differ on some s and hence be separated by both f'(5) and f/(5).
Hence, as in Theorem 5.5, N must likewise distinguish every two points of X if
we wish to recover a copy of it on (O'. Hence any maximal element of N must
be of the form (X \ {z},{z}): it cannot be a separation (A, B) with |B| > 2.
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The second premise in Theorem 5.5, however, can now be weakened sub-
stantially: we shall only need it for directed consistent orientations O of N ,
not for all its consistent orientations. But for these we do need this assump-
tion (more precisely, for sufficiently many of them; cf. Example 5.10 below): we
shall require that every directed consistent orientation O of N have the form
O={(A,B)e N|ze B} for some = € X.

To see that this is necessary, consider what happens in N Every directed
consistent orientation O of N7 will correspond via f' to a consistent orientation
O of 7, so that f'(O) = O. By definition of O’; this O lies, for every 5 € O, in
the right partition set of f/(3) = (0’5, O%). Hence

O={f(3)]5€c0}y={(P,Q)eN'|OcQ}.

Hence if f’ is to be an isomorphism of tree sets mapping O to O, then O must
have the corresponding form of O = { (4,B) € N | z € B} for some z € X.

Example 5.10. Consider as 7 the edge tree set of the infinite binary tree T
The directed consistent orientations of 7 are those that orient all the edges of T’
towards some fixed end w. Our aim is to represent 7 by bipartitions of the set
X = Q of ends of T. This can clearly be done.

However, we do not need all the ends in our set X: all we need is that
X contains an end from either side of every edge e of T, so that e defines
a bipartition of X into two non-empty subsets. (These partitions will differ
for distinct e, since T branches everywhere.) In the usual topology on €, this
requirement can be expressed by saying that X must contain a dense subset of €).
Conversely, any such X suffices to ensure that these bipartitions capture 7.

As these separations already distinguish every two elements of X, we shall
no longer have to require this explicitly in order to make h’ injective. Also,
we do not have to require explicitly, in order to make h’ surjective, that no
consistent orientations of N other than those with a greatest element be of the
form O, = {(4,B) € N |z € B}: since (X ~ {z},{z}) € N, this separation
will lie in O, and thus be its greatest element.

We have thus shown the following strengthening of Theorem 5.5 for ever-
branching tree sets:

Theorem 5.11. Let N be an ever-branching tree set of bipartitions of a set X
such that for every directed consistent orientation O of N there is a unique'® x
in X such that O = {(A,B) € N | z € B}. Let X' be the set of all those x.
Then the conclusion of Theorem 5.5 holds with f': 7 — N7 instead of f: 17— N.

When 7 is finite, the sets X in Theorems 5.5 and 5.11 are, in a sense, maxi-
mal'” and minimal, respectively, for the existence of a tree set N of bipartitions
of X that represents 7. While in Theorem 5.5 the set X has enough elements x
to give every consistent orientation of N the form O, this is the case in Theo-
rem 5.11 only for the orientations of N that have a greatest element, where it
cannot be avoided. When 7 is infinite, the set X from Theorem 5.11 need not
be maximal, as seen in Example 5.10.

16This condition, which replaces the first premise in Theorem 5.5, is not a severe restriction:
if there is more than one such z for a given O, delete all but one of them from X. Since N
cannot distinguish the elements deleted from this z, this will not affect the representations of
other elements of T by N.

17except for duplication of elements = € X by additional &’ that N cannot distinguish from «
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If desired, however, we can have any mixture of these extremes that we
like. Indeed, starting with 7 we can build X by assigning to every O € O a
set Xo that is either empty or a singleton {zo}, making sure that Xo # 0 if
O € 0. Then for X := [Jpco Xo aseparation s € 7 will be represented by the
partition (A, B) of X in which B=|J{Xo | s€O}andA=J{Xo| 5€0}.
These ideas will be developed further in the next section.

6 Tree sets from tree-decompositions of graphs
and matroids

In this section we clarify the relationship between finite'® tree-decompositions,
the more general ‘S-trees’ introduced in [7], and tree sets. Given a tree-decom-
position of a finite graph or matroid X, the separations of X that correspond to
the edges of the decomposition tree are always nested. If none of them is trivial
or degenerate, i.e., if they form a tree set, then the tree-decomposition can essen-
tially be recovered from this tree set. The purpose of this section is to show how.

The point of doing this is to establish that tree sets, which are more versatile
for infinite combinatorial structures (even just for graphs) than tree-decomposi-
tions, are also no less powerful when they are finite: if desired, we can construct
from any finite tree set of separations of a graph or matroid a tree-decomposition
whose tree edges correspond to precisely these separations.

Given a graph G and a family V = (V;):er of subsets of its vertex set indexed
by the node of a tree T, the pair (V,T) is called a tree-decomposition of G if G
is the union of the subgraphs G[V;] induced by these subsets, and V;NV;» C Vi
whenever ¢’ lies on the t—"” path in T. The adhesion sets Vi, NV, of (V,T)
corresponding to the edges e = t1ty of T' then separate the sets Uy := UteTth
from Us := Ut€T2Vt in GG, where T; is the component of T' — e containing ¢;, for
i =1,2; see [2]. These separations {U,Us} are the separations of G associated
with (T,V), and with the edges of T

Tree-decompositions can be described entirely in terms of 7' and the oriented
separations a(t1,ts) := (U1, Usz) of G associated with its edges. Indeed, we can
recover its parts V; from these separations as the sets V, = ({ B | (4, B) € oy},
where oy is the star of the separations a(z,t) with x adjacent to ¢ in 7. Our
aim in this section is to see under what assumptions the tree-decomposition can
be recovered not only from this nested set 7 of separations together with the
information of how it relates to T, but from the set 7 alone.

In an intermediate step, let us use both T and the set of separations corre-
sponding to its edges to view (V, T') in the following more general set-up from [7].
Let S be a separation system, and let F C 25

Definition 6.1. An S-tree is a pair (T, ) of a tree T and a map a: E(T) — S
such that, for every edge xy of T, if a(x,y) = 5 then a(y,z) = 5. An S-tree
(T, @) is over F C 25 if. in addition, for every node t of T we have o(F,) € F.

(Recall from Section 3 that Fy is the oriented star at ¢ in T'.)

We say that the set a(F}) C S is associated with t in (T,a). The sets F we
shall consider will all be standard for S , which means that they contain every
co-trivial singleton {7} in S

18 Tree-decompositions and separation tree sets of infinite graphs will be treated in [1, 13].
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Since tree-decompositions can be recovered from the S-trees they induce, as
pointed out earlier, our remaining task is to see which S-trees can be recovered
just from the set a(E(T)) of their separations. As it turns out, this will be
possible once we have trimmed a given S-tree down to its ‘essence’, which is
done in three steps.

An S-tree (T, «) is redundant if it has a node t of T with distinct neighbours
t’',t" such that a(t,t') = a(t,t”); otherwise it is irredundant. Redundant S-trees
can be pruned to irredundant ones over the same F, simply by deleting those
‘redundant’ branches of the tree:

Lemma 6.2. For every finite S-tree (T, «) over some F C 281 there is an
irredundant S-tree (T", o) over F such that T' C T and o = a[E(T").

Proof. Let t € T have neighbours ¢',t” witnessing the redundance of (T, «).
Deleting from 7" the component C of T'— ¢t that contains ¢” turns (7', «) into an
S-tree in which F, has changed but a(F,) has not, and neither has a(F,) for
any other node x € T'— C'. So this is still an S-tree over F. As T is finite, we
obtain the desired S-tree (T”,a’) by iterating this step. O

An important example of S-trees are irredundant S-trees over stars: those
over some F all of whose elements are stars of separations. Since stars contain no
degenerate separations, the same holds for the image of « in such S-trees (T}, «).

More importantly, in an S-tree (T, «) over stars the map « preserves the
natural partial ordering on E(T) defined at the start of Section 3:

Lemma 6.3. Let (T, «) be an irredundant S-tree over stars. Let €, fe E(T).

(i) Ife < f then a(€) < a(f) In particular, the image of o in S is nested.

(i) If a(€) < a(f) then € < f, unless either (@) = aff) is small, or a(€)
or a(f) is trivial.

Proof. (i) Assume first that e and f are adjacent; then e, f € F, for somet € T
As (T, ) is irredundant we have a(€) # a(f), and hence a(€) < a(f) since
a(ﬁt) is a star. By induction on the length of the e—f path in T this implies (i)
also for nonadjacent e and f.

(ii) Suppose € £ f. Since e and f are nested, we then have

—

e>f or EZ? or E’g?.

If € < f, we have a(€) < a(f) by (i), while a(f) < () by assumption and (1)
(and the fact that o commutes with inversion). If even a(€) < a(f), then a(€)
is trivial. Otherwise, a(€) = a(f) < a(&) is small.

Suppose next that € > f. Then a(f) < a(€) by (i), while a(f) < a(e)
by assumption. If even a(f) < a(€) then a(f) is trivial. Otherwise, a(€) =
o(f) < a(e) is small. - -

Suppose finally that € > f. Then a(e) < a(f) < a(e) by assumption
and (i), a contradiction. O

By Lemma 6.3 (i), the separations in an irredundant S-tree over stars are
nested. For redundant S-trees this need not be so: if a(€) = a(f) fore, f € F(Q,
then separations a(e’) with & < € may cross separations a(f’) with f* < f.
This is because we defined stars of separations as sets, not as multisets: for €
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and f as above we do not require that a(e) < o(f) when we ask that o(F}) be
a star, since a(€) = a(f) are not distinct elements of a(F}).

Lemma 6.3 (ii) is best possible in that all the cases mentioned can occur
independently. We also need the inequalities to be strict, unless we assume that
the S-tree is tight (see below).

Two edges of an irredundant S-tree over stars cannot have orientations point-
ing towards each other that map to the same separation, unless this is trivial:

Lemma 6.4. Let (T, ) be an irredundant S-tree over a set F of stars. Let
e, f be distinct edges of T with orientations € < f such that o(€) = a(f) =T
Then 7T is trivial.

Proof. If  maps all & with € < & < f to © or to 7, then the e—f path in T has
a node with two incoming edges mapped to 7. This contradicts our assumption
that (7, a) is irredundant. Hence there exists such an edge ¢’ with a(e’) = §
for some s # r. Lemma 6.3 implies that 7 = a(€) < (&) < a(f) = 7, so
¥ < §aswellas 7 < § by (1). As s # r these inequalities are strict, so s
witnesses that 7 is trivial. O

Let us call an S-tree (T,q) tight if its sets a(Fy) are antisymmetric. The
name ‘tight’ reflects the fact that from any S-tree we can obtain a tight one
over the same F by contracting edges:

Lemma 6.5. For every finite S-tree (T, «) over some F C 25 there exists an
irredundant and tight S-tree (1",a") over F such that T' is a minor of T and
o =alE(T).

Proof. By Lemma 6.2 we may assume that (7', «) is irredundant. Consider any
node t of T' for which a(F’t) is not antisymmetric. Then ¢ has distinct neigh-
bours t',¢” such that a(t',t) = a(t,t”) =: 5. Let T' be obtained from T by
contracting one of these edges and any branches of T attached to t by edges
other than these two.!9 Let o/(#,t"”) := § and o/(¢",t') := 5, and otherwise
let o := o | E(T'). Then (T",d’) is again an S-tree, whose sets F, in T” are
the same as they were in T, for every ¢ € T’. In particular, (T7,a’) is still
irredundant and an S-tree over F. Iterate this step until the S-tree is tight. O

Let us call an S-tree (T, o) essential if it is irredundant, tight, and g(E(T))
contains no trivial separation. Let the essential core of a set F C 25 be the
set of all F/ C S obtained from some F € F by deleting all its trivial elements.
And call F essential if it equals its essential core.

An S-tree over stars can be made essential by first pruning it to make it
irredundant (Lemma 6.2), then contracting the pruned tree to make it tight
(Lemma 6.5), and finally deleting any edges mapping to trivial separations:

Lemma 6.6. For every irredundant and tight finite S-tree (T, «) over a set F
of stars there is an essential S-tree (1",a') over the essential core of F such
that T C T and o/ = «[E(T").

19Tn other words: delete the component of T'—t't — tt”’ containing ¢, and join ¢’ to t”. Then
think of the edge t't'" as the old edge t't, so that E(T") C E(T) as desired.
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Proof. Recall that if s € S is trivial then so is every 7 < §. By Lemma 6.3,
therefore, the set F' of all edges € € E(T) such that a(€) is trivial is closed down
in E(T) Hence the subgraph T” of T obtained by deleting each of these edges e
together with the initial vertex of € is connected, and therefore a tree: it may
be edgeless, but it will not be empty, since the target vertex of any maximal
edge in F will be in T”. Clearly, (T", ') has all the properties claimed. O

Combining Lemmas 6.5 and 6.6, we obtain

Corollary 6.7. For every finite S-tree (T, ) over a set F of stars there is an
essential S-tree (1", ') over the essential core of F such that T" is a minor of T
and o/ =l E(T"). O

Lemma 6.8. For every essential S-tree (T, ) over stars the map « is injective.

Proof. Suppose there are distinct ¢, f € E(T) with a(€) = a(f) =: 5. Then
also e # f: otherwise ¢ = f making s degenerate, which cannot happen since
(T, @) is over stars.

Suppose first that € < f in the natural order on E(T). By Lemma 6.3,
every ¢ € E(T) with € < & < f satisfies 5 = = a(e) < a(@) < aff) = 5, so
ale’) = 5. As § # §, this contradicts our assumption that (7T, «) is tight,
since 5, 5 € a(F,) for the terminal node ¢ of €.

Suppose now that € < f. Then 5 is trivial by Lemma 6.4, contradicting
our assumption that (T @) is essential.

Up to renaming € and f as e and f , this covers all cases. O

As we have seen, a tree-decomposition (V,T) of a graph or matroid can be
recaptured from the structure of 7' and the family («(€) | € € E(T)) of oriented
separations it induces, i.e., from the S-tree (T, «). We can now show that if this
S-tree is essential (which we may often assume, cf. Lemmas 6.2, 6.5 and 6.6), it
can in turn be recovered from just the set of these oriented separations.

Recall that a subset o of a nested separation system (§ , <,¥) splits it if o
is the set of maximal elements of some consistent orientation of S and S C [o]
(which is automatic when S is finite). If S has no degenerate elements, these
sets o are proper stars in S , its splitting stars, and they contain no separations
that are trivial in S [3, Lemma 4.4] or co-trivial [3, Lemma 3.5]. Except for
one exceptional case where o contains a small separation, they are precisely the
maximal proper stars in S [3, Lemma 4.5).

Let us say that S is a nested separation system over F C 25 if all its
splitting sets lie in F.

Theorem 6.9. Let S be a finite separation system, and F C 25 4 set of stars.

(i) If S is nested and over F, then there exists an essential S-tree (T, q)
over F such that a is an isomorphism of tree sets between the edge tree
set of T and the regularization of the essential core of S. In particular,
the sets { «(F,) |t € T} € F are precisely the sets splitting S.

(ii) If (T,«) is an essential S-tree over F, then a is a tree set isomorphism
between the edge tree set of T and a tree set over F which is the regular-
ization of a tree set in S.
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Proof. (i) Note first that S has no degenerate element, because this would form
a singleton set splitting S [3, Lemma 4.4], contradicting our assumption that
S is a separation system over stars. Let 7 be the essential core of S. By [3,
Lemma 4.4], the stars splitting 7 are precisely the sets that split S ; in particular,
they lie in F.

Since T is essential, it has a regularization 7/. This is a regular tree set, which
has the same orientations, and hence the same splitting stars, as 7 (and S). Let
T = T(7') be the tree from Lemma 3.2. By Theorem 3.3 (i), the identity is an
isomorphism of tree sets between 7/ and the edge tree set of T. In particular,
the oriented stars Fy at its nodes ¢ are the splitting stars of 7. Choosing as «
the identity on 7/ = E(T), we obtain (T, ) as desired.

(ii) By Lemma 6.8, the map « is injective, and by Lemma 6.3 (i) it pre-
serves the natural ordering of E(T). By Lemma 6.3 (ii), also o' preserves the
ordering of every antisymmetric subset of its domain.

Since (T, a) is essential, this means that a(E(T)) is an essential tree set. It
thus has a regularization 7/, so that a: E(T) — 7’ is an order isomorphism.
Since « also commutes with the involutions on the separation systems 7(7T')

and S, this makes « into an isomorphism of tree sets between 7(T) and 7. O

In a nutshell, Theorem 6.9 (i) tells us that every tree set S over stars can be
represented by an S-tree over the same stars, and Theorem 6.9 (ii) tells us that
this S-tree (T, «) from (i) is unique in the following sense: for any other such
S-tree (T',a'), the composition a1 o o’ maps the edge tree set of 7" to that
of T as an isomorphism of tree sets.?? By Theorem 3.3 (ii), then, the trees T’
and T are also canonically isomorphic: by a graph isomorphism V(T") — V(T)
that induces the map a=! o o’ on their edges.

The nested separation systems whose representations by S-trees we have
described were all tree sets: they have neither trivial nor degenerate elements.
What about the others?

The nested separation systems S that have a degenerate element s = §
are easy to desribe directly. It is easy to see that such an S has no nontrivial
element other than s [3, Section 3]; in particular, it has no other degenerate
element. Hence S has a unique consistent orientation O, the set consisting of
5 and all the trivial elements of S. Since s is the unique nontrivial witness to
their triviality, s is the greatest element of O. All the other 7,77 € O satisfy
7T < § =5 >71,s0 O is like a star — except that formally it is not, because
stars must not contain degenerate elements.

It remains to consider the inessential finite nested separation systems without
degenerate elements. These can also represented by S-trees. The only difference
is that those S-trees will not be unique, even up to graph isomorphism. But for
every such S-tree (T, «) the edges of T' which « maps to nontrivial separations
in S form a (connected) subtree T”, where (T”,a/) with o/ = « | E(T") is the
essentially unique S-tree from Theorem 6.9 (i).

2ONote that o and o themselves will fail to be tree set isomorphisms if their image S is
(essential but) irregular.

21



References

[1] N. Bowler, R. Diestel, and F. Mazoit. Tangle-tree duality in infinite graphs
and matroids. In preparation.

[2] R. Diestel. Graph Theory (5th edition). Springer-Verlag, 2017.
Electronic edition available at http://diestel-graph-theory.com/.

[3] R. Diestel. Abstract separation systems. Order, 35:157-170, 2018.

[4] R. Diestel, Ph. Eberenz, and J. Erde. Duality theorem for blocks and
tangles in graphs. SIAM J. Discrete Math., 31(3):1514-1528, 2017.

[5] R. Diestel, F. Hundertmark, and S. Lemanczyk. Profiles of separa-
tions: in graphs, matroids, and beyond. arXiv:1110.6207, to appear in
Combinatorica.

[6] R. Diestel and S. Oum. Tangle-tree duality in graphs, matroids and
beyond. arXiv:1701.02651. To appear in Combinatorica.

[7] R. Diestel and S. Oum. Tangle-tree duality in abstract separation systems.
arXiv:1701.02509, 2017.

[8] R. Diestel and G. Whittle. Tangles and the Mona Lisa. arXiv:1603.06652.

[9] M.J. Dunwoody. Inaccessible groups and protrees. Journal of Pure and
Applied Algebra, 88:63-78, 1993.

[10] M.J. Dunwoody. Groups acting on protrees. J. London Math. Soc. (2),
56:125-136, 1997.

[11] F. Hundertmark. Profiles. An algebraic approach to combinatorial
connectivity. arXiv:1110.6207, 2011.

[12] J. Kneip and P. Gollin. Representations of infinite tree sets. In preparation.
[13] Jakob Kneip. Profinite tree sets. In preparation.

[14] P. Seymour and R. Thomas. Graph searching and a min-max theorem for
tree-width. J. Combin. Theory (Series B), 58(1):22-33, 1993.

[15] W. Woess. Graphs and groups with tree-like properties. J. Combin.
Theory Ser. B, 47:361-371, 1989.

Version 8.11.2018

22



