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An infinite graph is called bounded if for every labelling of its vertices
with natural numbers there exists a sequence of natural numbers which
eventually exceeds the labelling along any ray in the graph. Thomassen
has conjectured that a countable graph is bounded if and only if its
edges can be oriented, possibly both ways, so that every vertex has
finite out-degree and every ray has a forward oriented tail. We present
a counterexample to this conjecture.

1. The conjecture

For two N→N functions f and g, let us say that f dominates g if f(n) � g(n)
for every n greater than some n0 ∈ N.

An infinite graph G is called bounded if for every labelling of its vertices
with natural numbers there is an N → N function which dominates every la-
belling along a ray (one-way infinite path) in G. More precisely, G is bounded
if for every labelling �:V (G) → N there is a function f : N → N such that for
every ray x0x1 . . . in G the function n �→ �(xn) is dominated by f . Otherwise
G is unbounded .

Let us see some examples of bounded or unbounded graphs.
Every locally finite connected graph is bounded. Indeed, given a labelling �,

and given any fixed vertex v of G, it is easy to define a function fv which
dominates all the rays starting at v: just take as fv(n) the largest label of
the vertices at distance at most n from v. Now G has only countably many
vertices, so there are only countably many functions fv, say f0, f1, . . . . Setting
f(n) = max i�nf i(n), we obtain a function f : N→N which dominates every fv,
and hence dominates every ray in G.

The complete graph on a countably infinite set of vertices, Kω, is clearly
unbounded: just choose any labelling that uses infinitely many distinct la-
bels, and there will be rays whose labellings grow faster than any fixed N→N

function. The regular tree of countably infinite degree, Tω, is another simple
example of an unbounded graph: just label its vertices injectively, i.e. so that
any two labels are different.

Two further examples for unboundedness are found in the graphs B and
F shown in Fig. 1; again, any injective labelling will show that these graphs are
unbounded.

Bounded graphs were first introduced by R. Halin around 1964, in con-
nection with R. Rado’s well-known paper on Universal graphs and universal
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FIGURE 1. The unbounded graphs B and F

functions [ 4 ]. Halin conjectured that a countable graph is bounded if and only
if it has no subgraph isomorphic to a subdivision of any of the three graphs Tω,
B and F . Halin himself proved this for some special cases [ 2–3 ]; the conjecture
was recently proved by the authors [ 1 ]. (We remark that [ 1 ] also contains an
uncountable version of this result. In the present paper, however, we are only
interested in countable graphs.)

An interesting aspect of this ‘bounded graph theorem’, typical for a char-
acterization by forbidden configurations, is that it provides us with simple
‘certificates’ for unboundedness: all we need do to convince someone of the
unboundedness of a particular countable graph is to exhibit in it one of the
three types of forbidden subgraph. For boundedness, by contrast, no such
‘certificates’ are known.

C. Thomassen has recently proposed the following attractive conjecture,
which would have provided not only another elegant characterization of the
bounded graphs but also something like a certificate for boundedness:

Conjecture. (Thomassen)
A countable graph is bounded if and only if its edges can be oriented, each

in one or both or neither of its two directions, so that every vertex has finite

out-degree and every ray has a forward oriented tail.

(A tail of a ray x0x1 . . . is a subray xnxn+1 . . ., and it is forward oriented if
every edge xmxm+1 (m � n) is oriented from xm towards xm+1 (and possibly,
but not necessarily, also from xm+1 towards xm).)

An orientation as above will be called admissible. We remark that any
admissible orientation can be extended to one in which every edge has at least
one direction: since the graph has only countably many vertices, v0, v1, . . . say,
local finiteness will be preserved if every unoriented edge vivj with i < j is
oriented from vj to vi.

Intuitively, an admissible orientation identifies in the graph a locally finite
substructure mapping out the preferred directions of rays: eventually, every
ray in the graph will follow a ray indicated by the orientation. Much of the at-
tractiveness of Thomassen’s conjecture lies in its promise that the boundedness
of any bounded graph can be tied to such a definite and simple substructure—
one that is obviously itself bounded (by local finiteness) and at the same time
accounts for the boundedness of the entire graph.
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The ‘if’ direction of Thomassen’s conjecture is clearly true: to prove it, we
just imitate the proof that locally finite connected graphs are bounded. More
precisely, given an admissible orientation of the graph and any labelling of its
vertices, we first find a function f that dominates every forward oriented ray
(as in our local finiteness proof); the function g defined by

g:n �→ f(1) + . . .+ f(2n)

then dominates every ray in the graph.
Note also that the conjecture is trivially true for locally finite graphs them-

selves, as we may simply orient every edge both ways. The provision for 2-way
orientations in the definition of admissible is, however, essential: the infinite
ladder is an example of a bounded graph whose edges cannot be 1-way oriented
in such a way that every ray has a forward oriented tail.

Finally, it is not difficult to prove the conjecture for trees; this was first
observed by Thomassen [ 5 ].

Unfortunately, Thomassen’s conjecture is not true in general: in the next
section we shall exhibit a graph which is bounded but allows no admissible
orientation of its edges.

2. The counterexample

Let S be the graph constructed as follows (see Fig. 2). For every n ∈ N, let
Rn = vn

0 vn
1 vn

2 . . . be a ray. Let these rays be pairwise disjoint, except that
vn
0 = v0

n for every n. For every odd n, make the pair (Rn, Rn+1) into a ladder
by adding the edges vn

i vn+1
i for all i > 0, as rungs. Finally, for every even

n > 0, add a new vertex xn and join it to every vertex of Rn except vn
0 .

FIGURE 2. The graph S

Theorem. The graph S is bounded but allows no admissible orientation of its

edges.
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Proof. It is not difficult to see that the edges of S cannot be admissibly orient-
ed. Indeed, as the vertices xn all have infinite degree, any admissible orientation
would leave each xn incident with an edge en = xnvn

i (for some i) that is not
oriented from xn towards vn

i . It is then easy to find a ray in S which traverses
every such edge en from xn towards vn

i , i.e. against its (possible) orientation.
It remains to show that S is bounded. Using the abovementioned bounded

graph theorem, all we need to show is that S contains no subdivision of Tω,
B or F . This is easily done. The cases of Tω and B are trivial. Now suppose
we have embedded a subdivision of F into S. The bottom ray of F will then
be mapped to a ray R ⊂ S which contains infinitely many of the vertices xn,
since these are the only vertices of S that have infinite degree. For each of
those n (except possibly the first), the initial segment Rxn of R separates its
tail xnR from all but finitely many neighbours of xn in S. As this is not the
case for the bottom ray and the vertices of infinite degree in F , we have a
contradiction. �

Actually, is not much more difficult to verify the boundedness of S directly.
Let �:V (G)→N be a labelling of S; we shall define a function f : N→N that
dominates every ray in S with respect to �. Let g and f be defined by

g:n �→
∑

i,j�n

(�(x2i+2) + �(vi
j)) and f :n �→ g(2n).

Note that g is increasing and dominates every Rn. Therefore f dominates every
ray that has a tail in

S′ = S −{x2, x4, . . . }.

Now let R be an arbitrary ray in S. If R has a tail in S′, then f dominates R.
Otherwise, R contains infinitely many xn. It is easily seen that g dominates
any ray that starts at v0

0 and contains infinitely many xn. Since R contains a
tail of such a ray, it follows that f dominates R.

Naturally, the question arises as to which graphs can be admissibly orient-
ed. To give this property a proper name (at last), let us say that a countable
graph is finitely spreading if its edges can be admissibly oriented. Thus finitely
spreading graphs are bounded, but not vice versa.

There are indications that our graph S may be essentially the only bounded
graph which is not finitely spreading. More precisely, we suspect that every
bounded graph which is not finitely spreading contains a subdivision of the
graph S′ of Fig. 3. (Note that S contains a subdivision of S′, but not con-
versely.) By the bounded graph theorem, this is equivalent to the following
conjecture:

Conjecture. A countable graph is finitely spreading if and only if it has no

subgraph isomorphic to a subdivision of any of the four graphs Tω, B, F , S′.
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FIGURE 3. The unique minimal counterexample?
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