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1. Introduction

The purpose of this paper is to give natural characterizations of the countable graphs that

admit tree-decompositions or simplicial tree-decompositions into primes. Tree-decompo-

sitions were recently intruduced by Robertson and Seymour in their series of papers on

Graph Minors [ 7 ]. Simplicial tree-decompositions were first considered by Halin [ 6 ], being

the most typical kind of ‘simplicial decomposition’ as introduced by Halin [ 5 ] in 1964. The

problem of determining which infinite graphs admit a simplicial decomposition into primes

has stood unresolved since then; a first solution for simplicial tree-decompositions was

given in [ 2 ].

Our characterization of the countable graphs admitting a simplicial tree-decomposi-

tion into primes is based on the characterization given in [ 2 ]. Similarly to Kuratowski’s

well-known theorem on planar graphs, we shall characterize the graphs admitting a prime

decomposition by two forbidden minors, the notion of a minor being slightly restricted to

match the purpose.

Our second characterization, that of the countable graphs admitting a tree-decompo-

sition into primes, is similar to the first and obtained as an easy corollary.

Let G be a graph, σ > 0 an ordinal, and let Bλ be an induced subgraph of G for every

λ < σ. The family (Bλ)λ<σ is called a simplicial tree-decomposition of G if the following

four conditions hold.

(S1) G =
⋃

λ<σ Bλ.

(S2)
(
⋃

λ<µ Bλ

)

∩Bµ =: Sµ is a complete graph for each µ (0 < µ < σ).

(S3) No Sµ contains Bµ or any other Bλ (0 ≤ λ < µ < σ).

(S4) Each Sµ is contained in Bλ for some λ < µ (µ < σ). (Fig. 1)

Figure 1
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The concept of a simplicial tree-decomposition owes its existence to two sources, sim-

plicial decompositions and tree-decompositions. Both these kinds of decomposition were in

turn developed from the decompositions used (for finite graphs) by K.Wagner in his classic

paper [ 8 ], in which he proved the equivalence of the 4-Colour-Conjecture to Hadwiger’s

Conjecture for n = 5. Wagner’s idea was to break down the graphs under investigation

along separating complete subgraphs (‘simplices’), using the fact that, on reassembling,

the graphs would essentially inherit the chromatic number of their parts.

Wagner’s decompositions were later redefined—and named ‘simplicial decomposi-

tions’—by Halin [ 5 ], to make them suitable also for infinite graphs; the definition given by

Halin is essentially equivalent to our conditions (S1)–(S3). It is interesting to note that for

finite graphs the conditions (S1)–(S3) imply (S4), which is not the case for infinite graphs.

Thus, with the transition to infinite graphs based on (S1)–(S3), one of the most striking

features of Wagner’s finite decompositions was lost: their ‘tree-shape’, a consequence of

(S4) (see [ 1 ] for details).

It was this ‘tree-shape’ that gave rise to the other generalization of Wagner’s decom-

positions: the ‘tree-decompositions’ recently introduced by Robertson and Seymour [ 7 ].

Robertson and Seymour’s definition of a tree-decomposition (again for finite graphs) is

essentially equivalent to our conditions (S1), (S3) and (S4).

Thus simplicial tree-decompositions, as defined above, are simplicial decompositions

as well as tree-decompositions. They are therefore a generalization of Wagner’s decom-

positions to infinite graphs in the structural sense mentioned, while at the same time

maintaining their compatibility with graph properties such as the chromatic number.

Moreover, simplicial tree-decompositions form an interesting object of study in them-

selves. They have turned out to possess a number of very natural features (see [ 1 ] for an

introduction), and some of their most basic properties are still unknown. To give only one

example: it is still an open problem to determine which infinite graphs admit a simplicial

tree-decomposition (or, equivalently in this case, a simplicial decomposition) into finite

factors.

We shall usually call complete graphs simplices (as is the custom in this field), and

the Sµ’s in (S2) simplices of attachment. The ‘partial union’
⋃

λ<µ Bλ appearing in (S2)

will be denoted G|µ; it is not difficult to show that every G|µ must be an induced subgraph

of G [ 1 ].

A graph is called prime if it has no simplicial tree-decomposition into more than

one factor. We remark that the notion of being prime remains the same if it is taken

with reference to (S1)–(S3) alone, and that a graph is prime if and only if it contains no

separating simplex [ 1 ]. A simplicial tree-decomposition in which all factors are prime will

be called a simplicial tree-decomposition into primes, or a prime decomposition.

A subgraph H of G will be called attached to a subgraph H ′ of G\H if every vertex

of H is adjacent to a vertex in H ′.

An example of attached graphs we shall frequently encounter is that of a minimal

separator. For disjoint subgraphs X , S, Y of G let us say that S is an X–Y separator in G
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if V (S) separates X from Y in G in the usual sense, and that S is a minimal X–Y separator

if, in addition, X and Y are not separated by any proper subset of V (S). (By a simple

application of Zorn’s Lemma, every X–Y separator contains a minimal X–Y separator.)

Then for vertices x, y ∈ G, an { x }–{ y } (or: x–y) separator S is minimal if and only if S

is attached to the component of G\S containing x, as well as to the component containing

y.

If S ⊂ G is a simplex and C is a component of G\S to which S is attached, the

pair (C, S) will be called a side (of S) in G. For sides (C, S), (C′, S′) in G we write

(C, S) ≤ (C′, S′) if C ⊂ C′.

The following lemma, whose straightforward proof can be found in [ 2 ], facilitates the

study of ‘nested’ sides.

Lemma 1.1. [ 2 ]

(i) The relation ≤ defines a partial order on the set of all sides in G.

(ii) (C, S) ≤ (C′, S′) if and only if C ∩C′ 6= ∅ and S′ ∩C = ∅.

(iii) (C, S) < (C′, S′) if and only if S ∩C′ 6= ∅ and S′ ∩C = ∅.

For X, Y ⊂ G, we call a path P ⊂ G an X–Y path if its endvertices are in X and Y ,

respectively, and its interior vertices are in G \ (X ∪ Y ). Moreover, we write G [X → Y ]

for the subgraph of G induced by all vertices of G that can be reached from X by a path

whose interior avoids Y . More precisely, G [X → Y ] is the subgraph of G spanned by

all vertices v ∈ G for which G contains a path x1 . . . xn satisfying x1 ∈ X , xn = v, and

xi ∈ Y ⇒ i = n. We shall usally abbreviate G [X → Y ]∩ Y to Y [X ]. Thus, Y [X ] is

the subgraph of Y spanned by all terminal vertices of X–Y paths in G.

Notice that for Y = G this definition coincides with the conventional meaning of

G [X ], denoting the subgraph of G induced by the vertices of X .

A graph H ⊂ G will be called convex in G if H contains every induced path in G

whose endvertices are in H. Equivalently, H is convex in G iff H is induced in G and, for

every x ∈ G\H, H [ x ] = G [x→H ]∩H is a simplex. Moreover, H ⊂ G is convex in G if

and only if, for every T ⊂ V (H) and U,W ⊂ V (H)\T , T separates U from W in H iff T

separates U from W in G. (Of these three definitions for convexity we shall use whichever

one seems most suitable in the given context.) Note that if H is convex in G and H ′ ⊂ H,

then H ′ is convex in H iff H ′ is convex in G.

For any induced subgraph X of G, the intersection H of all convex subgraphs of G

containing X is again convex; H will be called the convex hull of X in G.

Finally, we shall call H ⊂ G minimally convex in G if H is convex in G and H is

not the union of two proper subgraphs that are themselves convex in G (or, equivalently,

in H). It is easily shown that if H is minimally convex in G and H ′ is a proper convex

subgraph of H, then H ′ is a simplex [ 1 ]. Since simplices are themselves minimally convex,

this means in particular that any convex subgraph of a minimally convex graph is again

minimally convex.
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Convexity plays an important role in the study of simplicial decompositions and sim-

plicial tree-decompositions. To give just two examples: in any simplicial decomposition

(Bλ)λ<σ of G, the ‘partial unions’ G|µ =
⋃

λ<µ Bλ (for µ < σ) are convex in G, and in a

prime decomposition of G the factors are minimally convex in G (see [ 1 ]).

Recall that, in a prime decomposition, vertices belonging to a common factor are

never separated by a simplex. Conversely, we shall call vertices of G (simplicially) close if

no simplex separates them, no matter whether G has a prime decomposition or not.

The following lemma, which links simplicial closeness to convexity and prime decom-

positions, will be a key tool in the proof of our main theorem.

Lemma 1.2. [ 1 ] If the vertices of an induced subgraph X of G are pairwise simplicially

close in G, then the convex hull of X in G is prime.

Let G, G′ be graphs, and let f : V (G)→V (G′) be surjective. f is called a homomor-

phism from G onto G′ if

vw ∈ E(G) ⇒
(

f(v)f(w) ∈ E(G′) ∨ f(v) = f(w)
)

and

v′w′ ∈ E(G′) ⇒ ∃ vw ∈ E(G) :
(

f(v) = v′ ∧ f(w) = w′
)

.

f is called contractive if G [ f−1(v) ] is connected for every v ∈ V (G′), and f is simplicial if

it is contractive and preserves simplicial closeness. Thus if f is a simplicial homomorphism

from G onto G′, then v, w ∈ V (G′) can only be separated by a simplex in G′ if every vertex

of f−1(v) is separated by a simplex from each vertex of f−1(w) in G.

We shall often identify a vertex of G′ with its inverse image under f , and thus think

of V (G′) as being a collection of subsets of V (G), two of which are adjacent if and only if

G contains an edge between them.

H ′ is said to be a minor of G if G has a subgraph H from which there exists a

contractive homomorphism f onto H ′. We shall call H ′ a simplicial minor of G (and write

G ≻s H ′), if H and f can be chosen in such a way that H is convex in G and f is simplicial.

Our last lemma will help us handle the factors in prime decompositions. Let us call

H maximally prime in G if H is prime and not properly contained in any prime subgraph

of G.

Lemma 1.3. [ 1 ] Let H be convex in G. Then the following statements are equivalent:

(i) H is minimally convex;

(ii) H is prime;

(iii) H is maximally prime or an attached simplex.
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To illuminate the terms used in this lemma just a little, we remark that all factors in prime

decompositions are maximally prime, minimally convex and unattached in the underlying

graph; H ⊂ G is unattached in G if H is not attached to any component of G\H [ 1 ].

We conclude this section by quoting the main result of [ 2 ], which will be the starting

point for the proof of our main theorem in Section 4.

Recall that, for X, Y ⊂ G, the expression Y [X ] denotes G [X→Y ]∩Y . For example,

if S ⊂ G and C is a component of G\S, then S [C ] is the subgraph of S spanned by all

those vertices of S that have a neighbour in C.

If (C, S) is a side in G, S′ ⊂ S, and if X ⊂ G satisfies X ⊃ S′ and X ∩C 6= ∅, we

shall call X an extension of S′ into C.

Theorem 1.4. [ 2 ] A countable graph G has a simplicial tree-decomposition into primes

if and only if G satisfies the following condition:

(†) If (C, S) is a side in G and C′ is a component of G\S, C′ 6= C, then S [C′ ] has a

prime extension into C.

2. Two Examples

It is fairly straightforward to show that every finite graph has a prime decomposition into

a unique set of factors. For infinite graphs, however, this is surprisingly not the case. The

first example of an infinite graph that does not admit a simplicial (tree-) decomposition

into primes was already given in Halin’s original paper [ 5 ], and the two graphs we shall

study in this section are both variations of this example. In fact, it is the aim of this

paper to show that these two graphs are essentially the only countable graphs without

prime decompositions: we shall prove that every countable graph admitting no prime

decomposition contains at least one of them as a simplicial minor.

Define the graph H1 as follows. Let S be a countably infinite simplex, with V (S) =

{ s1, s2, . . . } say. Add a one-way infinite path P = x1x2 . . . and a single vertex q, join xi

to sj iff i ≥ j, and let q be adjacent to all vertices in S but to none in P .

Let H2 be the graph obtained from H1 by adding all missing edges between vertices

xi and xj , i 6= j, thus turning P into a simplex (Fig. 2).

Let us consider H1, and try to find a prime decomposition (Bλ)λ<σ of H1. Recall

that all ‘parts’ H1|µ of this decomposition must be convex in H1, and that the factors Bλ

must be maximally prime and unattached.

Starting ‘from the right’, let us try putting q in the first factor B0. Since B0 is prime

but q is separated from every vertex of P by the simplex S, we must have B0∩P = ∅, i.e.

B0 ⊂ H1 [S ∪ { q } ]. But H1 [S ∪ { q } ] is itself a simplex and therefore prime; thus if B0

is to be maximally prime in H1, we must have B0 = H1 [S ∪{ q } ].
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Figure 2

Turning now to the second factor, B1, we shall certainly have B1∩P 6= ∅, because B1

has to contribute a new vertex of H1 to our decomposition (S3). But if xi ∈ B1 say, then

B1 cannot contain any of the vertices sj with j > i, because these vertices are separated

from xi by the simplex

Ti := H1 [ s1, s2, . . . , si, xi+1 ].

(Thus B1 has at most finitely many vertices in S; this fact, as well as the simplices Ti

‘shielding’ the vertices of P from almost all vertices of S, will have a more general analogue

in the proof of our main theorem.)

We therefore have sj ∈ S\B1 for every such vertex sj , and B1∩S separates sj from xi

in H1|2 = B0 ∪B1. However, no subgraph of S separates any vertex of S from any vertex

of P in H1, because S is attached to P . Hence, every possible choice of B1 contradicts

the requirement that H1|2 be convex in H1, and we are unable to complete our prime

decomposition of H1.

Let us make a fresh attempt at finding a prime decomposition for H1, this time

excluding q from the first factor B0. Since neither S nor its subsimplices are unattached

in G, we must have B0 ∩P 6= ∅.

Let Bµ be the factor that contains q; as seen earlier, this will have to be Bµ =

H1 [S ∪ { q } ]. Since B0 ∩ P 6= ∅, we shall therefore have H1|µ+1 ∩ P 6= ∅, as well as

S ⊂ H1|µ+1. Thus unless S is already contained in H1|µ, some vertices of P and S will be
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separated by the subsimplex S ∩H1|µ of S in H1|µ+1, contrary to the convexity required

for H1|µ+1.

But if S ⊂ H1|µ, then S = Sµ, so S ⊂ Bλ for some λ < µ by (S4). This, however,

contradicts our earlier observation that any factor Bλ with Bλ∩P 6= ∅ has at most finitely

many vertices in S.

Therefore H1 has no prime decomposition.

The proof that H2 has no prime decomposition is similar to that for H1; as the only

difference, the simplices Ti have to be redefined as

Ti := H2 [ s1, s2, . . . , si, xi+1, xi+2, . . . ].

3. Simplicial Minors

In this section we take a closer look at simplicial minors. Our aim is to examine their

suitability for the result we are seeking: a characterization of the countable graphs that

admit a simplicial tree-decomposition into primes.

After a little preparation we shall prove two facts in this section: that ≻s is a transitive

relation, and that any simplicial minor of a graph admitting a prime decomposition has

itself a simplicial tree-decomposition into primes. Notice that the latter fact immediately

yields one direction of our main result, Theorem 4.1: since H1 and H2 have no prime

decompositions, neither of these graphs can be the simplicial minor of any graph that has

one.

Moreover, the second of these facts is clearly necessary given the first, provided we

are to succeed in proving our desired characterization; for if ≻s is transitive, then any

graph property defined in terms of forbidden simplicial minors will be closed under taking

simplicial minors.

The following notational conventions will be useful for handling homomorphisms.

If f is a homomorphism from G onto G′, and if H ⊂ G and H ′ ⊂ G′ are induced

subgraphs, we shall abbreviate G′ [ f(V (H)) ] to f(H), and G [ f−1(V (H ′)) ] to f−1(H ′).

Then f |f−1(H′) is a homomorphism from f−1(H ′) onto H ′ (which is contractive if f is),

but f |H is not in general a homomorphism from H onto f(H): since f(H) contains all

edges induced by its vertex set in G′, an edge XY of f(H) need not correspond to an edge

of H, i.e. one between X ∩H and Y ∩H (but see Lemma 3.1 below).

Looking at their definition, we see that all homomorphisms between graphs map sim-

plices to simplices. In the case of contractive homomorphisms, this property extends to

the preservation of convexity:
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Lemma 3.1. Let G, G′ be graphs, and let f : V (G)→V (G′) be a contractive homomor-

phism. Then the following assertions hold:

(i) If H ⊂ G is convex in G, then H ′ := f(H) is convex in G′, and f |H is a contractive

homomorphism from H onto H ′.

(ii) If H ′ ⊂ G′ is unattached in G′, then H := f−1(H ′) is unattached in G.

Proof. (i) Let H and H ′ be as stated, and let P be an H ′–H ′ path in G′ of length at least

2, say with endvertices X, Y ∈ V (H ′). We prove the convexity of H ′ by showing that XY

must be an edge of H ′. Clearly X ∩ V (H) 6= ∅ and Y ∩ V (H) 6= ∅, but all other vertices

of P are disjoint from V (H). The interior vertices of P are therefore subsets of V (C) for

a common component C of G\H. Since X and Y each induce a connected subgraph in G,

meet V (H), and send an edge to an inner vertex of P , this implies that X and Y meet

V
(

H [C ]
)

. By the convexity of H these vertices span a simplex in G, so G contains an

X–Y edge. Thus XY ∈ E(H ′) as desired.

In order to prove that f |H is a contractive homomorphism from H onto H ′, we have to

show that f−1(X)∩H is connected for every X ∈ V (H ′), and that H contains an X ∩H –

Y ∩H edge whenever XY is an edge of H ′. To show that f−1(X)∩H is connected, let

x, y ∈ f−1(X)∩H. Since f−1(X) is connected, x and y are joined by a path P in G with

V (P ) ⊂ X ; we choose P to be induced in G. Then P ⊂ H by the convexity of H, i.e.

P ⊂ f−1(X)∩H. Similarly, if XY is an edge of H ′, then f−1
(

{X, Y }
)

contains a path

from X ∩H to Y ∩H. Chosen induced in G, this path will be contained in H and therefore

have an X ∩H –Y ∩H edge.

(ii) Suppose H is attached in G, say H = H [x ] for x ∈ G\H. By definition of H, we

have f(G [ x→H ]\H)∩H ′ = ∅, so f maps every x–H path P ⊂ G to a walk containing

an f(x)–H ′ path in G′, whose endvertex in H ′ is the image of the endvertex of P in H.

Hence H = H [ x ] implies that H ′ = H ′ [ f(x) ], so H ′ is attached in G′. �

Recall that a contractive homomorphism f from G onto G′ is simplicial if f preserves

simplicial closeness, i.e. if f satisfies the implication

v, w ∈ V (G) are close in G ⇒ f(v), f(w) are close in G′.

The following lemma lists some basic properties of simplicial homomorphisms. Com-

bined with Lemma 3.1, it reveals a great deal of compatibility between simplicial homo-

morphisms and simplicial tree-decompositions into primes.

Lemma 3.2. Let G, G′ be graphs, and let f : V (G)→ V (G′) be a simplicial homomor-

phism. Then the following propositions hold:

(i) If H ⊂ G is convex in G, then f |H is a simplicial homomorphism from H onto f(H).

(ii) If H ⊂ G is maximally prime in G, then f(H) is maximally prime in G′ or an

attached simplex.

8



(iii) If H ⊂ G is minimally convex in G, then f(H) is minimally convex in G′.

(iv) If H ′ ⊂ G′ is convex, then G has a convex subgraph H from which there exists a

simplicial homomorphism g onto H ′. H and g can be chosen in such a way that H

contains f−1(H ′), and that f and g agree on f−1(H ′).

Proof. (i) By Lemma 3.1.(i), H ′ := f(H) is convex in G, and f |H is a contractive

homomorphism from H onto H ′. To show that f |H preserves simplicial closeness, let

x, y ∈ V (H) and suppose that x, y are close in H. Since H is convex in G, x and y are

also close in G, so f(x) and f(y) must be close in G′. But then f(x) and f(y) are even

close in H ′, because H ′ is convex in G′.

(ii) If H is maximally prime in G, then H is convex in G, so f(H) is convex in

G′ (Lemma 3.1 (i)) and prime (because H is prime; apply (i)). The assertion follows by

Lemma 1.3.

(iii) If H is minimally convex in G, then by Lemma 1.3, H is maximally prime in G or

a simplex. If H is a simplex, then f(H) is also a simplex and therefore minimally convex

in G′. If H is maximally prime on the other hand, f(H) is minimally convex by (ii) and

Lemma 1.3.

(iv) Let H be the convex hull of f−1(H ′) in G. Then f(H) is convex in G′, so H ′ is

convex in f(H) (as well as in G′). As is readily verified, f(C) is a component of f(H)\H ′

whenever C is a component of H\f−1(H ′), and f−1(C′)∩H is a component of H\f−1(H ′)

whenever C′ is a component of f(H)\H ′ (use Lemma 3.1.(i)). For each component C of

H\f−1(H ′) let us select a fixed vertex X(C) from the vertices of S(C) := H ′ [ f(C) ] (=

f(H) [ f(C)→H ′ ]∩H ′); note that S(C) is a non-empty simplex, because f−1(H ′) [C ] 6= ∅

(by definition of H), and H ′ is convex in f(H) (Fig. 3).

Let us now define g by setting g|f−1(H′) := f |f−1(H′) and g(x) := X(Cx) for x ∈

H\f−1(H ′), where Cx denotes the component of H\f−1(H ′) that contains x. It is easily

checked that g is a contractive homomorphism: g preserves adjacency, because every S(C)

is a simplex, and the inverse image of a vertexX(C) is connected, because S(C) is attached

to f(C). Thus all we have to show is that g preserves simplicial closeness. To see this,

let x, y ∈ V (H) be close in H. Then x, y are close in G because H is convex in G, so

X := f(x) and Y := f(y) are close in G′. If x, y ∈ f−1(H ′), we have g(x) = X , g(y) = Y

and X, Y ∈ H ′, so g(x) and g(y) must be close in H ′, because H ′ is convex in G′. If x

and y are both in H\f−1(H ′), then Cx = Cy (and consequently g(x) = g(y)), because

otherwise S(Cx) would separate X from Y in f(H) (and hence in G′), contradicting the

closeness of X and Y in G′. Finally, if x ∈ H\f−1(H ′) and y ∈ f−1(H ′), then by the

same argument the closeness of X and Y in G′ implies that Y ∈ S(Cx), so g(x) = X(Cx)

and g(y) = Y are adjacent and therefore close. Hence g is a simplicial homomorphism, as

claimed. �

Theorem 3.3. If G1 ≻s G2 and G2 ≻s G3, then G1 ≻s G3.

Proof. Let H1 ⊂ G1, H2 ⊂ G2 and f : V (H2)→V (G3) be such that Hi is convex in Gi

(i = 1, 2), f is a simplicial homomorphism, and there exists a simplicial homomorphism
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Figure 3

from H1 onto G2. By Lemma 3.2.(iv), we can find a convex subgraph H ′
1 of H1 with a

simplicial homomorphism g : V (H ′
1)→ V (H2). Then f ◦ g is a simplicial homomorphism

from H ′
1 onto G3. Since H ′

1 is also convex in G1, this means that G3 is a simplicial minor

of G1. �

As a restatement of Theorem 3.3, we find that whenever H is a class of graphs, the

graph property

G(H)≻s := {G | H ∈ H ⇒ G 6≻s H }

is closed under taking simplicial minors. Thus we can only hope to characterize the class

of decomposable graphs in this way if it shares this feature, i.e. if simplicial minors of

decomposable graphs are again decomposable.

The following theorem shows that this is indeed so:

Theorem 3.4. If a countable graph G has a simplicial tree-decomposition into primes

and H ′ is a simplicial minor of G, then H ′ has a simplicial tree-decomposition into primes.

Proof. Let (Gλ)λ<σ be a prime decomposition of G. By a theorem proved in [ 1 ], the

factors in any infinite simplicial tree-decomposition can be reordered into a simplicial tree-

decomposition of order type ω; we may therefore assume that σ ≤ ω. Let H ⊂ G and
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f : V (H)→ V (H ′) be such that H is convex in G and f is a simplicial homomorphism.

Let us write

Hλ := H ∩Gλ H|µ := H ∩G|µ H ′
λ := f(Hλ) H ′|µ := f(H|µ)

for all λ < σ and µ ≤ σ.

Being the intersection of two convex subgraphs of G, all graphs of the form Hλ or H|µ
are convex in G (and hence in H). Since f preserves convexity, the graphs of the form H ′

λ

or H ′|µ are therefore convex in H ′.

Let us show that everyH ′
λ is prime. Notice first that the graphsHλ must be minimally

convex (inG and hence inH), because every Gλ is minimally convex, and convex subgraphs

of minimally convex graphs are again minimally convex. By Lemma 3.2.(iii), the graphs

H ′
λ are therefore minimally convex in H ′, and hence prime (by Lemma 1.3).

We remark that our notation for f(H|µ) is compatible with the conventional meaning

of H ′|µ, i.e. that H
′|µ =

⋃

λ<µ H
′
λ for all µ ≤ σ. For clearly

V
(

f(
⋃

λ<µ

Hλ)
)

= V
(

⋃

λ<µ

f(Hλ)
)

and

E
(

f(
⋃

λ<µ

Hλ)
)

= E
(

H ′ [V (H ′|µ) ]
)

⊃ E
(

⋃

λ<µ

f(Hλ)
)

.

To see the reverse inclusion, let XY ∈ E
(

f(
⋃

λ<µ Hλ)
)

be given. Since f induces a

simplicial homomorphism from H|µ onto H ′|µ (Lemma 3.2.(i)), XY arises from some edge

xy ∈ E(H) with x ∈ X ∩H|µ and y ∈ Y ∩H|µ. Now if λ(x) denotes the minimal λ

with x ∈ Hλ, λ(y) denotes the minimal λ with y ∈ Hλ, and λ(x) ≤ λ(y) (say), then

xy ∈ E(H|λ(y)+1) (because G|λ(y)+1 and hence also H|λ(y)+1 is an induced subgraph

of G), and λ(y) is again minimal with this property. Therefore xy ∈ E(Hλ(y)), giving

XY ∈ E(H ′
λ(y)) and hence XY ∈ E

(
⋃

λ<µ f(Hλ)
)

.

Let Λ denote the set of all ordinals µ < σ for which H ′
µ\H

′|µ 6= ∅; notice that
⋃

λ∈Λ|µ
H ′

λ = H ′|µ for all µ ≤ σ, where Λ|µ := Λ∩µ (induction on µ). For each µ ∈ Λ, put

S′
µ := f(Sµ ∩H). Since f maps simplices to simplices, every S′

µ is a complete subgraph

of H ′|µ. Two properties of these S′
µ are of particular interest to us: the fact that each S′

µ

coincides with H ′
µ ∩H ′|µ, and that S′

µ separates H ′
µ\S

′
µ from H ′|µ\S

′
µ in H ′ (for all µ ∈ Λ

where this is meaningful, i.e. for which H ′|µ\S
′
µ 6= ∅).

Let us first show that S′
µ = H ′

µ ∩H ′|µ, for all µ ∈ Λ. By definition of S′
µ we clearly

have S′
µ ⊂ H ′

µ ∩H ′|µ, so all we have to check is that f−1(X) has a vertex in Sµ for every

X ∈ V (H ′
µ ∩H ′|µ), µ ∈ Λ. This, however, follows from the fact that Sµ ∩H separates

Hµ\H|µ from H|µ\Hµ in H and f−1(X) is connected.
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Let us now show that S′
µ separates H ′

µ\S
′
µ from H ′|µ\S

′
µ in H ′. Since H ′

µ ∪H ′|µ =

H ′|µ+1 is convex in H ′, it suffices to show that S′
µ separates these graphs in H ′|µ+1,

i.e. that H ′|µ+1 contains no H ′
µ\S

′
µ –H ′|µ\S

′
µ edge. This, however, holds because H|µ+1

contains no Hµ\Sµ –H|µ\Sµ edge and H|µ+1 is convex in H.

(H ′
λ)λ∈Λ is almost a prime decomposition of H ′. Indeed, as noted above we have

⋃

λ∈Λ H ′
λ = H ′|σ = H ′, showing (S1). To verify (S2), recall that the terms H ′|µ and S′

µ

mean what they should in this context, i.e. that H ′|µ =
⋃

λ∈Λ|µ
H ′

λ and S′
µ = H ′

µ ∩H ′|µ,

for all µ ∈ Λ. As to (S3), the definition of Λ ensures that H ′
µ\S

′
µ 6= ∅ for all µ. Only

the second requirement of (S3), namely that no S′
µ must contain any previous H ′

λ, is not

generally satisfied.

We shall resolve this problem following an idea of Halin [ 5 ]. Recall that Λ is finite or

of order type ω. Let τ : Λ→Λ be the map defined by setting

τ(λ) :=

{

λ if H ′
λ 6⊂ S′

µ for all µ ∈ Λ
min {µ ∈ Λ | H ′

λ ⊂ S′
µ } otherwise;

note that λ ≤ τ(λ) for all λ ∈ Λ, because H ′
λ\S

′
µ ⊃ H ′

λ\H
′|λ 6= ∅ for µ < λ. Put

Bλ := H ′
λ ∪H ′

τ(λ) ∪H ′
τ(τ(λ)) ∪ . . .

for each λ ∈ Λ, and set

Λ′ := { µ ∈ Λ | µ = τ(λ) ⇒ λ = µ } .

Let us prove that (Bλ)λ∈Λ′ is a simplicial tree-decomposition of H ′ into primes, with

simplices of attachment S′
λ (λ ∈ Λ′). Being the union of a nested sequence of prime graphs,

each Bλ is certainly prime. Since clearly every H ′
λ (λ ∈ Λ) is contained in B′

λ for some

λ′ ∈ Λ′, λ′ ≤ λ, we further have

H ′|µ ⊂
⋃

λ∈Λ′|µ

Bλ for every µ ≤ σ;

in particular,
⋃

λ∈Λ′ Bλ = H ′ (S1).

To establish (S2), we show that, for every µ ∈ Λ′, S′
µ separates Bµ\S

′
µ from

⋃

λ∈Λ′|µ
Bλ\S

′
µ in H ′ (which in particular implies that Bµ ∩

⋃

λ∈Λ′|µ
Bλ ⊂ S′

µ, and there-

fore Bµ ∩
⋃

λ∈Λ′|µ
Bλ = S′

µ). Let x ∈ Bµ\S
′
µ and y ∈

⋃

λ∈Λ′|µ
Bλ\S

′
µ be given (possibly

x = y), with y ∈ Bκ say (κ ∈ Λ′|µ). As µ ∈ Λ′, µ is not of the form τ i(κ). By definition

of τ , this means that not all of the graphs H ′
τj(κ) with τ j(κ) < µ can be contained in

S′
µ; let k ∈ { 0, 1, . . .} be such that H ′

τk(κ)
6⊂ S′

µ and τk(κ) < µ. Pick y′ ∈ H ′
τk(κ)

\S′
µ

and x′ ∈ H ′
µ\S

′
µ. Since Bµ and Bκ are both prime, S′

µ separates neither x from x′ nor y

from y′. Yet as shown earlier, S′
µ separates x′ from y′ in H ′, so S′

µ separates x from y, as

claimed.
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In addition to proving (S2), we have thus shown that Bλ∩Bµ ⊂ S′
µ whenever λ, µ ∈ Λ′,

λ < µ. Since this implies Bµ 6⊂ Bλ (by Bµ\S
′
µ ⊃ H ′

µ\S
′
µ 6= ∅) and Bλ 6⊂ Bµ (because

Bλ ⊂ S′
µ contradicts µ ∈ Λ′ by the definition of τ), we have also established (S3).

Since Λ′ ⊂ σ ⊂ ω, (Bλ)λ∈Λ′ also satisfies (S4); see [ 1 ] for details. �

Let G be the class of countable graphs that have a simplicial tree-decomposition into

primes, and let H be the class of all other countable graphs. Then trivially G ⊃ G(H)≻s ,

and by Theorem 3.4 even G = G(H)≻s . Moreover, this assertion remains valid if we replace

H with any set H′ ⊂ H in which every graph of H has a simplicial minor—which leaves

us with the challenge to find a minimal such H′.

In the remaining part of this paper we shall prove that this problem has a rather

elegant solution: the set H′ = {H1, H2 }. Indeed, it is easily seen that neither of H1, H2

is a simplicial minor of the other; the task will be to show that at least one of them occurs

as a simplicial minor in any graph that has no simplicial tree-decomposition into primes.

4. The Main Result

The following theorem is our main result.

Theorem 4.1. A countable graph G has a simplicial tree-decomposition into primes if

and only if neither of H1, H2 is a simplicial minor of G.

We have already proved one direction of this theorem: if a countable graph has a

simplicial tree-decomposition into primes, then neither H1 nor H2 can be its simplicial

minor—for H1 and H2 have no prime decomposition, but any simplicial minor of a graph

admitting a prime decomposition has one too (Theorem 3.4). In this section we prove

the other direction of Theorem 4.1, showing that if a countable graph has no simplicial

tree-decomposition into primes, it contains H1 or H2 as a simplicial minor.

Let G be a countable graph that has no prime decomposition. By Theorem 1.4, there

exist a simplex S ⊂ G and distinct components C,C′ of G\S such that S is attached to

C and S [C′ ] has no prime extension into C. We shall find a simplicial homomorphism f

from G [C ∪ S ∪C′ ] onto H1 or H2; since G [C ∪ S ∪C′ ] is a convex subgraph of G, the

domain of f will be convex in G, as required in the definition of simplicial minors.

Our homomorphism f will map the entire component C′ to the single vertex q of H1

(of H2, respectively), the simplex S ⊂ G onto the simplex S in H1 (in H2), and most of

the component C of G\S to H1 [x1, x2, . . . ] or to H2 [x1, x2, . . . ].

We begin the proof with a generalization of the ‘shields’ Ti mentioned in the discussion

of H1 and H2 in Section 2.
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Definition. Let T, T ′ ⊂ G be simplices satisfying (T\T ′)∩C 6= ∅, and let t ∈ (T\T ′)∩C.

(i) T ′ is a partial T -shield (at t), if (T ′\T ) ∩ S [C′ ] 6= ∅ and T ′ is a minimal t–s

separator for some vertex s ∈ S\T ′.

(ii) T ′ is a T -shield, if T ∩T ′ ∩C = ∅ and T ′ is a partial T -shield at t for every vertex

t ∈ T ∩C.

Let us note a few straightforward implications of this definition. Suppose T ′ is a

partial T -shield at the vertex t ∈ (T\T ′)∩C. Clearly T ⊂ G [C ∪ S ] because t ∈ T ∩C,

and T ′ ⊂ G [C ∪ S ] because T ′ is a minimal t–s separator. Moreover, T ′ contains all

neighbours of t in S, because these are also neighbours of s; in particular, T ′ ⊃ T ∩S. As

S is attached to C, T ′ can only separate t from s if it meets C, so T ′ ∩C 6= ∅. And finally,

since T ′ cannot separate adjacent vertices, all of T\T ′ must be in one component of G\T ′,

while S\T ′ is contained in another component.

Perhaps the most useful property of partial T -shields is that they always exist. Indeed,

if T ⊂ G is a simplex and t ∈ T ∩C, then t cannot be simplicially close to every vertex

of S [C′ ], because in that case the convex hull of S [C′ ] ∪ { t } in G would be a prime

extension of S [C′ ] into C (Lemma 1.2). In particular, we have S [C′ ]\T 6= ∅. Pick a

vertex s′ ∈ S [C′ ]\T , and let P = s′ . . . t be an induced s′–t path in G with P ∩S = { s′ }.

As t is not close to every vertex of S, there exist a vertex s ∈ S and a simplex T ′ such

that T ′ is a minimal t–s separator; let us choose T ′ and s in such a way that the unique

S–T ′ path P ′ ⊂ P has minimal length. We shall prove that T ′ is a partial T -shield at t

by showing that s′ ∈ T ′, i.e. that P ′ has length 0.

Suppose not, and let t′ be the endvertex of P ′ in T ′. Again, t′ is not simplicially

close to every vertex of S; let T ′′ be a simplex separating t′ from some s ∈ S, and assume

without loss of generality that T ′′ is a minimal t′–s separator. Then T ′′ ∩ P ′ 6= ∅, and

therefore (P\P ′)∩T ′′ = ∅; for since t′ /∈ T ′′, (P\P ′)∩T ′′ 6= ∅ would mean that P had two

non-consecutive vertices in T ′′, contrary to our assumption that P is an induced subgraph

of G. Hence t′ and t are in the same component of G\T ′′, so T ′′ is also a minimal t–s

separator in G. Since the S–T ′′ path P ′′ ⊂ P ′ is shorter than P ′, this contradicts the

choice of T ′. Therefore s′ ∈ T ′, so T ′ is a partial T -shield at t.

For the definition of f , we shall consider the following two cases.

Case 1. For every simplex T ⊂ G with T ∩C 6= ∅ there exists a T -shield.

Case 2. There exists a simplex T ⊂ G with T ∩C 6= ∅ such that every partial T -shield

T ′ satisfies T ′ ∩T ∩C 6= ∅.

It should be clear from our earlier observations that these two cases are exhaustive

and mutually exclusive.

In principle, the entire proof could from now on be read separately for the two cases:

in Case 1, we define f to be a simplicial homomorphism onto H1, whereas in Case 2 the

image of f will be H2. However, since the treatment of the two cases is for most of the
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Figure 4

proof very similar, we shall consider them simultaneously, using the same notation. Thus a

single statement may need different kinds of justification, depending on the case for which

it is considered.

We begin with a few definitions. For each case separately, we select vertices t1, t2, . . . ∈

C, simplices T1, T2, . . . ⊂ G [C ∪ S ], and vertices s′1, s
′
2, . . . ∈ S [C′ ]. The vertices ti and

s′j will later be mapped to the corresponding vertices xi and sj of H1 and H2, and the

simplices Ti correspond to the minimal separating simplices of H1\{ q } and H2\{ q }.

Case 1. Pick a vertex v ∈ C, and put T0 := { v }. Let i ∈ N, and suppose that tj , Tj

and s′j have been defined for all j ∈ N, j < i, and that Ti−1 ∩C 6= ∅. Pick ti ∈ Ti−1 ∩C,

let Ti be a Ti−1-shield, and let s′i be any vertex of (Ti\Ti−1)∩S [C′ ]. Since S is attached

to C and Ti separates ti from some s ∈ S\Ti, we again have Ti ∩C 6= ∅ (Fig. 4).

Case 2. Let T0 denote the simplex T ⊂ G provided in the specification of Case 2. Let

i ∈ N, and suppose that tj , Tj and s′j have been defined for all j ∈ N, j < i, and that

Ti−1 ∩T0 ∩C 6= ∅. Pick ti ∈ Ti−1 ∩T0 ∩C, let Ti be a partial Ti−1-shield at ti, and choose

s′i ∈ (Ti\Ti−1)∩S [C′ ]. To show that again Ti ∩T0 ∩C 6= ∅, it suffices to check for i > 1

that Ti is also a partial T0-shield at ti; this follows, because Ti−1 separates the vertices of

S\Ti−1 from ti−1 and therefore from all vertices of T0\Ti−1, so s′i ∈ (Ti\T0)∩S [C′ ] 6= ∅

(Fig. 5).
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Figure 5

Since, in both cases, Ti is a partial Ti−1-shield at ti (for all i ∈ N), we have

T0 ∩S ⊂ T1 ∩S ⊂ T2 ∩S ⊂ . . . (1)

For all i ∈ N, let us set

C−
i := G [ ti →Ti ] \Ti

and

C+
i := G [ s′i+1 →Ti ] \Ti

By definition of Ti, the graphs C−
i , C+

i are distinct components of G\Ti, the components

containing Ti−1\Ti and S\Ti, respectively.

As Ti is a minimal ti–s separator for some (and hence every) s ∈ S\Ti, Ti is attached

to both C−
i and C+

i , so (C−
i , Ti) and (C+

i , Ti) are sides in G. Let us apply Lemma 1.1.(iii)

to show that (C−
i , Ti) < (C−

i+1, Ti+1) for all i ∈ N. We have to check that Ti ∩C−
i+1 6= ∅,

and that Ti+1 ∩ C−
i = ∅. The first of these statements holds, because ti+1 ∈ Ti ∩C−

i+1.

As to the latter, we have s′i+1 ∈ Ti+1 ∩ C+
i and hence Ti+1 ∩ C+

i 6= ∅. Since Ti+1 is

a simplex and therefore not separated by Ti, this implies that Ti+1 ∩ C−
i = ∅. Thus

(C−
i , Ti) < (C−

i+1, Ti+1), as claimed.
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Expressed in terms of components, we therefore have

C−
1 ⊂ C−

2 ⊂ C−
3 ⊂ . . . (2)

The components C+
i are nested similarly, in the opposite way. Let us check this using

Lemma 1.1.(ii). By (1) we have s′i+2 ∈ S\Ti+1 ⊂ S\Ti, so s′i+2 ∈ C+
i ∩ C+

i+1. Thus

C+
i ∩C+

i+1 6= ∅. Moreover, ti+1 ∈ Ti ∩C−
i+1, so Ti ∩C+

i+1 = ∅. Lemma 1.1 (i)–(ii) therefore

implies that (C+
i , Ti) > (C+

i+1, Ti+1), for all i ∈ N. Hence,

C+
1 ⊃ C+

2 ⊃ C+
3 ⊃ . . . (3)

Notice finally that in Case 1 we have ti+2 ∈ C+
i for all i ∈ N. Indeed, ti+2 /∈ Ti because

ti+2 ∈ Ti+1 and Ti+1 ∩ Ti ∩C = ∅ (recall that Ti+1 is a Ti-shield), so ti+2 ∈ C+
i , because

ti+2 is adjacent to s′i+1 and s′i+1 ∈ C+
i . By (3), we thus obtain

tj ∈ C+
i for all i, j ∈ N, i ≤ j− 2 . (4,Case 1)

Let us put T−1 := X0 := ∅, and set

Xi := G [ ti →Ti ∪X |i ] \ (Ti∪X |i) (i = 1, 2, . . .)

where X |i := X0 ∪ . . .∪Xi−1,

Si := S ∩Ti\Ti−1 (i = 2, 3, . . .),

X :=
∞
⋃

i=1

Xi T :=
∞
⋃

i=1

Ti S− :=
∞
⋃

i=2

Si

and

S1 := G [C ∪S ]∩G [ s′1 →X ∪S− ] \ (X ∪S−) .

For convenience, we shall further adopt the notation

G′ := G
[

∞
⋃

i=1

(Xi ∪Si)
]

.

Notice from the above definitions that

Xi ⊂ C−
i ⊂ C for all i ∈ N . (5)

Moreover, as s′1 ∈ T1 and hence s′1 ∈ Ti for every i ∈ N (by (1)), s′1 is adjacent to every

vertex of T other than itself. Therefore any vertex of T is in S1 unless it is in some Xi or

in some Sj , j ≥ 2. Hence,

T ⊂ G′ . (6)
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Notice further that for all i, j ∈ N, i < j, we have s′j ∈ Tj as well as s′j ∈ S\Tj−1 ⊂

S\Ti ⊂ C+
i (cf. (1)). Therefore

Tj ∩C+
i 6= ∅ for i < j ,

and hence

Tj ∩C−
i = ∅ for i ≤ j .

By (5), this implies that

Tj ∩Xi = ∅ for i ≤ j . (7)

Thus in particular, (Ti−1\Ti)∩X |i = ∅ for all i ∈ N. Therefore

Ti−1\Ti ⊂ Xi for all i ∈ N , (8)

by ti ∈ Ti−1\Ti and the definition of Xi.

(8) tells us precisely how the vertices of T ∩C are allocated to the various Xi’s or to

S1. If a vertex t ∈ T ∩C is contained in only one Ti (as always in Case 1), then clearly

t ∈ Xi+1 for this i. If t is contained in only finitely many but at least two Ti’s (as may

happen in Case 2), then (8) implies that t ∈ Xk+1 for k := max { i | t ∈ Ti }. Finally, if

t ∈ Tj for infinitely many j ∈ N, then t is not contained in any Xi by (7); since t is adjacent

to s′1 and t /∈ S−, this means that t ∈ S1.

We are now ready to define f . For v ∈ V (C ∪S ∪C′), let us set

f(v) :=







xi if v ∈ Xi (i ∈ N)
si if v ∈ Si (i ∈ N)
q if v ∈ C′ .

In order to prove that this definition indeed establishes f as a well-defined simplicial

homomorphism from G [C ∪ S ∪ C′ ] onto H1 or H2, respectively, we have to check the

following facts.

(i) f is defined for all vertices of G [C ∪S ∪C′ ], i.e. G′ ⊃ G [C ∪S ].

(ii) f is well-defined, i.e. all the subgraphs Xi, Si and C′ are pairwise disjoint.

(iii) f is a homomorphism, i.e. G contains an edge between two of the subgraphs Xi, Si

and C′ if and only if the images of these two subgraphs are adjacent in H1 or H2,

respectively.

(iv) f is contractive, i.e. Xi and Si are connected for all i ∈ N.

(v) f preserves simplicial closeness, i.e. two vertices of G are separated by a simplex

whenever their images under f are separated by a simplex.
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(i) To prove thatG′ ⊃G [C∪S ], suppose G [C∪S ]\G′ 6= ∅ and let C′′ be a component

of G [C ∪ S ]\G′. Then C′′ ⊂ C, because any vertex in C′′ ∩ S would be adjacent to s′1,

giving C′′ ⊂ S1. Since C is connected and C′′ ⊂ C, there exists a vertex v ∈ G′ ∩C that

has a neighbour w in C′′.

Clearly v /∈ Si for i ≥ 2. If v ∈ Xi for some i ∈ N, then v ∈ G [ ti →Ti ∪X |i ], and v /∈

Ti∪X |i. As v, w are adjacent, this implies that also w ∈ G [ ti→Ti∪X |i ]. But since w /∈ G′

and T ⊂ G′ (6), w is in neither of Ti or X |i. Therefore w ∈ G [ ti→Ti∪X |i ]\ (Ti∪X |i) =

Xi, a contradiction. Hence, v /∈ X .

By an analogous argument, v cannot be in S1. Thus v /∈ Xi and v /∈ Si for all i ∈ N,

contrary to our assumption that v ∈ G′.

(ii) To see that f is well-defined, observe first that the Xi’s are pairwise disjoint by

definition, and disjoint from C′ and all Sj ’s with j ≥ 2 by (5). The Si’s, i ≥ 2, are

disjoint from C′ by definition, and they are pairwise disjoint, because Sj ∩ Tj−1 = ∅ and

Tj−1 ⊃ S ∩Ti ⊃ Si for 1 < i < j by (1). Finally, S1 is by definition disjoint from C′, from

all Xi’s, and from Sj for all j ≥ 2.

(iii) For a proof that f is a homomorphism, notice first that G contains an Si–Sj edge

whenever i 6= j, and an Si–C
′ edge for all i (because s′i ∈ Si ∩ S [C′ ]). Furthermore, G

contains no Xi–C
′ edges for any i (by (5)), and no Xi–Sj edges if i < j (because Xi ⊂ C−

i

by (5), whereas Sj ⊂ S\Tj−1 ⊂ S\Ti ⊂ C+
i ; cf. (1)). In fact,

Ti separates Xi from Sj in G, for all i, j ∈ N, i < j. (9)

However, G contains an Xi–Sj edge whenever i > j, namely the edge tis
′
j

∈ E(Ti−1).

Let us now show that G contains an Xi–Si edge for every i ∈ N. Since s′i ∈ Ti and

Ti is a minimal ti–s separator for some s ∈ S\Ti, there exists a ti–s
′
i path P ⊂ G with

P ∩Ti = { s′i }. We shall assume that P is induced in G. Then P has no non-consecutive

vertices in Ti−1, so

P ⊂ G [C+
i−1 ∪Ti−1 ] .

By (7), Ti−1 ∩X |i = ∅. Furthermore, X |i ⊂ C−
i−1 by (2) and (5), so C+

i−1 ∩X |i = ∅.

Therefore P ∩X |i = ∅. Combining this with our assumption that P ∩ Ti = { s′i }, we

obtain P\{ s′i } ⊂ Xi. The last edge on P is therefore an Xi–Si edge.

It remains to show that G contains the correct edges between different Xi’s. In

Case 2 we need the existence of an Xi–Xj edge whenever i 6= j, which is given in the edge

titj ∈ E(T0). Let us now consider Case 1. We have to show that G contains an Xi–Xi+1

edge for every i ∈ N, but no Xi–Xj edges if i ≤ j− 2. The existence of Xi–Xi+1 edges for

all i is shown in exactly the same way as the existence of Xi–Si edges was proved above,

with ti+1 taking over the role of s′i. Turning now to non-consecutive Xi’s, we prove a little

more than is required at this point, namely that

Ti separates Xi from Xj in G, if i ≤ j− 2. (10,Case 1)
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Since Xi ⊂ C−
i by (5), it suffices to show that Xj ⊂ C+

i . Now as Ti+1 is a Ti-shield,

we have C ∩Ti ∩Ti+1 = ∅, and therefore

Ti ∩C = C ∩Ti \ (C ∩Ti ∩Ti+1)

= C ∩Ti \Ti+1

⊂ Xi+1

⊂ X |j

by (8) and i+1 < j. On the other hand,

Ti\C = Ti ∩S

⊂ Tj

by (1) and i ≤ j. Therefore Ti ⊂ X |j ∪Tj , so

Xj ∩Ti = ∅

by definition ofXj. As tj ∈ Xj ∩C+
i by (4) andXj is connected, this implies thatXj ⊂ C+

i ,

completing the proof of (10).

(iv) The fact that all subgraphs Xi and Si are connected is immediate from their

definitions. Since also C′ is connected, f is contractive.

(v) We finally prove that f preserves simplicial closeness. In H2, all pairs of non-close

vertices are of the form { xi, q } or {xi, sj } with i < j. As S ⊂ G separates Xi from C′

and Ti separates Xi from Sj in G for all i, j ∈ N, i < j (9), these pairs cannot be the

images of close vertices of G.

The only additional pairs of non-close vertices existing in H1 are of the form {xi, xj }

with i ≤ j − 2. They cannot be the images of close vertices of G, because (in Case 1) Ti

separates Xi from Xj if i ≤ j− 2 (10).

This completes the proof of Theorem 4.1.

Having proved Theorem 4.1, let us now return to tree-decompositions, i.e. to decom-

positions satisfying conditions (S1), (S3) and (S4). Clearly a graph is prime with respect

to tree-decompositions, that is, it cannot be decomposed into more that one factor, if and

only if it is complete. Thus F = (Bλ)λ<σ is a tree-decomposition of a graph G into primes

iff F satisfies (S1), (S3) and (S4) and every Bλ is a simplex. But then F also satisfies (S2).

Thus F is in fact a simplicial tree-decomposition, and even a simplicial tree-decomposition

into primes. Moreover, G has no induced cycles other than triangles, so G is chordal.

Conversely, it is not difficult to show that if G is chordal and F is a simplicial tree-

decomposition of G into primes, then every Bλ is a simplex. Theorem 4.1 therefore implies

the following characterization theorem for tree-decompositions.
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Theorem 4.2. A countable graph admits a tree-decomposition into primes if and only if

it is chordal and neither H1 nor H2 is its simplicial minor. �
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