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Abstract. In this last of three papers on simplicial tree-decompositions of graphs we

investigate the extent to which prime factors in such decompositions are unique, or depend

on the decomposition chosen. A simple example shows that a prime decomposition of a

graph may have superfluous factors, the omission of which leaves a set of factors that can

be rearranged into another decomposition of the same graph. As our main result we show

that this possibility is the only way in which prime decompositions can vary: we prove that

all prime decompositions of a countable graph without such superfluous members have the

same set of factors. We also obtain a characterization theorem which identifies these factors

among similar subgraphs by their position within the graph considered, independently of

their role in any decomposition.



The material presented in this paper rests on concepts and results developed in [ 4 ];

in particular, the reader will benefit from familiarity with [ 4, Theorem 3.2 ]. The paper

does not depend on [ 5 ], but its results are complementary and in that sense related to

those obtained in [ 5 ].

Let G be a graph, σ > 0 an ordinal, and let Bλ be an induced subgraph of G for every

λ < σ. The family (Bλ)λ<σ is called a simplicial tree-decomposition of G if

(S1) G =
⋃

λ<σ Bλ ;

(S2)
(
⋃

λ<µ Bλ

)

∩Bµ =: Sµ is a complete graph for each µ (0 < µ < σ);

(S3) no Sµ contains Bµ or any other Bλ (0 ≤ λ < µ < σ);

(S4) each Sµ is contained in Bλ for some λ < µ (µ < σ).

A graph is called prime if it has no such decomposition into more than one factor.

A graph is prime if and only if it contains no separating simplex [ 4, Corollary 1.2 ]. A

simplicial tree-decomposition in which all factors are prime will be called a simplicial tree-

decomposition into primes, or a prime decomposition.

1. The Uniqueness Problem

The purpose of this paper is to explore to what extent simplicial tree-decompositions into

primes are unique.

The extreme case of such uniqueness would be that any two prime decompositions of

a graph consisted of the same set of factors, and these were necessarily arranged in the

same order. The latter, however, is almost never true: even in cases when the factors in

any two prime decompositions of a certain graph are the same, their order is likely to vary

greatly. We shall not consider the order aspect of uniqueness in this paper.

A third aspect of uniqueness in prime decompositions, in a sense a weakening of the

unattainable uniqueness of the order of factors, is the question of uniqueness for simplices

of attachment. And, remarkably, we do have complete uniqueness here, even in cases

where the set of factors is not unique: a simplex S contained in a graph G is a simplex

of attachment in any prime decomposition of G if and only if S is a minimal relative

separator in G, i.e. an induced subgraph minimally separating some two vertices of G (see

Proposition 3).

It thus remains to investigate to what extent the factors in a prime decomposition of

a graph vary with the decomposition chosen, and this will be the subject of this paper.

As an example, let us consider the graph H2 introduced in [ 4 ]. H2 consists of an

infinite simplex S = S [ s1, s2, . . . ], independent vertices x1, x2, . . . joined to S by the edges

xisj for i, j ∈ N, i ≥ j, and another vertex q joined to all si with odd i [ 4, Figure 4 ]. The

maximally prime subgraphs of H2 (and therefore its potential prime factors, cf. [ 4, Theo-

rem 1.10 ]) are B′
i := H2 [xi, s1, . . . , si ] (i ∈ N), S and B′′ := H2 [ q→S ].
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Let us first look at the graph H2\{ q }. This graph has two different prime decompo-

sitions,

F1 :=
(

S,B′
1, B

′
2, . . .

)

and

F2 :=
(

B′
1, B

′
2, . . .

)

.

Notice that after dropping S from F1 and thus obtaining F2, we cannot omit any more

factors: unlike S in F1, none of the B′
i’s in F2 is covered by the remaining factors in F2,

so each factor in F2 is indispensable for F2 to cover the graph H2\{ q }.

Let us now consider the graph H2 itself. H2 admits the prime decomposition

F3 :=
(

S,B′
1, B

′
2, . . . , B

′′
)

.

Again, S is covered by the other factors of F3. But this time S must not be omitted: the

family

F4 :=
(

B′
1, B

′
2, . . . , B

′′
)

satisfies (S1)–(S3), but it violates (S4), because B′′ ∩
⋃

i=1,2,...B
′
i = S [ s1, s3, . . . ] is not

contained in any of the factors B′
i. Thus S is indispensable as a factor in F3, not because

it is needed to cover H2, but because it serves as an ‘interface’ between B′′ and the other

factors in F3.

This will be made more precise in the next section. We shall prove that the above

two reasons for being indispensable as a factor are the only possible ones, and that any

prime decomposition from which all ‘dispensable’ factors have been removed, consists of a

unique set of factors.

2. Reduced Decompositions

Let G be a graph, F = (Bλ)λ<σ a simplicial tree-decomposition of G, and µ < σ. We

shall call Bµ dispensable in F if G has a simplicial tree-decomposition F ′ = (B′
λ)λ<σ′ that

satisfies {B′
λ | λ < σ′ } ⊂ {Bλ | µ 6= λ < σ }; otherwise Bµ is indispensable in F . F will

be called a reduced simplicial tree-decomposition if every Bµ, µ < σ, is indispensable in

F .

Let us call a subgraph H of G weakly attached in G if every vertex of H has a

neighbour in G\H. If H is not weakly attached in G, we shall call H strongly unattached

in G. It is clear that attached subgraphs are also weakly attached, and that strongly

unattached subgraphs are unattached.
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Suppose finally that H is an induced subgraph of G, and that C is the set of all

components of G\H. H will be called an interface in G if H is weakly attached in G and

∃ C,C′ ∈ C : ∀ C′′ ∈ C : H [C ]∪H [C′ ] 6⊂ H [C′′ ]

(recall that H [C ] = G [C→H ]∩H). Notice that interfaces are by definition unattached

but never strongly unattached.

Before we use these terms to tackle our uniqueness problem, let us note that as far

as non-complete or finite factors are concerned, all prime decompositions of a given graph

G agree anyhow: a non-complete or finite subgraph of G is a prime factor in any given

decomposition iff it is maximally prime in G [ 4, Theorems 1.10/1.11 ]. (Thus in particular,

all prime decompositions into finite graphs are reduced.)

For reduced decompositions, we are now able to supply the missing characterization

for infinite complete subgraphs: the following theorem implies that a simplex S ⊂ G is a

factor in any reduced prime decomposition of G if and only if S is strongly unattached or

an interface in G.

Theorem 1. Let G be a countable graph, F = (Bλ)λ<σ a simplicial tree-decomposition

of G into primes, and S ⊂ G a simplex.

(i) If S is strongly unattached or an interface in G, then S is a factor in F .

(ii) If S is an indispensable factor in F , then S is strongly unattached or an interface

in G.

Theorem 1 is the main result of this paper. We reserve its proof for Section 3, and

first take a look at its consequences.

Corollary 2. Let G be a countable graph, F = (Bλ)λ<σ a simplicial tree-decomposition

of G into primes, and µ < σ. Bµ is indispensable in F if and only if Bµ is either strongly

unattached or an interface in G.

Proof. Suppose first that Bµ is strongly unattached or an interface in G. If Bµ is a

simplex, then any prime decomposition F ′ = (B′
λ)λ<σ′ of G with

{B′
λ | λ < σ′ } ⊂ {Bλ | µ 6= λ < σ }

violates Theorem 1 (i), so Bµ is indispensable in F . If Bµ is not a simplex, then Bµ is

indispensable in F by [ 4, Theorems 1.10/1.11 ].

Suppose now thatBµ is indispensable in F . IfBµ is a simplex, it is strongly unattached

or an interface by Theorem 1 (ii); it cannot be both, because an interface is by definition

never strongly unattached. Assume now that Bµ is not a simplex, let v, v′ ∈ V (Bµ) be

non-adjacent, and suppose that Bµ is weakly attached in G. Then G\Bµ has components
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C,C′ with v ∈ Bµ [C ] and v′ ∈ Bµ [C
′ ]. But no component C′′ of G\Bµ can be such that

Bµ [C ]∪Bµ [C
′ ] ⊂ Bµ [C

′′ ] and hence v, v′ ∈ Bµ [C
′′ ]: for since Bµ is convex, this would

imply that vv′ ∈ E(Bµ), contradicting our assumption that v, v′ are non-adjacent. Hence

Bµ is an interface in G. �

We already mentioned that the simplices of attachment in simplicial tree-decomposi-

tions into primes are uniquely determined and coincide with the simplices that are minimal

relative separators. Indeed, a simplex S ⊂ G that is a minimal relative separator in G is

among the simplices of attachment in any simplicial decomposition of G into primes [ 3 ].

The converse, however, is only true for simplicial tree-decompositions:

Proposition 3. Let F be a simplicial tree-decomposition of a graph G into primes, and

let S ⊂ G be a simplex. Then S is a simplex of attachment in F if and only if S is a

minimal relative separator in G.

Proof. Let F = (Bλ)λ<σ, and suppose that S = Sµ. Then S ⊂ Bλ for some λ < µ (S4).

Since Bµ and Bλ are prime, S is attached to Bλ\S as well as to Bµ\S [ 4, Corollary 1.3 ],

so S is a minimal relative separator in G. �

Let us now sum up the uniqueness properties of reduced prime decompositions in a

single theorem.

Theorem 4. Let G be a countable graph, B an induced subgraph of G, and S ⊂ G a

simplex. Suppose that G has a reduced simplicial tree-decomposition F into primes.

(i) The following statements are equivalent:

(a) B is maximally prime in G and either strongly unattached or an interface;

(b) B is minimally convex in G and either strongly unattached or an interface;

(c) B is a factor in F .

(ii) S is a simplex of attachment in F if and only if S is a minimal relative separator in

G.

Proof. Part (ii) of the theorem follows from Proposition 3. In part (i), the implications

(c) ⇒ (a) and (c) ⇒ (b) can be read out of Corollary 2 and [ 4, Theorem 1.10 ]. The

reverse implications, (a) ⇒ (c) and (b) ⇒ (c), follow from Theorem 1 (i) (if B is a

simplex) or from [ 4, Theorem 1.11 ] (if B is not a simplex). �

Corollary 5. If a countable graph has a reduced simplicial tree-decomposition into primes,

then its factors and simplices of attachment in any such decomposition are uniquely de-

termined. �
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In fact, Corollary 5 is still valid for uncountable graphs, whose indispensable prime

factors can be characterized in way similar to—though less attractive than—Theorem 1 and

Corollary 2, without reference to any fixed prime decomposition. If G is an arbitrary graph

and S ⊂ G a simplex, let us call a family (Cn)n∈N of components of G\S comprehensive if

for every component C of G\S there is some n ∈ N such that S [C ] ⊂ S [Cn ]. Moreover,

let us say that S is the yield of such a family if S =
⋃

n∈N
S [Cn ] and S [Cn ] ⊂ S [Cn+1 ]

for every n.

Theorem 6. Let G be a graph of arbitrary cardinality, S ⊂ G a simplex, and F a

simplicial tree-decomposition of G into primes. Then S is an indispensable factor in F if

and only if S is not the yield of a comprehensive family of components of G\S.

The proof of Theorem 6 is very similar to that of Theorem 1, and left to the reader.

(In fact, the proof is even simpler than that of Theorem 1, in which a comprehensive family

of components of G\S first has to be found, using the simpler but also weaker concept of

an interface.)

If a ‘comprehensive family’ is defined in a slightly more complicated way, Theorem 6

can even be adapted to simplicial decompositions that are not necessarily tree-decom-

positions. Thus for general simplicial decompositions, too, the factors in reduced prime

decompositions (defined analogously) are uniquely determined. Details will be given in [ 3 ].

The immediate question arising from these results is whether every graph that has

some simplicial (tree-) decomposition into primes also has a reduced such decomposition—

in which case prime decompositions could in practice be taken reduced as a matter of

course. However, this is not the case: Section 4 contains an example of a graph that has

a simplicial tree-decomposition into primes but no reduced prime decomposition.

It is an open problem to determine which graphs have a reduced simplicial tree-decom-

position into primes.

3. Proof of Theorem 1

Let G, F and S be given as stated in Theorem 1. To prove assertion (i), let us suppose

that S is strongly unattached or an interface in G. Since any interface is unattached, S is

unattached and hence a maximal simplex in G. We can therefore apply [ 4, Theorem 3.2 ].

Suppose Λ(S) is infinite. Then [ 4, Theorem 3.2 (iv) ] applies; let Λ and (Cλ)λ∈Λ be

given as stated there. Since

S =
⋃

λ∈Λ

S|λ =
⋃

λ∈Λ

S|λ+ =
⋃

λ∈Λ

S [Cλ ] ,

S is not strongly unattached in G. But [ 4, Theorem 3.2 ] also implies that Λ(S [C ]) is

finite for every component C of G\S, because S is unattached, and hence S [C ] $ S. Thus
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if C,C′ are components of G\S, then S [C ] ∪ S [C′ ] ⊂ S|λ ⊂ S|λ+ = S [Cλ ] for some

λ ∈ Λ. Hence S is not an interface either, contrary to our assumption.

Therefore Λ(S) is finite. Since S is unattached, S is a factor in F by [ 4, Theo-

rem 3.2 (i) ].

To prove part (ii) of the theorem, we now assume that S is a factor in F , say S = Bµ.

Let us suppose that S is neither strongly unattached nor an interface in G, and prove that

S is dispensable in F .

Let C denote the set of all components of G\S. Then every Bλ, λ 6= µ, meets exactly

one such component C ∈ C; for as Bλ 6⊂ Bµ = S by (S3), we have Bλ\S 6= ∅, and if

Bλ ∩C 6= ∅ then Bλ ⊂ G [C → S ], because Bλ is prime and therefore not separated by

any subsimplex of S. We shall use this fact repeatedly later on.

Since the definition of a factor’s dispensability in a given decomposition does not

depend on the order of factors in that decomposition, we may assume by [ 4, Theorem 3.1 ]

that σ ≤ ω. Then µ is finite, and

C0 := {C ∈ C | C|µ 6= ∅ }

is also finite. Since S is by assumption not an interface, this means that there exists a

component C0 of G\S satisfying

S [C ] ⊂ S [C0 ], ∀ C ∈ C0. (1)

Let C1, C2, . . . be a fixed enumeration of C. Define a sequence C1, C2, . . . of compo-

nents of G\S by selecting as Cn (n = 1, 2, . . .) any C ∈ C satisfying

S [Cn−1 ]∪S [Ck(n) ] ⊂ S [C ] ,

where k(n) denotes the minimal k for which S [Ck ] 6⊂ S [Cn−1 ] (again using our as-

sumption that S is not an interface). We shall use the notation C1 := {C1, C2, . . .} and

C2 := C\(C0 ∪C1). Clearly

S [Cn ] $ S [Cm ] if 0 ≤ n < m, (2)

and

∀ C ∈ C : ∃ n ∈ N : S [C ] ⊂ S [Cn ] . (3)

Since S is by assumption not strongly unattached in G, every vertex of S is contained

in S [C ] for some C ∈ C, so (3) implies that

S =
⋃

n=1,2,...

S [Cn ] . (4)
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On the other hand, S is unattached in G by [ 4, Theorem 1.10 ], so S 6= S [Cn ] for all

n. By (2/4), the sequence C1, C2, . . . must therefore be infinite. Finally, (1), (2) and the

definition of C0 imply that

Cn|µ = ∅ ∀ n ∈ N . (5)

For each n ∈ N set B(n) := Bλ(Cn), and let

F ′ := (Bλ)λ<µ ⊕ (B(n))n=1,2,...
⊕ (Bλ)µ<λ<σ

Bλ 6=B(n) ∀n=1,2,...

where ⊕ denotes the concatenation of well-ordered families.

Let us take a closer look at this definition. F ′ is a well-ordered family whose members

are precisely the members of F other than S = Bµ, arranged in a slightly different order.

We shall prove that F ′ is a simplicial tree-decomposition of G, thus showing that S is

dispensable in F . In its first part, F ′ coincides with F (up to G|µ). In the middle part of

F ′, which ‘replaces’ the factor Bµ, the simplex S is built up by a sequence of contributions

from the factors B(n); recall that B(n) = Bλ(Cn), so the simplex of attachment of B(n) in

F is precisely S [Cn ] (consider the side (Cn, S [Cn ]) and apply [ 4, Corollary 1.7 (iii) ]).

The third part of F ′ consists of the remaining factors of F , in their original order.

Our main concern in proving that F ′ is indeed a simplicial tree-decomposition, is to

verify that every ‘attachment graph’ in F ′ is a simplex (S2) and contained in some earlier

factor (S4). We shall give a brief outline of the proof at this point, which for the reader

familiar with simplicial decompositions may be as illuminating as the subsequent more

rigorous proof.

For the first part of F ′, (S2) and (S4) are obvious. The first factor of the second part

of F ′, B(1), satisfies (S2) and (S4) because, roughly speaking, its relationship to the factors

preceding it in F ′ is the same as the relationship of S = Bµ to the factors preceding Bµ

in F (by (1/2)), and F satisfies (S2) and (S4) by assumption.

The subsequent factors B(n) in the middle part of F ′ will be seen to satisfy (S2) and

(S4) because the contribution of each B(n) to the construction of S is the entire segment

S [Cn ] [ 4, Corollary 1.7 (iii) ], and these segments S [Cn ] form a nested sequence by (2).

Checking (S2) and (S4) for the factors Bλ in the third part of F ′ will depend on the

nature of the component C of G\S that contains Bλ\S. If C is in C0, the attachment

graph of Bλ in F ′ will be the same as in F , because the transition from F to F ′ leaves the

subgraphs G [C→S ], C ∈ C0, essentially unaffected (again by (1)). If C ∈ C1, say C = Cn,

the attachment of Bλ in F ′ is again the same as in F . For in both families Bλ is preceded

by B(n) = Bλ(C), which covers all vertices of G\C that could possibly be contained in Bλ,

namely those of S [C ]. If C ∈ C2 finally, then C appears in F ′ after the completion of S.

By (3), there exists n ∈ N with S [C ] ⊂ S [Cn ]. For the construction of G [C→S ] in F ′,

B(n) can therefore assume the role played by Bµ in F . Thus again the attachment graph

of Bλ is the same in F ′ as it is in F , and it is contained in the same earlier factor or, in

the case of λ = λ(C), in B(n).
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We now give a more detailed proof that F ′ is a simplicial tree-decomposition of G.

Recall that

B(n) ⊂ G [Cn →S ], ∀ n ∈ N , (6)

because B(n)∩Cn 6= ∅ by definition of B(n), and B(n) is prime. As immediate consequences

of (6) and (5/6), respectively, we have

B(n) ∩B(m) ⊂ S whenever n,m ∈ N, n 6= m, (7)

and

B(n)|µ ⊂ S, ∀ n ∈ N . (8)

Let us first check that F ′ satisfies (S1), i.e. that F ′ covers S. Let B(n), n ∈ N, be
an arbitrary factor from the middle part of F ′. Since B(n) ∩ Cn 6= ∅, (5) implies that

B(n) 6⊂ G|µ. The index of B(n) in F must therefore be greater than µ, say B(n) = Bτ ,

τ > µ. Thus S ⊂ G|τ , so in particular S [Cn ] ⊂ G|τ . Therefore Sτ = S [Cn ] by

[ 4, Corollary 1.7 (iii) ]; recall that τ = λ(Cn) by definition of B(n).

Restating this fact without reference to F , we obtain

B(n) ∩S = S [Cn ], ∀ n ∈ N . (9)

In combination with (4), (9) implies that F ′ covers S; thus F ′ satisfies (S1).

We now prove that the factors in F ′ satisfy (S2) and (S4). This is clear for the factors

in (Bλ)λ<µ (because F satisfies (S2) and (S4)), so let us turn to the middle part of F ′.

For n ∈ N, we shall denote
⋃

λ<µ Bλ⊕
⋃

i<n B(i) by G|(n) and B(n) ∩G|(n) by S(n).

Let us first look at B(1). We shall verify (S2) and (S4) for B(1) by showing that S(1)

equals Sµ. Since S(1) = B(1)

∣

∣

µ
⊂ S by (8), we have S(1) ⊂ S ∩G|µ = Sµ. To see the

reverse inclusion, recall first that any factor Bλ, λ < µ, satisfies Bλ ⊂ G [C→S ] for some

C ∈ C0, and hence Bλ ∩S ⊂ S [C ] ⊂ S [C0 ] by (1). Therefore

G|µ ∩S =
⋃

λ<µ

(Bλ ∩S) ⊂ S [C0 ] , (10)

and hence
Sµ = G|µ ∩S

⊂ S [C0 ]∩G|µ

⊂ S [C1 ]∩G|µ

⊂ B(1) ∩G|µ

= S(1)

by (2) and (9). Thus S(1) = Sµ as claimed, so B(1) satisfies (S2) and (S4).
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Let us now check (S2) and (S4) for the remaining factors of the form B(n). Let n ≥ 2.

Then

S(n) = B(n) ∩G|(n)

= (B(n) ∩G|µ)∪
n−1
⋃

i=1

(

B(n) ∩B(i)

)

= (B(n) ∩S ∩G|µ)∪
n−1
⋃

i=1

(

B(n) ∩S ∩B(i)

)

(by (8/7))

= (S [Cn ]∩G|µ)∪
n−1
⋃

i=1

(

S [Cn ]∩S [Ci ]
)

(by (9))

= (S [Cn ]∩G|µ)∪S [Cn−1 ] (by (2))

= S [Cn−1 ] (by (10/2))

= B(n−1) ∩S (by (9)).

Therefore S(n) is a simplex (S2) contained in an earlier factor of F ′ (S4).

It remains to show (S2) and (S4) for the factors in the third part of F ′, i.e. for the

factors Bν with µ < ν < σ and Bν 6= B(n) for all n ∈ N. Let such Bν be given, and let C

be the component of G\S for which Bν ⊂ G [C→S ]. Put

F |ν := (Bλ)λ<ν ,

and let F ′|ν be the corresponding subfamily of F ′, i.e.,

F ′|ν := (Bλ)λ<µ ⊕ (B(n))n=1,2,...
⊕ (Bλ)µ<λ<ν

Bλ 6=B(n) ∀n=1,2,...

.

Let us further define

H|′ν := H ∩
⋃

B∈F ′|ν

B

for subgraphs H of G, and set

S′
ν := Bν |

′
ν .

Thus S′
ν is the ‘attachment graph’ of Bν in F ′, and we want to show that S′

ν is a simplex

contained in some B ∈ F ′|ν .

Note first that every B ⊂ G satisfies

B ∈ F |ν ⇔ B ∈ F ′|ν if B ∩C 6= ∅ . (11)

Indeed, by the construction of F ′ we have B ∈ F |ν ⇒ B ∈ F ′|ν unless B = S, but

S ∩C = ∅. And conversely, we have B ∈ F ′|ν ⇒ B ∈ F |ν unless B = B(n) for some n ∈ N;
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but B(n)∩C is non-empty only if n is such that C = Cn, in which case B = B(n) = Bλ(Cn),

which is in F |ν by Bν ∩C 6= ∅, the definition of λ(Cn), and the obvious fact that B 6= Bν .

Moreover,

G [C→S ]
∣

∣

ν
= G [C→S ]

∣

∣

′

ν
. (12)

To verify (12), notice that any vertex or edge of G [C →S ]
∣

∣

ν
or G [C→S ]

∣

∣

′

ν
that is not

contained in S [C ] belongs to some B ∈ F |ν (or B ∈ F ′|ν , respectively) with B∩C 6= ∅, and

is therefore in G [C→S ]
∣

∣

ν
∩G [C→S ]

∣

∣

′

ν
by (11). But S [C ] is a subgraph of G [C→S ]

∣

∣

ν

(because S ⊂ G|ν) as well as of G [C→S ]
∣

∣

′

ν
(by (3/9)), so (12) follows.

Using (12) and the fact that Bν ⊂ G [C→S ], it is easy to determine S′
ν :

S′
ν = Bν ∩G|′ν

= Bν ∩G [C→S ]
∣

∣

′

ν

= Bν ∩G [C→S ]
∣

∣

ν

= Bν ∩G|ν

= Sν .

Thus S′
ν is a simplex because Sν is a simplex, giving (S2). But also (S4) is now obvious:

if S′
ν ⊂ S, then S′

ν ⊂ S [C ] ⊂ B(n) for every sufficiently large n ∈ N (3/9). But if S′
ν 6⊂ S

then S′
ν ∩C 6= ∅, so any B ∈ F |ν with S′

ν = Sν ⊂ B will also be in F ′|ν by (11). Such B

exists, because F satisfies (S4).

It remains to check that F ′ satisfies (S3). As we have seen, every simplex of attachment

in F ′ is also a simplex of attachment in F or a subgraph of S = Bµ. Moreover, every

factor in F ′ is also a factor in F , and no factor Bλ ∈ F , λ 6= µ, can be contained in Bµ

or in any simplex of attachment of F , because F satisfies (S3). We may therefore deduce

that no factor in F ′ can be contained in any simplex of attachment of F ′, i.e. F ′ satisfies

(S3).

This completes the proof of Theorem 1.
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4. An Example

We now give an example of a graph which admits a simplicial tree-decomposition into

primes, but has no reduced decomposition. Our example is the graph T0 introduced

in [ 5 ]: its vertices are the finite 0-1 sequences (including the empty sequence), and two

vertices (a0, . . . , aµ) and (b0, . . . , bν) are joined by an edge whenever µ < ν and aλ = bλ
for λ = 0, . . . , µ. For every α = (a0, a1, . . .) ∈ { 0, 1 }ω, the subgraph

Sα := T0

[{

(aλ)λ<µ

∣

∣ µ < ω
}]

of T0 spanned by all the finite initial segments of α is a simplex, and it is easily seen that

the graphs Sα, α ∈ { 0, 1 }ω, are precisely the maximally prime subgraphs of T0. Moreover,

it is not difficult to arrange them into simplicial tree-decompositions of T0. In fact, if

F = (Sαλ
)λ<σ is any maximal (with respect to extension) well-ordered family of Sα’s

satisfying Sαµ
\
⋃

λ<µ Sαλ
6= ∅ for all µ < σ, then F is a simplicial tree-decomposition of

T0 into primes.

However, T0 has no reduced prime decomposition. For any factor in such a decompo-

sition must be maximally prime in T0 and therefore of the form Sα, with α = (aλ)λ<ω say.

Then the graphs Sα [C ] = T0 [C→Sα ]∩Sα (for components C of G\Sα) are precisely the

nested simplices Sα [ { aλ | λ < µ } ], µ < ω. Therefore Sα is neither strongly unattached

nor an interface, contrary to Theorem 1.
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