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Abstract. In this second of three papers on the same subject we obtain a first

characterization of the countable graphs that admit a simplicial tree-decomposition into

primes.



This paper is a continuation of [ 4 ]. The problem it tackles, the existence of simpli-

cial tree-decompositions into primes, was introduced in [ 4 ], and all the notation used is

explained there. To repeat just the most basic definition, we say that if σ > 0 is an ordinal

and F = (Bλ)λ<σ a family of induced subgraphs of a graph G, then F forms a simplicial

tree-decomposition of G, if

(S1) G =
⋃

λ<σ Bλ ;

(S2)
(
⋃

λ<µ Bλ

)

∩Bµ =: Sµ is a complete graph for each µ (0 < µ < σ);

(S3) no Sµ contains Bµ or any other Bλ (0 ≤ λ < µ < σ);

(S4) each Sµ is contained in Bλ for some λ < µ (µ < σ).

A graph is called prime if it has no such decomposition into more than one factor. A

simplicial tree-decomposition in which all factors are prime is a simplicial tree-decomposi-

tion into primes, or a prime decomposition.

The bulk of this paper is devoted to proving one theorem: a characterization of the

countable graphs that admit a simplicial tree-decomposition into primes (Theorem 1).

The slightly more general problem to characterize the graphs admitting any simplicial

decomposition into primes was posed by Halin in 1964 [ 8 ]. It has since stood unresolved,

although a sufficient condition [ 8 ] and some necessary conditions (Dirac [ 7 ]) have been

known. Our solution is independent of [ 8 ] and [ 7 ].

Section 1 contains the proof of Theorem 1. In Section 2 we give two examples illus-

trating the theorem. In Section 3 we briefly present a result based on Theorem 1, which

will be proved in a forthcoming paper [ 6 ]. This result characterizes the decomposable

graphs in a Kuratowski-like fashion, by two forbidden ‘simplicial’ minors.

1. The Existence of Prime Decompositions: A Characterization Theorem

The following theorem is the main result of this paper.

Theorem 1. A countable graph G has a simplicial tree decomposition into primes if and

only if G satisfies the following condition:

(†) If (C, S) is a side in G and C′ is a component of G\S, C′ 6= C, then S [C′ ] has a

prime extension into C.

Before we think about proving Theorem 1, let us illustrate condition (†) by noting

two properties it implies.

Lemma 2. Let G be a graph that satisfies (†). Then G has the following two properties:

(i) If (C, S) is an inaccessible side of S in G, then (C, S) is the only side of S in G.

(ii) A simplex S ⊂ G has an inaccessible side if and only if S is maximally prime and

attached in G.
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Proof. (i) Let (C, S) be an inaccessible side in G, and C′ a component of G\S, C′ 6= C.

If (C′, S) is also a side in G, i.e. if S is attached to C′, then (†) implies that S has a prime

extension into C. This contradicts the assumption that (C, S) is inaccessible.

(ii) If S is maximally prime and attached in G, say to C, then (C, S) is clearly an

inaccessible side. Conversely, if (C, S) is inaccessible and S ⊃ S is maximally prime in G,

then clearly S ∩C = ∅. But S cannot have a vertex in any other component of G\S either,

because then S would be attached to this component, contradicting (i). Hence S = S, i.e.

S is maximally prime in G. �

The proof that (†) is necessarily satisfied by any graph that has a prime decomposition

(countable or not), is an easy application of [ 4, Theorem 3.2 ]. Let G be a graph, suppose

that (Bλ)λ<σ is a prime decomposition of G, and let C, S and C′ be given as in (†). Let

S ⊃ S be a maximal simplex in G. Suppose first that S = S, i.e. that S is itself a maximal

simplex. Then [ 4, Theorem 3.2 ] applies directly to S. If Λ(S) is finite, then S has a prime

extension into C by (ii). If Λ(S) is infinite, then λ(C) < sup+Λ(S) by (iii). Moreover, S is

not attached to C′ (also by (iii)), so S [C′ ] $ S and Λ(S [C′ ]) is finite. Choose µ ∈ Λ(S)

in such a way that µ > λ(C) and µ > max Λ(S [C′ ]). Then Bµ ⊃ S|µ ⊃ S [C′ ] and

Bµ ∩C 6= ∅ [ 4, Lemma 1.6 (i)–(ii) ], so Bµ is a prime extension of S [C′ ] into C.

Suppose now that S 6= S, i.e. that S\S 6= ∅. Let C denote the component of G\S that

contains S\S. If C = C, we are done. But if C 6= C, then C is also a component of G\S,

and S [C ] = S $ S. Therefore [ 4, Theorem 3.2 ], applied to S, ensures the existence of a

prime extension of S into C.

This completes the necessity part of the proof.

We now show that a countable graph G has a prime decomposition if it satisfies (†).

The proof will be organized as follows. We shall consider a maximal family F =

(Bλ)λ<σ of subgraphs of G, subject to a number of conditions. This family will trivially

form a prime decomposition of its union G′, and we shall have to show that it covers the

entire graph G.

The conditions imposed on the families considered will serve two purposes. Firstly,

they will ensure that each Bλ conforms to the basic requirements for factors in a prime

decomposition, e.g. that each Bλ is maximally prime in G and unattached (cf. [ 4, The-

orem 1.10 ]). Secondly, the conditions will have to ensure that at each ‘stage’ G|µ in the

construction of F such new subgraphs are indeed available and can be considered for se-

lection as Bµ; this will restrict the choice of factors at earlier stages. From a more global

point of view, we can say that the conditions have to organize the order in which certain

factors are selected, so as to avoid ‘traps’ of the kind illustrated in [ 4, Section 4 ]. The or-

ganization of this order will depend on the structure of G as well as on a fixed enumeration

of its vertices.

Before we can get down to the main part of the proof (as loosely described above),

we have to make some preparations.
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We begin by developing a tool for assessing the positions of potential factors within

G: we define a partial order on the set of all sides in G, i.e. of all pairs (C, S) where S ⊂ G

is a simplex, C a component of G\S, and S is attached to C.

We shall then use this concept to show that a prime extension of S [C′ ] into C as

in (†) can in fact always be chosen maximally prime and unattached (Lemmas 4,6,7)—

which gives us a stronger version of (†) needed to find (unattached) new factors in our

construction of a decomposition of G.

If G is a graph, let H := H(G) denote the set of all sides in G, i.e. the set of all pairs

(C, S) where S is a simplex in G, C a component of G\S, and S is attached to C. For

(C, S), (C′, S′) ∈ H write (C, S) ≤ (C′, S′) iff C ⊂ C′.

Lemma 3. (i) ≤ defines a partial order on H;

(ii) (C, S) ≤ (C′, S′) if and only if C ∩ C′ 6= ∅ and S′ ∩ C = ∅, for all

(C, S), (C′, S′) ∈ H;

(iii) (C, S) < (C′, S′) if and only if S ∩ C′ 6= ∅ and S′ ∩ C = ∅, for all

(C, S), (C′, S′) ∈ H.

Proof. (i) ≤ is clearly reflexive and transitive. To see the antisymmetry of ≤ , suppose

that (C, S), (C′, S′) ∈ H satisfy C ⊂ C′ and C′ ⊂ C. We have to show that S = S′. Suppose

this is false, say S\S′ 6= ∅. Since S\S′ is attached to C and C = C′, the component of

G\S′ containing S\S′ can only be C′. Thus S ∩C = S ∩C′ 6= ∅, a contradiction.

(ii) If (C, S) ≤ (C′, S′), then clearly C ∩ C′ = C 6= ∅ and S′ ∩ C ⊂ S′ ∩ C′ = ∅.

Conversely, if C has a vertex in C′ but does not meet S′, then C ⊂ C′.

(iii) If (C, S) < (C′, S′), then S′ ∩ C = ∅ and C ∩ C′ 6= ∅ as in (ii). S ∩ C′ 6= ∅

holds, because otherwise (C, S) ≥ (C′, S′) by (ii). Conversely, if S has a vertex s in C′

and C ∩ S′ = ∅, then every neighbour of s in C is also in C′, giving C ∩C′ 6= ∅ because

S is attached to C. By (ii) and S′ ∩C = ∅ this implies (C, S) ≤ (C′, S′), and therefore

(C, S) < (C′, S′). �

As an immediate consequence of Lemma 3 let us note that (C, S) ≤ (C′, S′) implies

G [C→S ] ⊂ G [C′→S′ ].

Let H′ ⊂ H, and let C be a strictly descending chain of elements (C, S) of H′. We

shall call C maximal with respect to extension in H′, if C is not bounded below by any

element of H′\C. By Zorn’s Lemma, every non-empty subset H′ of H contains at least one

such maximal chain.

The following three lemmas provide us with strengthenings of condition (†). We first

show that the component C′ in the condition can be replaced with any finite number of

components of G \ (S ∪C):

Lemma 4. Let (C, S) be a side in a graph G, let S1, S2 ⊂ S, and suppose that S1 and

S2 have prime extensions into C. Then S1 ∪S2 has a prime extension into C.
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Proof. Let B1 be a prime extension of S1 into C, and let H be the simplicial neigh-

bourhood of S2 in G. Since by assumption S2 has a prime extension into C, we have

H ∩C 6= ∅.

If H ∩B1 ∩C 6= ∅, let x ∈ H ∩B1∩C; then x is simplicially close in G to every vertex

of S1 ∪S2. If H ∩B1 ∩C = ∅ on the other hand, let x ∈ C [B1 ∩C→H ∩C ]∩H. Then

x is again close to every vertex of S2; let us show that x is also close to every vertex of

S1. Suppose not, and let T ⊂ G be a simplex separating x from some s ∈ S1. Since the

vertices of S2 are close to x as well as to s (by G [S2 ∪ { s } ] ⊂ S), T must contain S2.

Then, by the definition of H, T ⊂ H. But by the choice of x and the fact that S1 is

attached to B1 ∩C (because B1 is prime), no subgraph of H can separate x from s in G,

a contradiction. Thus again x is close to every vertex of S1 ∪S2.

Therefore the vertices of S1 ∪S2 ∪ { x } are pairwise close in G, so the convex hull of

S1 ∪S2 ∪{x } in G is prime and meets C (cf. [ 4, Proposition 1.4 ]). �

As a brief diversion, let us note an immediate consequence of Lemma 4, which seems

potentially useful for tackling the unsolved problem of determining which graphs admit a

simplicial (tree-)decomposition into finite factors:

Corollary 5. If (C, S) is a side in a graph G, then every finite S′ ⊂ S has a prime

extension into C.

Proof. Let V (S′) := { s1, . . . , sn }. As S is attached to C, each si has a neighbour xi

in C, and hence the trivial prime extension G [ { si, xi } ] into C. The assertion follows by

induction on n. �

The next lemma essentially says that the prime extensions provided by (†) are without

loss of generality maximally prime and unattached, which we need in order to use (†) for

finding new factors in the construction of a prime decomposition.

Lemma 6. Let G be a countable graph that satisfies (†), let (C0, S0) be an inaccessible

side in G, and suppose that S′
0 ⊂ S0 has a prime extension into C0. Then S′

0 has an

extension B into C0 that is maximally prime and unattached in G.

Proof. Let G, C0, S0 and S′
0 be given as stated, and let V (G) = { v1, v2, . . .} be a fixed

enumeration of the vertices of G. Note that S0 is maximally prime in G (by Lemma 2).

Suppose the assertion fails. Then every maximal prime extension B of S′
0 into C0 is

attached in G, and therefore a simplex having exactly one (inaccessible) side (recall that

B must be maximally prime in G, and use [ 4, Corollary 1.5 ] and Lemma 2). We shall

construct a sequence of such extensions of S′
0 with ‘nested’ sides, whose ‘intersection’ will

be the desired graph B.

To be more precise, we shall find a sequence (Sn)n=0,1,... of extensions of S
′
0 satisfying
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Figure 1

(a) Sn is maximally prime in G

(b) Sn ⊃ S′
n−1

(c) (Cn, Sn) < (Cn−1, Sn−1)

(d) k(n) > k(n− 1) (n = 1, 2, . . .),

where

S′
n := G [Sn−1 →Sn ]∩Sn (n = 1, 2, . . .),

k(n) := min { k | vk ∈ Cn } (n = 0, 1, . . .),

and Cn is the component of G\Sn to which Sn is attached (Fig. 1).

Before we think about constructing such a sequence (Sn)n=0,1,..., let us see how it will

help us to find our desired unattached prime extension B of S′
0.

Notice first that S′
n−1 ⊂ S′

n ⊂ Sn for every n ∈ N, by (b) and the definition of S′
n.

Hence,

S′
0 ⊂ S′

1 ⊂ . . . .

By (c), we further have

G [C0 →S0 ] ⊃ G [C1 →S1 ] ⊃ . . . .
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Now let

B :=

∞
⋂

n=0

G [Cn →Sn ].

Since S′
n ⊂ S′

m ⊂ Sm ⊂ G [Cm → Sm ] for every m ≥ n, and the graphs G [Cm → Sm ]

form a descending sequence, B contains every S′
n. But also conversely, every vertex of B

must be in some S′
n. To see this, let any vertex v = vk of B be given. Since (k(n))n=0,1,...

is strictly increasing, v cannot be contained in every Cn and must therefore be in some

Sn. Then by (Cn+1, Sn+1) < (Cn, Sn), v cannot be in Cn+1 either, so again v ∈ Sn+1, i.e.

v ∈ Sn+1 ∩Sn ⊂ S′
n+1. Therefore

B =

∞
⋃

n=0

S′
n.

Note, however, that B is not contained in any one S′
n. For since Sn is attached to

Cn and Sn+1 ∩Cn 6= ∅ (by (c) and Lemma 3), Sn+1 ∩Sn does not separate Sn+1\Sn from

Sn\Sn+1; thus S
′
n+1 ∩Cn 6= ∅, giving S′

n+1\S
′
n 6= ∅.

Since B is a simplex, all we have to show now is that B is unattached in G—for

unattached simplices are necessarily maximally prime [ 4, Corollary 1.9 ]. We show this

by proving that for every x ∈ G\B there exists a vertex y ∈ B such that every x–y path

in G has an interior vertex in B. Let x ∈ G\B be given. By definition of B, we have

x ∈ G \G [Cn →Sn ] for some n. Let y be a vertex of B satisfying y ∈ S′
n+2\S

′
n+1; clearly

y ∈ Cn, since otherwise y ∈ Sn ∩Sn+1 ⊂ S′
n+1 (by (c) and definition of S′

n+1). Let P be

any x–y path in G. Since Sn separates x and y in G, P contains a subpath from Sn to y,

and therefore passes through S′
n+1 ⊂ B (by the choice of y). Hence B is unattached in G,

as claimed.

Let us now construct a sequence (Sn)n=0,1,... that satisfies (a)–(d). Suppose we have

found S0, . . . , Sn (n ≥ 0) conforming to (a)–(d). Let H′ denote the set of all inaccessible

sides in H(G), i.e. of all sides (C, S) in G for which S is maximally prime. Let

Hn+1 := { (C, S) ∈ H′ | (C, S) ≤ (Cn, Sn), vk(n) ∈ C, S′
n ⊂ S }.

Since (Cn, Sn) ∈ Hn+1, Hn+1 is not empty.

Suppose first that Hn+1 has a minimal element (C, S). By (†) and the definition of

S′
n, S

′
n has a maximal prime extension S′ into C (consider C′ := G [Sn−1 →S ]\S in (†) if

n ≥ 1; if n = 0 and S 6= S0, put C
′ := G [S0 →S ]\S; if (C, S) = (C0, S0), the existence

of S′ is assumed in the assertion of the Lemma). Let H be the convex hull of S ∪ S′ in

G. Since S and S′ are both maximally prime, H has a separating simplex T . By the

minimality of H as a convex supergraph of S and S′, every component of H\T contains a

vertex of S ∪ S′. Thus H\T has exactly two components: one containing S\T , the other

containing S′\T (and neither S\T nor S′\T is empty). Since S is attached to C, T cannot

be contained in S, so T ∩ C 6= ∅. (However, T may well be a subgraph of S′.) By the
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Figure 2

convexity of H, T also separates S\T and S′\T in G; let T ′ ⊂ T be a minimal S\T–S′\T

separator in G. Then T ′ is attached to G [S→T ′ ]\T ′ as well as to G [S′→T ′ ]\T ′ (Fig. 2).

By (†), we can choose Sn+1 to be a maximal prime extension of T ′ into G [S′→T ′ ]\T ′

(ensuring (a) for n + 1). Then Sn+1 ⊃ T ′ ⊃ S′∩S ⊃ S′
n ⊃ S′

0 (ensuring (b)), so by

assumption Sn+1 is attached in G, say to Cn+1. Since Sn+1 [S ] = T ′ $ Sn+1, we have

S ∩ Cn+1 = ∅. On the other hand, Sn+1 ∩ C ⊃ T ′ ∩ C 6= ∅ by definition of S′ and

T ′.Lemma 3 therefore gives (Cn+1, Sn+1) < (C, S) ≤ (Cn, Sn), as required in (c). Finally,

vk(n) cannot be in Cn+1, because otherwise we would have (Cn+1, Sn+1) ∈ Hn+1, contrary

to the minimality of (C, S) in Hn+1. Therefore k(n + 1) > k(n) (using Cn+1 ⊂ Cn),

establishing (d).

Hence Sn+1 satisfies (a)–(d), as required.

Suppose now that Hn+1 has no minimal element. Let C be a descending chain in

Hn+1 that is maximal with respect to extension, and define

H− :=
⋂

(C,S)∈C

G [C→S ] , D− :=
⋂

(C,S)∈C

C , S− := H−\D−.

Notice that S′
n ⊂ S− (because S′

n ⊂ S for every (C, S) ∈ C), and that vk(n) ∈ D−.

Note further that the definition of S− is such that every s ∈ S− is contained in S for some

(C, S) ∈ C. Moreover, if s ∈ S then s cannot be in C′ for any (C′, S′) ∈ C, (C′, S′) < (C, S),

so s will be in S′ for every (C′, S′) subsequent to (C, S) in C. Thus any two elements s, s′
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of S− are contained in some common S, (C, S) ∈ C, and are therefore adjacent. Hence,

S− is a simplex. To mention one last property of S−, we remark that S− separates every

x ∈ D− from every y ∈ G\H−. This is easily checked by considering the first vertex in
⋃

(C,S)∈C S on any (fixed) x–y path in G.

Let C∗ be the component of D− containing vk(n), and put S∗ := S− [C∗ ]. Notice

that S∗ ∩C 6= ∅ for every (C, S) ∈ C: for if S∗ ⊂ S and (C′, S′) ∈ C, (C′, S′) < (C, S),

then S′ ∩S (⊃ S∗) separates S′\S from vk(n), contradicting vk(n) ∈ C′.

Let Sn+1 ⊃ S− be maximally prime in G (possibly Sn+1 = S−). Since Sn+1 ⊃ S− ⊃

S′
n ⊃ S′

0 , Sn+1 is by assumption attached in G—say to Cn+1—and satisfies (a)–(b).

In order to verify (c), i.e. to check that (Cn+1, Sn+1) < (Cn, Sn), we have to show

that Cn+1 ⊂ D−. Suppose the contrary, i.e. that Cn+1\H
− 6= ∅. Since S− separates

D− from G\H− but does not separate Cn+1, this means that in fact Cn+1 ⊂ G\H−

(and Sn+1\S
− ⊂ G\H−); in particular, C∗ ∩ Cn+1 = ∅. By (†), we can therefore find

a prime extension B∗ of S∗ into Cn+1; let x ∈ B∗ ∩ Cn+1. Since x ∈ G\H−, we have

x ∈ G\G [C → S ] for some (C, S) ∈ C. Then S separates x from B∗ ∩C, which is non-

empty, because B∗ ⊃ S∗ and S∗ ∩ C 6= ∅. This contradicts the fact that B∗ is prime,

completing the proof of (c).

It remains to show (d), i.e. that vk(n) /∈ Cn+1. This, however, follows immediately

from the maximality of C and the fact that Cn+1 ⊂ D− (giving (Cn+1, Sn+1) < (C, S) for

each (C, S) ∈ C). �

The reader will have noticed that Lemma 6 gives in fact more than a straightforward

strengthening of (†): it provides an unattached maximal prime extension into C of any

subsimplex S′ of S that has some prime extension into C (for an inaccessible side (C, S)

of G), regardless of whether S′ has the form S [C′ ] for some other component C′ of G\S.

We can therefore combine Lemmas 4 and 6 to a rather powerful tool for extending

partial decompositions of a graph:

Lemma 7. Let G be a countable graph that satisfies (†), let (C, S) be a side in G, and

let C1, . . . , Cn be components of G\(C ∪S), n ∈ N. Then

S′ :=

n
⋃

i=1

S [Ci ]

has an extension into C that is maximally prime and unattached in G.

Proof. Suppose first that (C, S) is inaccessible. Using (†), Lemma 4 and induction on n,

we see that S′ has some prime extension B into C. By Lemma 6 we may assume that B

is unattached and maximally prime in G.

Suppose now that (C, S) is accessible, and let B be a maximal prime extension of S

into C. Then B is maximally prime inG. IfB is unattached, we are done; suppose therefore

that B is attached to a component D of G\B. Then B is a simplex [ 4, Corollary 1.5 ], and
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(D,B) is an inaccessible side in G. Moreover, we have (D,B) < (C, S), because S ∩D = ∅

and B ∩C 6= ∅ (Lemma 3). Therefore D ⊂ C, and hence D∩Ci = ∅, i = 1, . . . , n. Again

by Lemma 4 (and induction), we can therefore find a prime extension of S′ into D, which

by Lemma 6 can be chosen to be maximally prime and unattached in G. �

Our last lemma looks somewhat technical, but it expresses a rather simple and use-

ful fact. It basically gives us some leeway slightly to alter a specified part of a convex

subgraph, while preserving its convexity. We shall need this lemma when, in the process

of constructing a prime decomposition of a graph G, the most recent factor B1
µ has to

be replaced by an alternative unused maximally prime subgraph B2
µ, while preserving the

convexity of G|µ+1 already established for G|µ ∪B1
µ.

Lemma 8. Let G be a graph, and let H,B1, B2 ⊂ G be such that H is convex and B2

is maximally prime in G. Let Si := Bi∩H and Hi := Bi ∪H, i = 1, 2, and suppose that

(i) B1, B2 6⊂ H,

(ii) S1 ⊂ S2,

(iii) H1 is convex in G,

(iv) S1 does not separate B1\H from B2\H in G.

Then H2 is convex in G, and S2 = S1.

Proof. Let B′
2 be a component of B2\H, and let S := H [B′

2 ]. As H is convex, S is a

simplex, and since B2 is prime, this means that S2 ⊂ S (and B′
2 = B2\H). Hence S1 and

S2 are both simplices.

If H ⊂ B1, then H = S1 = S2 and H2 coincides with B2, which is convex by

[ 4, Corollary 1.5 ]. Let us therefore assume that H 6⊂ B1, i.e. that H\S1 6= ∅.

Since H1 is convex, S1 separates B1\S1 from H\S1 in G. As B2 is prime and therefore

not separated by S1, this implies by (iv) that S1 separates B2\S1 from H\S1. In particular

(B2 ∩H)\S1 = ∅, so by (ii) S1 = S2. Furthermore, if P is any H2 –H2 path in G, the

endvertices x, y of P are either both in H or both in B2. As H and B2 are each convex,

xy must be an edge of G, so H2 is convex as claimed. �

We are now ready to begin on the central part of our proof. Let G be a countable

graph, V (G) = { v1, v2, . . .} its vertex set, and suppose that G satisfies (†). As earlier, let

H denote the set of all sides in G.

In view of the discussion in [ 4, Section 4 ] of the graphs H1 and H2, and the traps

they contained for the construction of a prime decomposition, let us say that a subgraph

B of G defuses a side (C, S) ∈ H if either B ∩C 6= ∅ or B ⊃ S. Whenever F = (Bλ)λ<σ is

a family of induced subgraphs of G and µ ≤ σ, call (C, S) ∈ H defused at G|µ :=
⋃

λ<µ Bλ

if some Bλ with λ < µ defuses (C, S), and undefused (at G|µ) otherwise.

Let F be the set of all well-ordered families F of induced subgraphs of G (F = (Bλ)λ<σ

say) satisfying the following seven conditions:
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(i) every Bλ is maximally prime in G (λ < σ),

(ii) every Bλ is unattached in G (λ < σ),

(iii) Bµ\G|µ 6= ∅ (where G|µ :=
⋃

λ<µ Bλ) (µ < σ),

(iv) each Sµ (:= Bµ ∩G|µ) is contained in some Bλ, λ < µ (0 < µ < σ),

(v) each G|µ is convex in G (µ ≤ σ),

(vi) if H1
µ 6= ∅ then Bµ ⊂ Hµ (µ < σ),

(vii) if H1
µ = ∅ and H2

µ 6= ∅ then Bµ ⊃ S for some (C, S) ∈ H2
µ (µ < σ),

where H1
µ, H

2
µ and Hµ are defined as follows.

An induced subgraph B of G is called eligible at G|µ (µ ≤ σ) if selecting it as Bµ

is compatible with (i)–(v), i.e. if B is maximally prime and unattached, B\G|µ 6= ∅,

B ∩G|µ ⊂ Bλ for some λ < µ, and B ∪G|µ is convex in G. (C, S) ∈ H is called defusable

at G|µ (µ ≤ σ) if (C, S) is undefused at G|µ and G has a subgraph B that is eligible at

G|µ and defuses (C, S). If this B can be chosen such that B ∩ C 6= ∅ (or, equivalently,

B ⊂ G [C→S ]), we call (C, S) 1-defusable; otherwise (C, S) is 2-defusable (at G|µ). Then

H1
µ, H

2
µ and Hµ are defined by setting

Hµ :=
{

(C, S) ∈ H
∣

∣ (C, S) is defusable at G|µ
}

k(µ) :=

{

∞ if Hµ = ∅
min

{

i
∣

∣ ∃ (C, S) ∈ Hµ : vi ∈ C
}

if Hµ 6= ∅

H1
µ :=

{

(C, S) ∈ Hµ

∣

∣ (C, S) is 1-defusable at G|µ and vk(µ) ∈ C
}

H2
µ :=

{

(C, S) ∈ Hµ

∣

∣ (C, S) is 2-defusable at G|µ and vk(µ) ∈ C
}

Hµ :=
⋂

(C,S)∈H1
µ

G [C→S ] (µ ≤ σ).

Thus if we view F as being created by selecting its members Bλ inductively, conditions

(i)–(v) ensure that F is a prime decomposition of
⋃

λ<σ Bλ, while conditions (vi) and (vii)

express certain preferences in choosing the factors. Broadly speaking, we can think of each

Bµ as being selected by the following procedure.

Having arrived at G|µ, we first determine whether Bµ can be chosen such as to defuse

any undefused side at all. If not, we let Bµ be any induced subgraph of G that is eligible

at G|µ (note that this is the case when Hµ is empty, so (vi) and (vii) do not apply). On

the other hand, if there are sides defusable at G|µ, we try to select Bµ in such a way that it

defuses a side (C, S) among these for which C contains a vertex of smallest possible index

k. Additional preference is given to those factors B that defuse some such side (C, S)

by satisfying B ∩ C 6= ∅; moreover, if such B exist at all, we even insist that B satisfy

10



B ∩C 6= ∅ for every 1-defusable (C, S) with vk ∈ C, i.e., that B ⊂ Hµ. If, on the other

hand, the only way an eligible B can defuse some such side (C, S) is by satisfying B ⊃ S,

we take Bµ to be any of these B.

For two families F, F ′ ∈ F , say F = (Bλ)λ<σ and F ′ = (B′
λ)λ<σ′ , let us write F ≤ F ′ if

σ ≤ σ′ and Bλ = B′
λ for all λ < σ. Then ≤ defines a partial order on F . By Zorn’s Lemma

F has a maximal element, for since the union of a nested sequence of convex subgraphs of

G is again convex in G (cf. (v)), every chain in F is bounded by the union of its members.

Let F ∗ = (Bλ)λ<σ be a fixed maximal element of F . We shall prove that F ∗ is a

prime decomposition of G.

It is easily seen that F ∗ is a prime decomposition of G′ :=
⋃

λ<σ Bλ (= G|σ). Indeed,

by assumption each Bλ is prime, and F ∗ satisfies (S1) and (S4). Thus all we have to

check is that every Sµ is a simplex, and that no Sµ contains any Bλ, λ < µ. (The

other requirement of (S3) is met because of (iii).) To see this, let µ < σ, and consider a

component C of Bµ\G|µ. As G|µ is convex in G, S := G|µ [C ] is a simplex. But Bµ,

being prime, is not separated by any simplex, so Bµ\G|µ is in fact equal to C, and Sµ ⊂ S.

Moreover, Sµ is attached to Bµ\G|µ, so Sµ cannot contain any Bλ, λ < µ (by (ii)).

It remains to show that F ∗ is a decomposition of the entire graph G, i.e. that G′ = G.

Suppose G\G′ 6= ∅. If Hσ = ∅, let v be any vertex of G\G′; otherwise set v := vk(σ).

Let Cσ := G [ v →G′ ]\G′ and Sσ := G′ [ v ]. Since G′ is convex in G (by (v)), Sσ is a

simplex. We shall prove that F ∗ can be extended by a new factor Bσ ⊂ G [Cσ →Sσ ], in

contradiction to the maximality of F ∗ in F .

To spare the reader the task of monitoring over all stages of the proof what happens

if σ = 0 (i.e. if G′ = ∅), let us deal with this case first.

Let S be a maximally prime subgraph of G containing v. If S is unattached, set

Bσ := S. If S is attached, to the component C of G\S say, then (C, S) is an inaccessible side

of G. Let x be any neighbour of v in C. Then { v } has the prime extension ({ v, x }, { vx })

into C, so by Lemma 6 we can select as Bσ an unattached maximally prime subgraph of

G containing v.

In either case we have v ∈ Bσ and therefore Bσ ⊂ Hσ (notice that (Cσ, ∅) ∈ H1
σ and

hence H1
σ 6= ∅, because Bσ exists as chosen). Hence Bσ is as desired.

Let us from now on assume that σ > 0. In order to comply with (v), our desired

new factor Bσ must be chosen in such a way that G′ ∪Bσ is convex. Since Sσ is attached

to Cσ and Cσ is connected, this means that Bσ will have to contain the entire Sσ (cf.

[ 4, Corollary 1.7 (iii) ]), i.e. Sσ will be the simplex of attachment of Bσ. Our first objective

therefore is to show that Sσ is contained in Bλ for some λ < σ, so that Bσ ∩ G|σ can

satisfy (iv).

The following proposition (A) serves this purpose.

(A) Sσ ⊂ Bλ, for some λ < σ.

11



Figure 3

The idea underlying the proof of (A) is central to the whole proof of Theorem 1:

using conditions (vi) and (vii), we show that Sσ was created in at most finitely many

steps, unlike the simplex S that caused problems in our examples H1 and H2 in [ 4, Sec-

tion 4 ]. More precisely, we shall prove that Λ(Sσ) is finite; then (A) will be immediate

from [ 4, Corollary 1.7 (i) ]. Suppose Λ(Sσ) is infinite, and let S ⊃ Sσ be a maximal simplex

in G′.

We first show that S must be unattached in G′. Suppose S is attached in G′, say to

the component C′ of G′\S. Then (G [C′ → S ]\S , S) is a side in G. Applying (†) to this

side with Cσ assuming the role of C′ in (†), we may deduce that Sσ has a prime extension

B into G [C′ →S ]\S (but note that B is not necessarily a subgraph of G′).

Let us find a vertex x ∈ C′ that is simplicially close to every vertex of Sσ (Fig. 3). If

B∩C′ 6= ∅, we simply pick x ∈ B∩C′. Suppose now that B∩C′ = ∅. Then B\S ⊂ G\G′;

notice that, by the convexity of G′ in G, G [C′→S ] contains no vertices from components

of G′\S other than C′. Since G′ is convex, G′ [B\S ] is a simplex. As B is prime, this means

that G′ [B\S ] does not separate any vertices of B, so G′ [B\S ] ⊃ Sσ. But G
′ [B\S ] also

has a vertex in C′, since, by definition of B, S does not separate B\S from C′. Choosing

x ∈ G′ [B\S ] ∩C′, we have therefore again found a vertex x ∈ C′ that is close to every

vertex of Sσ.

Having shown that C′ contains a vertex x which is simplicially close to every vertex

of Sσ, we may infer by [ 4, Proposition 1.4 ], that Sσ has a prime extension into C′: the

convex hull of Sσ ∪ { x } in G′. This, however, contradicts [ 4, Theorem 3.2 (iii) ] (put

S′ := Sσ). Therefore S is unattached in G′.

12



Figure 4

Having shown that S is unattached in G′, we may deduce that the position of S in G′

is as stated in [ 4, Theorem 3.2 (iv) ]; let Λ ⊂ Λ(S) and (Cλ)λ∈Λ be as provided, and let λ′

denote λ(Cλ) (for λ ∈ Λ).

Let us prove that { k(λ′) | λ ∈ Λ } is not bounded by any n ∈ N. Suppose { k(λ′) | λ ∈ Λ }

is bounded. Then Hλ′ 6= ∅ for every λ ∈ Λ, and for some k ∈ N there are infinitely

many λ ∈ Λ with k(λ′) = k. We can therefore find λ1, λ2 ∈ Λ satisfying λ1 < λ2,

k(λ′
1) = k(λ′

2) = k, and either H1
λ′

1

=H1
λ′

2

= ∅ or H1
λ′

1

,H1
λ′

2

6= ∅. Notice that condition (c) of

[ 4, Theorem 3.2 (iv) ] and our assumption that λ1 < λ2 imply λ′
1 ≤ λ1 ∈ Λ(S|λ2

) = Λ(Sλ′

2
),

so λ′
1 < λ′

2.

Let us write Bi for Bλ′

i
(i = 1, 2). We shall prove that B2 was eligible at G|λ′

1
, and

use this to deduce that the choice of B1 contradicts (vi). To see that B2 was eligible at

G|λ′

1
, note that B2 ∩G|λ′

1
= S|λ1

= Sλ′

1
, which is by (S4) contained in some Bλ, λ < λ′

1.

Thus all we have to check is that G|λ′

1
∪B2 is convex in G. This, however, follows from

Lemma 8 (put H := G|λ′

1
and Bi := Bi; Fig. 4).

For the proof that the choice of B1 was inconsistent with condition (vi), suppose

first that H1
λ′

1

= H1
λ′

2

= ∅. Then H2
λ′

1

and H2
λ′

2

are non-empty, so by (vii) there are sides

(Ci, Si) ∈ H2
λ′

i

satisfying Si ⊂ Bi and vk ∈ Ci (and Bi∩Ci = ∅, because H1
λ′

i

= ∅), i = 1, 2.

13



Since vk ∈ C1 ∩C2, we have C1 ∩C2 6= ∅. Moreover, as (C2, S2) is still undefused at G|λ′

2
,

S1 ∩C2 ⊂ B1 ∩C2 = ∅ .

Therefore (C2, S2) ≤ (C1, S1) by Lemma 3 (ii). Since B1 defuses (C1, S1) but not (C2, S2),

these sides are not identical, so even (C2, S2) < (C1, S1). Applying Lemma 3 (iii), we thus

obtain

B2 ∩C1 ⊃ S2 ∩C1 6= ∅ ,

so B2 is an extension of Sλ′

1
⊂ S1 into C1. Since B2 is eligible at G|λ′

1
, this implies that

(C1, S1) is 1-defusable at G|λ′

1
. Hence H1

λ′

1

6= ∅, contrary to our assumption.

Suppose now that neither of H1
λ′

1

, H1
λ′

2

is empty. Then by (vi) there are sides (Ci, Si) ∈

H1
λi

that satisfy Bi∩Ci 6= ∅, i = 1, 2. Since B2 is eligible at G|λ′

1
, (C2, S2) is 1-defusable

at G|λ′

1
, so (C2, S2) ∈ H1

λ′

1

. On the other hand, (C2, S2) is still undefused at G|λ′

2
, so

B1 6⊂ G [C2 → S2 ]. Therefore B1 6⊂ Hλ′

1
, contradicting (vi). This completes the proof

that { k(λ′) | λ ∈ Λ } is unbounded in N.
Let us now finish our proof of (A). Suppose first that S is attached in G, say to the

component C of G\S. (If S = Sσ, C may coincide with Cσ.) Since S is unattached in G′

and G′ is convex, we have C ∩G′ = ∅. Hence, for each λ ∈ Λ, S [Cλ ] has an unattached

and maximally prime extension into C (by (†) and Lemma 6), which is eligible at G|λ′ by

Lemma 8 (as earlier). Hence (C, S) ∈ Hλ′ and consequently k(λ′) ≤ min { i | vi ∈ C } for

every λ ∈ Λ, contrary to the unboundedness of k(λ′) established above.

Suppose now that S is unattached in G. Then S itself is eligible at G|λ′ for every

λ ∈ Λ [ 4, Corollary 1.9 ]. Since S contains Sσ and therefore defuses (Cσ, Sσ), this implies

that k(λ′) ≤ min { i | vi ∈ Cσ }, again contradicting the unboundedness of k(λ′). This

completes the proof of (A).

As an immediate consequence of (A) let us note that

(B) Sσ is attached in G′.

Let us now determine a subgraph Bσ that extends F ∗ and contradicts the assumed

maximality of F ∗ in F . All graphs we consider as candidates for the role of Bσ will be

maximally prime and unattached extensions of Sσ into Cσ. Then the only conditions we

shall have to verify for
⋃

λ≤σ Bλ will be (vi) and (vii); notice that (iv) will hold by (A), and

(v) will be satisfied because Bσ and G′ are convex and Sσ separates Bσ\Sσ from G′\Sσ in

G.

If Hσ = ∅, (vi)–(vii) are trivially satisfied, so we may take Bσ to be any unattached

maximally prime extension of Sσ into Cσ (by (B), (†) and Lemma 7).

If H1
σ = ∅ but H2

σ 6= ∅, the existence of a suitable Bσ is guaranteed by the definition

of H2
σ. (We remark that any undefused (C, S) with v ∈ C must satisfy S 6= Sσ (by (A))

and hence (C, S) < (Cσ, Sσ), so Bσ (⊃ S) will be a subgraph of G [Cσ →Sσ ].)
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Figure 5

Suppose now that H1
σ 6= ∅. In our search for Bσ we now have to ensure that Bσ meets

the rather strict condition (vi), i.e. that Bσ intersects with C for every 1-defusable side

(C, S). This will require some work, which is the price we now pay for having been able

to use the full strength of (vi) in the proof of (A).

Since v ∈ C for every (C, S) ∈ H1
σ , Lemma 3 (ii) gives

(C) (C, S) ≤ (C′, S′) iff S′ ∩C = ∅ , for all (C, S), (C′, S′) ∈ H1
σ .

Similarly, we have (C, S)< (Cσ, Sσ) for all (C, S) ∈ H1
σ, and consequently G [C→S ] ⊂

G [Cσ → Sσ ]. (The inequality is strict, because since (Cσ, Sσ) is ‘2-defused’ by some Bλ,

λ < σ, (Cσ, Sσ) is not in Hσ.) Moreover,

(D) S ∩G′ = Sσ for every (C, S) ∈ H1
σ ,

that is, every such S contains the entire Sσ. To see this, recall that any eligible B ⊂

G [Cσ → Sσ ] must contain Sσ. Since (C, S) is 1-defusable at G|σ, we have Sσ ⊂ B ⊂

G [C→S ] for some such B, giving Sσ ⊂ S by C ∩G′ = ∅.

In order to determine Bσ, it will be convenient to find a prime and convex subgraph

B∗ of G that satisfies B∗ ∩Cσ 6= ∅, B∗ ⊃ Sσ, v /∈ B∗ and S∗ 6⊃ Sσ, where S∗ := B∗ [ v ]

(Fig. 5).
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If H1
σ contains an unbounded descending chain C (i.e. one that is maximal in H1

σ with

respect to extension and has no minimal element), it is not difficult to find such a graph

B∗. As in the proof of Lemma 6, we let

H− :=
⋂

(C,S)∈C

G [C→S ] , D− :=
⋂

(C,S)∈C

C , S− := H−\D−.

Moreover, we let C∗ be the component of D− containing v, and put S∗ := S− [C∗ ]. By

(D), we have Sσ ⊂ S for every (C, S) ∈ C, and hence S− ⊃ Sσ. As in the proof of

Lemma 6 it is shown that S− is a simplex, and that S∗ ∩C 6= ∅ for each (C, S) ∈ C, giving

S− ∩Cσ 6= ∅. Since C∗ ⊂ D−, we further have (C∗, S∗) ≤ (C, S) for every (C, S) ∈ C. As

C is by assumption unbounded in H1
σ , this means that (C∗, S∗) /∈ H1

σ . Hence S∗ 6⊃ Sσ,

because otherwise (C∗, S∗) would be 1-defusable at G|σ (by (†) and Lemma 7), implying

(C∗, S∗) ∈ H1
σ . Therefore B∗ := S− is as required.

Let us now assume that every descending chain in H1
σ is bounded. Let H0

σ denote the

set of all minimal elements of H1
σ. Then

(E) S is maximally prime in G, for every (C, S) ∈ H0
σ.

To prove (E), it suffices to show that every (C, S) ∈ H0
σ is inaccessible (Lemma 2). Suppose

(C, S) ∈ H0
σ is accessible, and let S be a maximal prime extension of S into C.

If v /∈ S, we may assume that S∗ := S [ v ] contains Sσ, for otherwise we can put

B∗ := S and have B∗ as desired. (S is convex, because it is maximally prime in G.) But

assuming S∗ ⊃ Sσ and putting C∗ := G [ v→S ]\S, we find that (C∗, S∗) is a side which is

1-defusable at G|σ (by (†) and Lemma 7) and satisfies (C∗, S∗) < (C, S). This contradicts

the minimality of (C, S) in H1
σ.

If v ∈ S on the other hand, we can easily find a new factor Bσ extending F ∗. If S is

unattached in G, we put Bσ := S. If S is attached, however, say to C, then C ∩Cσ 6= ∅

and hence C ⊂ Cσ, because S ⊃ S ⊃ Sσ and v has a neighbour in C. We can therefore

use (†) (and Lemmas 4,6) to select as Bσ an unattached maximally prime extension of

S [Sσ ∪{ v } ] into C, once more exploiting the fact that { v } has a trivial prime extension

into C because it has a neighbour in C. Then, in either case, v ∈ Bσ implies that Bσ ⊂ Hσ,

so (Bλ)λ≤σ satisfies (i)–(vii). This completes the proof of (E).

If H0
σ consists of a single element (C, S), we let Bσ be any unattached maximally

prime extension of Sσ into C (by (D), (†) and Lemma 6). Then Bσ ⊂ G [C→S ] = Hσ, so
⋃

λ≤σ Bλ satisfies (i)–(vii), contradicting the maximality of F ∗. As H1
σ is by assumption

non-empty, H0
σ therefore has at least two elements (C, S) and (C′, S′).

By (C), we have S′ ∩C 6= ∅ as well as S ∩C′ 6= ∅, so C contains S′\S and C′ contains

S\S′ (and these graphs are not empty). Let H be the convex hull of S ∪ S′ in G, and

define B∗ the way T ′ was defined in the proof of Lemma 6. Then B∗ is a simplex that

satisfies B∗ ∩ C 6= ∅ and B∗ ∩ C′ 6= ∅ (and hence B∗ ∩ Cσ 6= ∅), contains S ∩ S′ (and

therefore Sσ; cf. (D)), separates S\B∗ ( 6= ∅) from S′\B∗ ( 6= ∅) in G, and is attached to

D := G [S→B∗ ]\B∗ as well as to D′ := G [S′ →B∗ ]\B∗.
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If v ∈ B∗, we simply let Bσ be an unattached maximally prime extension of B∗ into

D or D′ (by (†) and Lemma 7). Then Bσ ⊂ Hσ because v ∈ Bσ, so (Bλ)λ≤σ conforms to

(i)–(vii), contradicting the maximality of F ∗.

Therefore v /∈ B∗; let C∗ denote the component of G\B∗ containing v. Since D and

D′ are also components of G\B∗, we may assume without loss of generality that C∗ 6= D.

Then S ∩C∗ = ∅, which implies (C∗, S∗) < (C, S) by Lemma 3 (ii) (with S∗ := B∗ [ v ],

as usual). But (C, S) is minimal in H1
σ, so this means that (C∗, S∗) /∈ H1

σ, and therefore

S∗ 6⊃ Sσ (by (†) and Lemma 7). Hence B∗ is as desired.

Let us now finish our proof by using the properties of B∗ and S∗ to find an additional

factor Bσ ⊂ Hσ. Notice that S∗ is a simplex, because B∗ is convex. Put C∗ := G [ v→

B∗ ]\B∗ , and let (C, S) be any element of H1
σ. Since S contains Sσ but G [C∗ →S∗ ] does

not, S ∩C∗ must be empty. Hence (C∗, S∗) < (C, S), by v ∈ C∗ ∩C and Lemma 3 (ii).

Thus S∗ ∩C 6= ∅ for every (C, S) ∈ H1
σ, giving B∗ ⊂ Hσ.

If B∗ is unattached in G, we let Bσ := B∗ and are done (Bσ will be maximally prime by

[ 4, Proposition 1.8 ]); suppose therefore that B∗ is attached in G, say to the component

D∗ of G\B∗. Since B∗ is convex, this means that B∗ is a simplex, and (D∗, B∗) is a

side in G. Since B∗ is not attached to C∗, clearly D∗ ∩C∗ = ∅. Furthermore, we have

(D∗, B∗) < (Cσ, Sσ) because B∗ ⊃ Sσ and B∗ ∩Cσ 6= ∅ (Lemma 3 (iii)), giving D∗ ⊂ Cσ.

Hence, D∗∩ (C∗∪G′) = ∅. Let Bσ be an unattached maximally prime extension of Sσ ∪S∗

into D∗ (by (†) and Lemma 7). Then Bσ ∩C ⊃ S∗ ∩C 6= ∅ for every (C, S) ∈ H1
σ , giving

Bσ ⊂ Hσ. Hence
⋃

λ≤σ Bλ satisfies (i)–(vii), contrary to the assumed maximality of F ∗.

This completes the proof of Theorem 1.

As an immediate corollary of the proof of Theorem 1 we see that, for any countable

graph G that admits a simplicial tree-decomposition into primes, not only every prime

factor of G is maximally prime, minimally convex and unattached [ 4, Theorem 1.10 ],

but conversely any subgraph of G with these properties is a factor in some simplicial

tree-decomposition of G into primes:

Corollary 9. Let G be a countable graph admitting a prime decomposition, and let

B ⊂ G. Then the following statements are equivalent.

(i) B is minimally convex and unattached in G;

(ii) B is maximally prime and unattached in G;

(iii) B is a factor in some prime decomposition of G.

Proof. As (i) and (ii) are equivalent by [ 4, Proposition 1.8 ], all we have to show is that

(ii) implies (iii). By assumption G has a prime decomposition, so G satisfies (†). Choose

an enumeration of V (G), beginning with a vertex in B. Then F = (B) is a family that

satisfies conditions (i)–(vii) from the proof of Theorem 1, so F can be extended to a prime

decomposition of G. �
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2. Two Examples

As the examples discussed in part one of this paper already indicated, a main difficulty

that had to be overcome in the proof of Theorem 1 was the possible existence of inaccessible

sides in the graph G considered: the algorithm used to construct a prime decomposition

of G had to detect and defuse any inaccessible side (C, S) before S was completely covered

by factors Bλ 6⊂ G [C → S ]. The way this was achieved was by ensuring that the set

of inaccessible sides defused by each new factor was in a rather strong sense maximal

(condition (vi)), and the difficulty in proving the theorem lay in showing that such new

factors can indeed always be found.

Bearing this in mind, it may not be too surprising that the proof of Theorem 1

becomes substantially easier if all the graphs considered have at most countably many

simplices with inaccessible sides, which can then be defused according to a much simpler

priority rule. On the other hand, it is not clear at first sight whether a countable graph

can have uncountably many such simplices at all, i.e. whether such a simplification of the

proof would perhaps still cover all countable graphs.

In this section we shall answer this question in the negative by giving an example of

a graph that satisfies (†), and in which uncountably many simplices have an inaccessible

side. The graph we construct will also provide some illustration for the proof of Theorem 1.

The second graph exhibited in this section is an uncountable variation of the first. It

still satisfies (†), but it has no prime decomposition. This second example therefore shows

that Theorem 1 cannot be extended to uncountable graphs, and is in this respect best

possible.

Let us construct a graph T0 as follows. Let the vertices of T0 be all finite 0-1 sequences,

i.e. let V (T0) := { 0, 1 }[ω], and join (a0, . . . , an) to (b0, . . . , bm) whenever n < m and ai = bi
for i = 0, . . . , n. Thus if we write α < β for α, β ∈ { 0, 1 }[ω] iff β is an extension of α, then

T is simply the comparability graph of its vertex set.

Let T1 be the graph obtained from T0 by adding all edges of the form

(a0, . . . , an−1, 0)(a0, . . . , an−1, 1, 0, . . . , 0), i.e. by additionally joining

(a0, . . . , an) to (b0, . . . , bm) whenever n ≤ m, ai = bi for i = 0, . . . , n−1, an = 0, bn = 1,

and bn+1 = . . . = bm = 0 (Fig. 6).

T1 has maximally prime subgraphs of two different types. First, there are the simplices

spanned by those maximal sets V of pairwise comparable vertices that satisfy

∀ i ∈ N : ∃ (a0, . . . , an) ∈ V : (n ≥ i and an = 1) .

Every such simplex S has an inaccessible side (C, S), where C is the component of

T1\S spanned by all vertices of T1\S that are lexicographically smaller than some vertex

in S (or ‘left’ of S in Fig. 6). It is also clear that T1 has 2ℵ0 of these simplices.

The maximally prime subgraphs of the other type are extensions (by one additional

vertex) of simplices spanned by those maximal sets of pairwise comparable vertices that
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Figure 6

are not among the vertex sets of the simplices with inaccessible sides defined above. Each

of these simplices S has the property that

∃ i ∈ N : ∀ (a0, . . . , an) ∈ V (S) :
(

i ≤ j ≤ n ⇒ aj = 0
)

.

The additional vertex x(S) is (a0, . . . , an−1, 0) if (a0, . . . , an) ∈ S and

n = max { i ∈ N | (a0, . . . , ai) ∈ S and ai = 1 } ;

so S is in fact uniquely determined by x(S), and Sx := T1 [S ∪{x(S) } ] is an unattached

and hence maximally prime simplex in T1.

There is only one maximally prime subgraph of T1 that is not of one of these two

types. This is the unattached simplex S0 := T1 [ ∅, (0), (00), (000), . . . ].

It is not difficult to check that T1 satisfies (†), and that T1 has a prime decomposition

whose factors are simplices of the form Sx and possibly S0.

Let us now turn to the second of the two examples in this section. Define the graph

T2 from T0 by adding to it new vertices v(S), one for each maximal simplex S in T0,

joining v(S) to every vertex of S for each S. T2 has order 2ℵ0 (recall that the maximal
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simplices of T0 are precisely those subgraphs of T0 that are spanned by maximal sets of

‘pairwise comparable’ vertices, so there are 2ℵ0 of them), and the set S of maximally prime

subgraphs of T2 is precisely the set of all subgraphs of the form T2 [S ∪{ v(S) } ].

Since every attached simplex of T2 can be extended to a simplex of the form T2 [S ∪

{ v(S) } ] in each of its sides, no side in T2 is inaccessible. Hence T2 satisfies (†).

However, T2 has no prime decomposition. To see this, let us suppose that (Bλ)λ<σ is

a prime decomposition of T2. Since prime factors are always maximally prime and the only

maximally prime subgraph of T2 containing the vertex v(S) is T2 [S ∪ { v(S) } ], the set

{Bλ | λ < σ } of factors coincides with S. Hence σ is uncountable. But T2 [S ∪ { v(S) } ]

is also the only maximally prime subgraph of T2 containing S. Since by assumption every

µ < σ is such that Sµ ⊂ Bλ for some λ < µ (S4), this means that, whenever v ∈ T2\T0,

Sλ(v) cannot contain the entire S, i.e. λ(s) = λ(v) for some s ∈ S. Therefore Λ(T0) = σ,

which contradicts the countability of T0.

3. Simplicial Minors

The purpose of this section is to announce another characterization of the countable graphs

that have simplicial tree-decompositions into primes. The characterization is based on

Theorem 1, and it will be pesented in detail in a forthcoming paper [ 6 ].

The basic idea of this result is to show that there are essentially only two different

non-decomposable graphs: similarly to Kuratowski’s classical theorem on planar graphs, it

characterizes the decomposable graphs in terms of two forbidden minors, the usual notion

of a minor being slightly restricted to match the purpose. Both forbidden minors are

variations of Halin’s graph H0 (see [ 4 ]).

Let G, G′ be graphs, and let f : V (G)→V (G′) be surjective. Halin [ 10 ] defines f to

be a homomorphism from G onto G′ if

vw ∈ E(G) ⇒
(

f(v)f(w) ∈ E(G′) ∨ f(v) = f(w)
)

and

v′w′
∈ E(G′) ⇒ ∃ vw ∈ E(G) :

(

f(v) = v′ ∧ f(w) = w′
)

;

f is called contractive if G [ f−1(v) ] is connected for every v ∈ V (G′). Notice that homo-

morphisms between graphs map simplices to simplices.

If H ⊂ G and H ′ ⊂ G′ are induced subgraphs and f : V (G)→ V (G′) is a homo-

morphism, we shall abbreviate G′ [ f(V (H)) ] to f(H) and G [ f−1(V (H ′)) ] to f−1(H ′).

Then f |f−1(H′) is a homomorphism from f−1(H ′) onto H ′, which is contractive if f is.

Conversely, f |H is a contractive homomorphism from H onto f(H) if H is convex in G

and f is contractive, in which case f(H) is also convex in G′.
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Let us call a contractive homomorphism f from G onto G′ simplicial if f preserves

simplicial closeness, i.e. if f satisfies the implication

v, w ∈ V (G) are close in G ⇒ f(v), f(w) are close in G′.

Simplicial homomorphisms are well compatible with simplicial decompositions: they

map minimally convex subgraphs to minimally convex subgraphs and maximally prime

subgraphs to maximally prime subgraphs or attached simplices, and the restriction of a

simplicial homomorphism to a convex subgraph is again a simplicial homomorphism.

A graph H ′ is often called a minor of a graph G if G has a subgraph H from which

there exists a contractive homomorphism f onto H ′. We shall call H ′ a simplicial minor

of G (and write G ≻s H ′), if H and f can be chosen in such a way that H is convex in G

and f is simplicial.

It is not difficult to show that if G1 ≻s G2 and G2 ≻s G3, then G1 ≻s G3. Or in other

words, if H is a set of graphs, then the graph property

G(H)≻
s
:= {G | H ∈ H ⇒ G 6≻s H }

is closed under taking simplicial minors.

In order to be characterized in this way, the class of decomposable graphs must of

course match this feature, i.e. simplicial minors of decomposable graphs must again be

decomposable. And indeed, it can be shown that this is so: if a countable graph G has a

simplicial tree-decomposition into primes and H is a simplicial minor of G, then H has a

simplicial tree-decomposition into primes.

Let G be the class of countable graphs that have a simplicial tree-decomposition into

primes, and let H be the class of all other countable graphs. Then trivially G ⊃ G(H)≻
s
,

and since simplicial minors of decomposable graphs are again decomposable, we even have

G = G(H)≻
s
. Moreover, this assertion remains valid if we replace H with any set H′ ⊂ H

in which every graph of H has a simplicial minor. We are therefore left with the challenge

to find a minimal such H′.

Let H1 be the graph obtained from H0 by contracting the path Q to one vertex q,

and let H2 be obtained from H1 by joining up all vertices inside P , thus turning P into

a simplex (Fig. 7). Neither H1 nor H2 has a prime decomposition (by Theorem 1; put

C′ := { q }), and neither of the two graphs is a simplicial minor of the other. It will be

shown in [ 6 ] that H′ = {H1, H2 } solves the above problem:

Theorem. [ 6 ] A countable graph G has a simplicial tree-decomposition into primes if

and only if neither of H1, H2 is a simplicial minor of G.

A similar characterization will be obtained for the countable graphs that admit a

tree-decomposition into primes.
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Figure 7
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