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Abstract

Given a finite set E, a subset D ✓ E (viewed as a function E ! F2)
is orthogonal to a given subspace F of the F2-vector space of functions
E ! F2 as soon as D is orthogonal to every ✓-minimal element of F .
This fails in general when E is infinite.

However, we prove the above statement for the six subspaces F of the
edge space of any 3-connected locally finite graph that are relevant to its
homology: the topological, algebraic, and finite cycle and cut spaces. This
solves a problem of [5].

1 Introduction

Let G be a 2-connected locally finite graph, and let E = E(G) be its edge space
over F2. We think of the elements of E as sets of edges, possibly infinite. Two
sets of edges are orthogonal if their intersection has (finite and) even cardinality.
A set D 2 E is orthogonal to a subspace F ✓ E if it is orthogonal to every F 2 F .
See [4, 5] for any definitions not given below.

The topological cycle space Ctop(G) of G is the subspace of E(G) generated
(via thin sums, possibly infinite) by the circuits of G, the edge sets of the
topological circles in the Freudenthal compactification |G| of G. This space
Ctop(G) contains precisely the elements of E that are orthogonal to Bfin(G), the
finite-cut space of G [4]. The algebraic cycle space Calg(G) of G is the subspace
of E consisting of the edge sets inducing even degrees at all the vertices. It
contains precisely the elements of E that are orthogonal to the skew cut space
Bskew(G) [3], the subspace of E consisting of all the cuts of G with one side finite.
The finite-cycle space Cfin(G) is the subspace of E generated (via finite sums)
by the finite circuits of G. This space Cfin(G) contains precisely the elements
of E that are orthogonal to B(G), the cut space of G [4, 5]. Thus,

Ctop = B?fin, Calg = B?skew, Cfin = B?.
Conversely,

C?top = Bfin, C?alg = Bskew, C?fin = B.

Thus, for any of the six spaces F just mentioned, we have F?? = F .
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Proofs of most of the above six identities were first published by Casteels
and Richter [3], in a more general setting. Any remaining proofs can be found
in [5], except for the inclusion C?alg ◆ Bskew, which is easy.

The six subspaces of E mentioned above are the the ones most relevant to
the homology of locally finite infinite graphs. See [5], Diestel and Sprüssel [6],
and Georgakopoulos [7, 8]. Our aim in this note is to facilitate orthogonality
proofs for these spaces by showing that, whenever F is one of them, a set D
of edges is orthogonal to F as soon as it is orthogonal to the minimal nonzero
elements of F .

This is easy when F is Cfin or Bfin or Bskew:

Proposition 1. Let F be a subspace of E all whose elements are finite sets of
edges. Then F is generated (via finite sums) by its ✓-minimal nonzero elements.

Proof. For a contradiction suppose that some F 2 F is not a finite sum of
finitely many minimal nonzero elements of F . Choose F with |F | minimal. As
F is not minimal itself, by assumption, it properly contains a minimal nonzero
element F 0 of F . As F is finite, F + F 0 = F r F 0 2 F has fewer elements than
F , so there is a finite family (Mi)in of minimal nonzero elements of F withP

in Mi = F +F 0. This contradicts our assumption, as F 0+
P

in Mi = F .

Corollary 2. If F 2 {Cfin,Bfin,Bskew}, a set D of edges is orthogonal to F as
soon as D is orthogonal to all the minimal nonzero elements of F .

When F 2 {Ctop, Calg,B}, the statement of Corollary 2 is generally false for
graphs that are not 3-connected. Here are some examples.

For F = B, let G be the graph obtained from the N ⇥ Z grid by doubling
every edge between two vertices of degree 3 and subdividing all the new edges.
The set D of the edges that lie in a K3 of G is orthogonal to every bond F of G:
their intersection D \ F is finite and even. But D is not orthogonal to every
element of F = B, since it meets some cuts that are not bonds infinitely.

For F = Ctop, let B be an infinite bond of the infinite ladder H, and let
G be the graph obtained from H by subdividing every edge in B. Then the
set D of edges that are incident with subdivision vertices has a finite and even
intersection with every topological circuit C, finite or infinite, but it is not
orthogonal to every element of Ctop, since it meets some of them infinitely.

For F = Calg we can re-use the example just given for Ctop, since for 1-ended
graphs like the ladder the two spaces coincide.

However, if G is 3-connected, an edge set is orthogonal to every element of
Ctop, Calg or B as soon as it is orthogonal to every minimal nonzero element:

Theorem 3. Let G = (V,E) be a locally finite 3-connected graph, and F,D ✓ E.

(i) F 2 C?top as soon as F is orthogonal to all the minimal nonzero elements
of Ctop, the topological circuits of G.

(ii) F 2 C?alg as soon as F is orthogonal to all the minimal nonzero elements
of Calg, the finite circuits and the edge sets of double rays in G.
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(iii) D 2 B? as soon as D is orthogonal to all the minimal nonzero elements
of B, the bonds of G.

Although Theorem 3 fails if we replace the assumption of 3-connectedness
with 2-connectedness, it turns out that we need a little less than 3-connectedness.
Recall that an end ! of G has (combinatorial) vertex-degree k if k is the maxi-
mum number of vertex-disjoint rays in !. Halin [9] showed that every end in a
k-connected locally finite graph has vertex-degree at least k. Let us call an end
! of G k-padded if for every ray R 2 ! there is a neighbourhood U of ! such
that for every vertex u 2 U there is a k-fan from u to R in G, a subdivided
k-star with centre u and leaves on R.1 If every end of G is k-padded, we say
that G is k-padded at infinity. Note that k-connected graphs are k-padded at
infinity. Our proof of Theorem 3(i) and (ii) will use only that every end has
vertex-degree at least 3 and that G is 2-connected. Similarly, and in a sense
dually, our proof of Theorem 3(iii) uses only that every end has vertex-degree
at least 2 and G is 3-connected at infinity.

Theorem 4. Let G = (V,E) be a locally finite 2-connected graph.

(i) If every end of G has vertex-degree at least 3, then F 2 C?top as soon as F
is orthogonal to all the minimal nonzero elements of Ctop, the topological
circuits of G.

(ii) If every end of G has vertex-degree at least 3, then F 2 C?alg as soon as F is
orthogonal to all the minimal nonzero elements of Calg, the finite circuits
and the edge sets of double rays in G.

(iii) If G is 3-padded at infinity, then D 2 B? as soon as D is orthogonal to
all the minimal nonzero elements of B, the bonds of G.

In general, our notation follows [4]. In particular, given an end ! in a
graph G and a finite set S ✓ V (G) of vertices, we write C(S,!) for the unique
component of G � S that contains a ray R 2 !. The vertex-degree of ! is the
maximum number of vertex-disjoint rays in !. The mathematical background
required for this paper is covered in [5, 6]. For earlier results on the cycle and
cut space see Bruhn and Stein [1, 2].

2 Finding disjoint paths and fans

Menger’s theorem that the smallest cardinality of an A–B separator in a finite
graph is equal to the largest cardinality of a set of disjoint A–B paths trivially
extends to infinite graphs. Thus in a locally finite k-connected graph, there are
k internally disjoint paths between any two vertices. In Lemmas 5 and 6 we

1For example, if G is the union of complete graphs K1, K2, . . . with |Ki| = i, each meeting
the next in exactly one vertex (and these are all distinct), then the unique end of G is k-padded
for every k 2 N.
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show that, for two such vertices that are close to an end !, these connecting
paths need not use vertices too far away from !.

In a graph G with vertex sets X,Y ✓ V (G) and vertices x, y 2 V (G), a
k-fan from X (or x) to Y is a subdivided k-star whose center lies in X (or is
x) and whose leaves lie in Y . A k-linkage from x to y is a union of k internally
disjoint x–y paths. We may refer to a sequence (vi)i2N simply by (vi), and useS

(vi) :=
S

i2N{vi} for brevity.

Lemma 5. Let G be a locally finite graph with an end !, and let (vi)i2N and
(wi)i2N be two sequences of vertices converging to !. Let k be a positive integer.

(i) If for infinitely many n 2 N there is a k-fan from vn to
S

(wi), then there
are infinitely many disjoint such k-fans.

(ii) If for infinitely many n 2 N there is a k-linkage from vn to wn, then there
are infinitely many disjoint such k-linkages.

Proof. For a contradiction, suppose k 2 N is minimal such that there is a locally
finite graph G = (V,E) with sequences (vi)i2N and (wi)i2N in which either (i) or
(ii) fails. Then k > 1, since for every finite set S ✓ V (G) the unique component
C(S,!) of G � S that contains rays from ! is connected and contains all but
finitely many vertices from

S
(vi) and

S
(wi).

For a proof of (i) it su�ces to show that for every finite set S ✓ V (G)
there is an integer n 2 N and a k-fan from vn to

S
(wi) avoiding S. Suppose

there is a finite set S ✓ V (G) that meets all k-fans from
S

(vi) to
S

(wi). By
the minimality of k, there are infinitely many disjoint (k � 1)-fans from

S
(vi)

to
S

(wi) in C :=C(S,!). Thus, there is a subsequence (v0i)i2N of (vi)i2N in C
and pairwise disjoint (k � 1)-fans Fi ✓ C from v0i to

S
(wi) for all i 2 N. For

every i 2 N there is by Menger’s theorem a (k � 1)-separator Si separating v0i
from

S
(wi) in C, as by assumption there is no k-fan from v0i to

S
(wi) in C. Let

Ci be the component of G� (S [ Si) containing v0i.
Since Fi is a subdivided |Si|-star, Si ✓ V (Fi). Hence for all i 6= j, our

assumption of Fi \Fj = ; implies that Fi \Sj = ;, and hence that Fi \Cj = ;.
But then also Ci \ Cj = ;, since any vertex in Ci \ Cj coud be joined to v0j by
a path P in Cj and to v0i by a path Q in Ci, giving rise to a v0j–

S
(wi) path in

P [Q [ Fi avoiding Sj , a contradiction.
As S [Si separates v0i from

S
(wi) in G and there is, by assumption, a k-fan

from v0i to
S

(wi) in G, there are at least k distinct neighbours of Ci in S [ Si.
Since |Si| = k�1, one of these lies in S. This holds for all i 2 N. As Ci\Cj = ;
for distinct i and j, this contradicts our assumption that G is locally finite and
S is finite. This completes the proof of (i).

For (ii) it su�ces to show that for every finite set S ✓ V (G) there is an
integer n 2 N such that there is a k-linkage form vn to wn avoiding S. Suppose
there is a finite set S ✓ V (G) that meets all k-linkages from vi to wi for all
i 2 N. By the minimality of k there is an infinite family (Li)i2I of disjoint
(k � 1)-linkages Li in C :=C(S,!) from vi to wi. As earlier, there are pairwise
disjoint (k � 1)-sets Si ✓ V (Li) separating vi from wi in C, for all i 2 I. Let
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Ci,Di be the components of C � Si containing vi and wi, respectively. For no
i 2 I can both Ci and Di have ! in their closure, as they are separated by the
finite set S [ Si. Thus for every i 2 I one of Ci or Di contains at most finitely
many vertices from

S
i2I Li. By symmetry, and replacing I with an infinite

subset of itself if necessary, we may assume the following:
The components Ci with i 2 I each contain only finitely many
vertices from

S
i2I Li.

(1)

If infinitely many of the components Ci are pairwise disjoint, then S has
infinitely many neighbours as earlier, a contradiction. By Ramsey’s theorem,
we may thus assume that

Ci \ Cj 6= ; for all i, j 2 I. (2)

Note that if Ci meets Lj for some j 6= i, then Ci ◆ Lj , since Lj is disjoint
from Li ◆ Si. By (1), this happens for only finitely many j > i. We can
therefore choose an infinite subset of I such that Ci \ Lj = ; for all i < j in I.
In particular, (Ci [ Si) \ Sj = ; for i < j. By (2), this implies that

Ci [ Si ✓ Cj for all i < j. (3)

By assumption, there exists for each i 2 I some vi–wi linkage of k indepen-
dent paths in G, one of which avoids Si and therefore meets S. Let Pi denote
its final segment from its last vertex in S to wi. As wi 2 C r (Ci [ Si) and Pi

avoids both Si and S (after its starting vertex in S), we also have

Pi \ Ci = ;. (4)

On the other hand, Li contains vi 2 Ci ✓ Ci+1 and avoids Si+1, so wi 2
Li ✓ Ci+1. Hence Pi meets Sj for every j � i + 1 such that Pi 6✓ S [Cj . Since
the Lj ◆ Sj are disjoint for di↵erent j, this happens for only finitely many j > i.
Deleting those j from I, and repeating that argument for increasing i in turn,
we may thus assume that Pi ✓ S [Ci+1 for all i 2 I. By (3) and (4) we deduce
that Pi r S are now disjoint for di↵erent values of i 2 I. Hence S contains a
vertex of infinite degree, a contradiction.

Recall that G is k-padded at an end ! if for every ray R 2 ! there is a
neighbourhood U such that for all vertices u 2 U there is a k-fan from u to R
in G. Our next lemma shows that, if we are willing to make U smaller, we can
find the fans locally around !:

Lemma 6. Let G be a locally finite graph with a k-padded end !. For every
ray R 2 ! and every finite set S ✓ V (G) there is a neighbourhood U ✓ C(S,!)
of ! such that from every vertex u 2 U there is a k-fan in C(S,!) to R.

Proof. Suppose that, for some R 2 ! and finite S ✓ V (G), every neighbourhood
U ✓ C(S,!) of ! contains a vertex u such that C(S,!) contains no k-fan from u
to R. Then there is a sequence u1, u2, . . . of such vertices converging to !. As !
is k-padded there are k-fans from infinitely many ui to R in G. By Lemma 5(i)
we may assume that these fans are disjoint. By the choice of u1, u2, . . . , all these
disjoint fans meet the finite set S, a contradiction.

5



3 The proof of Theorems 3 and 4

As pointed out in the introduction, Theorem 4 implies Theorem 3. It thus
su�ces to prove Theorem 4, of which we prove (i) first. Consider a set F 6= ;
of edges that meets every circuit of G evenly. We have to show that F 2 C?top,
i.e., that F is a finite cut. (Recall that C?top is known to equal Bfin, the finite-cut
space [5].) As F meets every finite cycle evenly it is a cut, with bipartition
(A,B) say. Suppose F is infinite. Let R be a set of three disjoint rays that
belong to an end ! in the closure of F . Every R–R0 path P for two distinct
R,R0 2 R lies on the unique topological circle C(R,R0, P ) that is contained in
R[R0 [P [ {!}. As every circuit meets F finitely, we deduce that no ray in R
meets F again and again. Replacing the rays in R with tails of themselves as
necessary, we may thus assume that F contains no edge from any of the rays in
R. Suppose F separates R, with the vertices of R 2 R in A and the vertices of
R0, R00 2 R in B say. Then there are infinitely many disjoint R–(R0[R00) paths
each meeting F at least once. Infinitely many of these disjoint paths avoid one
of the rays in B, say R00. The union of these paths together with R and R0

contains a ray W 2 ! that meets F infinitely often. For every R00–W path P ,
the circle C(W,R00, P ) meets F in infinitely many edges, a contradiction. Thus
we may assume that F does not separate R, and that G[A] contains

S
R.

As ! lies in the closure of F , there is a sequence (vi)i2N of vertices in B
converging to !. As G is 2-connected there is a 2-fan from each vi to

S
R in G.

By Lemma 5 there are infinitely many disjoint 2-fans from
S

(vi) to
S
R. We

may assume that every such fan has at most two vertices in
S
R. Then infinitely

many of these fans avoid some fixed ray in R, say R. The two other rays plus
the infinitely many 2-fans meeting only these together contain a ray W 2 ! that
meets F infinitely often and is disjoint from R. Then for every R–W path P
we get a contradiction, as C(R,W,P ) is a circle meeting F in infinitely many
edges.

For a proof of (ii), note first that the minimal elements of Calg are indeed the
finite circuits and the edge sets of double rays in G. Indeed, these are clearly
in Calg and minimal. Conversely, given any element of Calg, a set D of edges
inducing even degrees at all the vertices, we can greedily find for any given edge
e 2 D a finite circuit or double ray with all its edges in D that contains e.
We may thus decompose D inductively into disjoint finite circuits and edge sets
of double rays, since deleting finitely many such sets from D clearly produces
another element of Calg, and including in each circuit or double ray chosen the
smallest undeleted edge in some fixed enumeration of D ensures that the entire
set D is decomposed. If D is minimal in Calg, it must therefore itself be a finite
circuit or the edge set of a double ray.

Consider a set F of edges that fails to meet some set D 2 Calg evenly; we
have to show that F also fails to meet some finite circuit or double ray evenly. If
|F \D| is odd, then this follows from our decomposition of D into disjoint finite
circuits and edges sets of double rays. We thus assume that F \D is infinite.
Since |G| is compact, we can find a sequence e1, e2, . . . of edges in F \D that
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converges to some end !. Let R1, R2, R3 be disjoint rays in !, which exist by
our assumption that ! has vertex-degree at least 3. Subdividing each edge ei

by a new vertex vi, and using that G is 2-connected, we can find for every i
a 2-fan from vi to W = V (R1 [ R2 [ R3) that has only its last vertices and
possibly vi in W . By Lemma 5, with w1, w2, . . . an enumeration of W , some
infinitely many of these fans are disjoint. Renaming the rays Ri and replacing
e1, e2, . . . with a subsequence as necessary, we may assume that either all these
fans have both endvertices on R1, or that they all have one endvertex on R1 and
the other on R2. In both cases all these fans avoid R3, so we can find a ray R
in the union of R1, R2 and these fans (suppressing the subdividing vertices vi

again) that contains infinitely many ei and avoids R3. Linking R to a tail of R3

we thus obtain a double ray in G that contains infinitely many ei, as desired.
To prove (iii), let D ✓ E be a set of edges that meets every bond evenly. We

have to show that D 2 B?, i.e., that D has an (only finite and) even number of
edges also in every cut that is not a bond.

As D meets every finite bond evenly, and hence every finite cut, it lies in
B?fin = Ctop. We claim that

D is a disjoint union of finite circuits. (?)

To prove (?), let us show first that every edge e 2 D lies in some finite
circuit C ✓ D. If not, the endvertices u, v of e lie in di↵erent components of
(V,Dr{e}), and we can partition V into two sets A,B so that e is the only A–B
edge in D. The cut of G of all its A–B edges is a disjoint union of bonds [4],
one of which meets D in precisely e. This contradicts our assumption that D
meets every bond of G evenly.

For our proof of (?), we start by enumerating D, say as D =: {e1, e2, . . . } =:
D0. Let C0 ✓ D0 be a finite circuit containing e0, let D1 := D0 rC0, and notice
that D1, like D0, meets every bond of G evenly (because C0 does). As before,
D1 contains a finite circuit C1 containing the edge ei with i = min{j | ej 2 D1}.
Continuing in this way we find the desired decomposition D = C1 [C2 [ . . . of
D into finite circuits. This completes the proof of (?).

As every finite circuit lies in B?, it su�ces by (?) to show that D is finite.
Suppose D is infinite, and let ! be an end of G in its closure. Let us say that
two rays R and R0 hug D if every neighbourhood U of ! contains a finite circuit
C ✓ D that is neither separated from R by R0 nor from R0 by R in U . We shall
construct two rays R and R0 that hug D, inductively as follows.

Let S0 = ;, and let R0, R0
0 be disjoint rays in !. (These exist as G is 2-

connected [9].) For step j � 1, assume that let Si, Ri, and R0
i have been defined

for all i < j so that Ri and R0
i each meet Si in precisely some initial segement

(and otherwise lie in C(Si,!)) and Si contains the ith vertex in some fixed
enumeration of V . If the jth vertex in this enumeration lies in C(Sj�1,!), add
to Sj�1 this vertex and, if it lies on Rj�1 or R0

j�1, the initial segement of that
ray up to it. Keep calling the enlarged set Sj�1. For the following choice of S
we apply Lemma 6 to Sj�1 and each of Rj�1 and R0

j�1. Let S ◆ Sj�1 be a finite
set such that from every vertex v in C(S,!) there are 3-fans in C(Sj�1,!) both
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to Rj�1 and to R0
j�1. By (?) and the choice of !, there is a finite circuit Cj ✓ D

in C(S,!). Then Cj can not be separated from Rj�1 or R0
j�1 in C(Sj�1,!)

by fewer than three vertices, and thus there are three disjoint paths from Cj to
Rj�1 [R0

j�1 in C(Sj�1,!).
There are now two possible cases. The first is that in C(Sj�1,!) the circuit

Cj is neither separated from Rj�1 by R0
j�1 nor from R0

j�1 by Rj�1. This case
is the preferable case. In the second case one ray separates Cj from the other.
In this case we will reroute the two rays to obtain new rays as in the first case.
We shall then ‘freeze’ a finite set containing initial parts of these rays, as well
as paths from each ray to Cj . This finite fixed set will not be changed in any
later step of the construction of R and R0. In detail, this process is as follows.

If C(Sj�1,!) contains both a Cj–Rj�1 path P avoiding R0
j�1 and a Cj–R0

j�1

path P 0 avoiding Rj�1, let Q and Q0 be the initial segments of Rj�1 and R0
j�1

up to P and P 0, respectively. Then let Rj = Rj�1 and R0
j = R0

j�1 and

Sj = Sj�1 [ V (P ) [ V (P 0) [ V (Q) [ V (Q0).

This choice of Sj ensures that the rays R,R0 constructed form the Ri and R0
i

in the limit will not separate each other from Cj , because they will satisfy
R \ Sj = Rj \ Sj and R0 \ Sj = R0

j \ Sj .
If the ray Rj�1 separates Cj from R0

j�1, let Pj be a set of three disjoint
Cj–R0

j�1 paths avoiding Sj�1. All these paths meet Rj�1. Let P1 2 Pj be
the path which Rj�1 meets first, and P3 2 Pj the one it meets last. Then
Rj�1 [ Cj [ P1 [ P3 contains a ray Rj with initial segment Rj�1 \ Sj�1 that
meets Cj but is disjoint from the remaining path P2 2 P and from R0

j�1. Let
R0

j = R0
j�1, and let Sj contain Sj�1 and all vertices of

S
Pj , and the initial

segments of Rj�1 and R0
j�1 up to their last vertex in

S
P. Note that Rj meets

Cj , and that P2 is a Cj–R0
j path avoiding Rj .

If the ray R0
j�1 separates Cj from Rj�1, reverse their roles in the previous

part of the construction.
The edges that lie eventually in Ri or R0

i as i !1 form two rays R and R0

that clearly hug D.
Let us show that there are two disjoint combs, with spines R and R0 re-

spectively, and infinitely many disjoint finite circuits in D such that each of the
combs has a tooth in each of these circuits. We build these combs inductively,
starting with the rays R and R0 and adding teeth one by one.

Let T0 = R and T 00 = R0 and S0 = ;. Given j � 1, assume that Ti, T 0i and
Si have been defined for all i < j. By Lemma 6 there is a finite set S ◆ Sj�1

such that every vertex of C(S,!) sends a 3-fan to R [ R0 in C(Sj�1,!). As R
and R0 hug D there is a finite cycle C in C(S,!) with edges in D, and which
neither of the rays R or R0 separates from the other. By the choice of S, no one
vertex of C(Sj�1,!) separates C from R[R0 in C(Sj�1,!). Hence by Menger’s
theorem there are disjoint (R[R0)–C paths P and Q in C(Sj�1,!). If P starts
on R and Q starts on R0 (say), let P 0 := Q. Assume now that P and Q start
on the same ray R or R0, say on R. Let Q0 be a path from R0 to C [ P [Q in
C(Sj�1,!) that avoids R. As Q0 meets at most one of the paths P and Q, we
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may assume it does not meet P . Then Q0 [ (Q r R) contains an R0–C path P 0

disjoint from P and R. In either case, let Tj = Tj�1 [ P , let T 0j = T 0j�1 [ P 0,
and let Sj consist of Sj�1, the vertices in C [P [P 0, and the vertices on R and
R0 up to their last vertex in C [ P [ P 0.

The unions T =
S

i2N Ti and T 0 =
S

i2N T 0i are disjoint combs that have teeth
in infinitely many common disjoint finite cycles whose edges lie in D. Let A be
the vertex set of the component of G � T containing T 0, and let B := V r A.
Since T is connected, E(A,B) is a bond, and its intersection with D is infinite
as every finite cycle that contains a tooth from both these combs meets E(A,B)
at least twice. This contradiction implies that D is finite, as desired.
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