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Paul Erdős has conjectured that Menger’s theorem extends to infinite
graphs in the following way: whenever A,B are two sets of vertices in
an infinite graph, there exist a set of disjoint A–B paths and an A–
B separator in this graph so that the separator consists of a choice of
precisely one vertex from each of the paths. We prove this conjecture for
graphs that contain a set of disjoint paths to B from all but countably
many vertices of A. In particular, the conjecture is true when A is

countable.

Introduction

If there is any conjecture in infinite graph theory whose fame has clearly

transcended the boundaries of the field, it is the following infinite version of

Menger’s theorem, conjectured by Erdős:

Conjecture. (Erdős)

Whenever A,B are two sets of vertices in a graph G, there exist a set of disjoint

A–B paths and an A–B separator in G so that the separator consists of a choice

of precisely one vertex from each of the paths.

Here, G may be either directed or undirected and either finite or infinite, and

‘disjoint’ means ‘vertex disjoint’. If G is finite, the statement is clearly a re-

formulation of Menger’s theorem. A set of A–B paths together with an A–B

separator as above will be called an orthogonal paths/separator pair .

We remark that the näıve infinite analogue to Menger’s theorem which

merely compares cardinalities, is considerably weaker and easy to prove. In-

deed, consider any inclusion-maximal set P of disjoint A–B paths. If P can

be chosen infinite then
⋃

P , which is trivially an A-B separator, still has size

only |P|. If not, then choose P of maximal (finite) cardinality, and there is

a simple reduction to the finite Menger theorem [ 5 ]. This was in fact first

observed by Erdős, and seems to have inspired his above conjecture as the

‘true’ generalization of Menger’s theorem.

Although Erdős’s conjecture has been proved for countable graphs [ 2 ], a

full proof still appears to be out of reach. However, no other conjecture in

infinite graph theory has inspired as interesting a variety of partial or related

results as this one; see [ 4 ] for a survey and list of references.
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The main aim of this paper is to prove a lemma which, in addition to

implying (with [ 2 ]) the results stated in the abstract, might play a role in an

overall proof of the conjecture by induction on the size of G. Briefly, the lemma

implies that if the conjecture is true for all graphs of size κ, where κ is any

infinite cardinal, then it is true also for arbitrary graphs provided the source

set A is no larger than κ. (In particular, we see that the conjecture holds for

any graph if A is countable.) Now if |A| = |G| = λ and the conjecture holds for

all graphs of size < λ, the lemma enables us to apply the induction hypothesis

to G with A replaced by its smaller subsets A′; we may then try to combine

the orthogonal paths/separator pairs obtained between these A′ and B to one

between A and B. We must point out, however, that such a proof of Erdős’s

conjecture will by no means be straightforward, and it is not the only possible

approach.

1. Definitions and statement of the main result

All the graphs we consider will be directed; undirected versions of our results

can be recovered in the usual way by replacing each undirected edge with two

directed edges pointing in opposite directions. An edge from a vertex x to a

vertex y will be denoted by xy. When G is a graph, then
←−
G denotes the graph

obtained from G by reversing all its edges.

Paths, likewise, will be directed, and we usually refer to them by their

vertex sequence. If P = x . . . y is a path and v, w are vertices on P in this

order, then vPw denotes the subpath of P from v to w. Similarly, we write Pv

and vP for initial and final segments of P , P v̊ for Pv− v, v̊P for vP − v, and

so on. If Q = y . . . z is another path, and P ∩Q = { y }, then PyQ denotes the

path obtained by concatenating P and Q.

Let X,Y be sets of vertices in a graph. An X–Y path is a path from X to

Y whose inner vertices are neither in X nor in Y . If x is a vertex, then a set

of {x }–Y paths that are disjoint except in x is an x–Y fan; the fan is onto if

every vertex in Y is hit. Similarly, a set of X–y paths that are disjoint except

in y is an X–y fan.

A warp is a set of disjoint paths. When W is a warp, we write V [W ]

for the set of vertices of the paths in W , and E[W ] for the set of their edges.

Similarly, we write in [W ] for the set of initial vertices of the paths in W , and

ter [W ] for the set of their terminal vertices. For a vertex x ∈ V [W ], we denote

the path in W containing x by QW(x), or briefly Q(x). For x /∈ V [W ], we put

QW(x) := {x }. A warp consisting of A–B paths is an A–B warp. By
←−
W we

denote the warp in
←−
G consisting of the reversed paths from W .*

* Clearly,
←−
←−
W = W . We shall use this fact as an excuse to denote warps in

←−
G , if they are

introduced afresh rather than being obtained from a warp in G, by
←−
W etc. straight away;
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Let G = (V,E) be a graph and A,B ⊆ V . Any such triple Γ = (G,A,B)

will be called a web. The web (
←−
G ,B,A) is denoted by

←−
Γ . An A–B warp W

with in [W ] = A is a linkage in Γ, and Γ is linkable if it contains a linkage.

A set S ⊆ V separates A from B in G if every path in G from A to B

meets S. Note that A and B may intersect, in which case clearly A∩B ⊆ S.

A warp W in G is called a wave in Γ if V [W ] ∩A = in [W ] and ter [W ]

separates A from B in G. The wave
{

(a) | a ∈ A
}

is called the trivial wave. If

W is a wave in Γ then Γ/W denotes the web

(

G− (A\in [W ])− (V [W ]\ter [W ]) , ter [W ] , B
)

.

In every web Γ = (G,A,B) there is a wave W such that Γ/W has no non-

trivial wave. (This is not difficult to see. If W0 is a wave in Γ and W1 is a

wave in Γ/W0, then W1 defines a wave in Γ in a natural way: just extend its

paths back to A along the paths of W0. This wave in Γ is ‘bigger’ than W0,

and chains of waves in Γ with respect to this order tend to an obvious limit

wave W , which consists of the paths that are eventually in every wave of the

chain. If the chain was maximal, then Γ/W has no non-trivial wave. See [ 2 ]

for details.)

A wave W in Γ is a hindrance if A\in [W ] 6= ∅; if Γ contains a hindrance,

it is called hindered . Note that every hindrance is a non-trivial wave. The

following was observed in [ 2 ]:

Erdős’s conjecture is equivalent to the assertion that every unhindered web is

linkable.

We are now in a position to state the main result proved in this paper.

(For the reasons explained earlier, and because it is of a technical nature, we

call it a lemma, not a theorem.)

Lemma 1. Let Γ = (G,A,B) be a web and J an A–B warp in G (possibly

empty). If |A\in [J ]| > |B\ter [J ]|, then Γ is hindered.

Lemma 1 will be proved in Sections 2 and 3. Our aim will be to turn

the given warp J , step by step, into a hindrance. This will require some

alternating path techniques; the definitions and lemmas needed are given in

Section 2. Section 3 is devoted to the main body of the proof of Lemma 1. In

Section 4 we look at the implications of the lemma for Erdős’s conjecture.

their reversals in G will then be denoted byW . The idea here is to avoid the counter-intuitive
practice of having a warp W in

←−
G and a resulting warp

←−
W in G. This convention, if not

its explanation, should help the reader to avoid any warps in his or her intuition when such
things are discussed briefly in Section 4.
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2. Alternating paths

Let Γ = (G,A,B) be a web, and let J be an A–B warp in G. A finite sequence

P = x0e0x1e1 . . . en−1xn of not necessarily distinct vertices xi and distinct

(directed) edges ei of G will be called an alternating path (with respect to J )

if the following three conditions are satisfied:

(i) for every i < n, either ei = xixi+1 ∈ E(G)\E[J ] or ei = xi+1xi ∈ E[J ];

(ii) if xi = xj for i 6= j then xi ∈ V [J ];

(iii) for every i, 0 6 i < n, if xi ∈ V [J ] then { ei−1, ei }∩E[J ] 6= ∅.

All the alternating paths we consider in this section will be alternating

paths in G with respect to J . Note that, by (iii) above, an alternating path

starting at a vertex of J has its first edge in J . As the edges of an alternating

path are pairwise distinct, it can visit any given vertex at most twice, and this

happens in essentially only two ways: if xi = xj for i < j < n, then xi ∈ V [J ]

by (ii), so by (iii)

either ei−1, ej ∈ E[J ] and ei, ej−1 /∈ E[J ] (Fig. 1 left)

or ei, ej−1 ∈ E[J ] and ei−1, ej /∈ E[J ] (Fig. 1 right).

FIGURE 1. Two alternating paths with respect to J

Note that initial segments of alternating paths are again alternating paths, but

final segments need not be. Finally, an ordinary path which avoids J or meets

it only in its last vertex is trivially an alternating path.

There are analogous alternating versions of the notions of X–Y path, X–

y fan and so on.

Lemma 2.1. If a ∈ A\in [J ] and b ∈ B\ter [J ], and if P = a . . . b is

an alternating path with respect to J , then G contains an A–B warp

J ′ such that in [J ′] = in [J ] ∪ { a } and ter [J ′] = ter [J ] ∪ { b } and

{Q ∈ J | P ∩Q = ∅ } ⊆ J ′.

Proof. Consider the graph on V [J ]∪ V (P ) whose edge set is the symmetric

difference of E[J ] and E(P ). The (undirected) components of this graph are

all finite. Considering their vertex degrees, we see that they are either A–B

paths or cycles avoiding A∪B (possibly trivial). The assertion follows. �
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Lemma 2.2. Let P1 = x0e0 . . . en−1xn and P2 = y0f0 . . . fm−1ym be alternat-

ing paths. If xn = y0, then there exists an alternating path P3 from x0 to ym
such that V (P3) ⊆ V (P1)∪V (P2) and E(P3) ⊆ E(P1)∪E(P2).

Proof. Let i 6 n be minimal such that there exists a j 6 m with the following

two properties:

(i) xi = yj ;

(ii) if xi ∈ V [J ], then either ei−1 ∈ E[J ] or fj ∈ E[J ].

(Note that such an i exists, because xn = y0 and P2 is an alternating path.

Moreover, j is easily seen to be unique.) Then x0e0 . . . ei−1xifj . . . fm−1ym is

an alternating path as desired. �

3. Proof of the main lemma

We now prove Lemma 1. As in the lemma, let Γ = (G,A,B) be a web, and let

J be an A–B warp in Γ. Let us write

A1 := in [J ] and A2 := A\A1

and

B1 := ter [J ] and B2 := B\B1,

and put κ := |B2|. We assume that |A2| > κ, and construct a hindranceW in Γ.

Again, all the alternating paths considered in this section will be alternating

paths in G with respect to J , unless otherwise stated.

Let us quickly dispose of the case when κ is finite. Assume that κ is

minimal such that the lemma fails. By Lemma 2.1 and the minimality of κ,

there is no alternating path from A2 to B2. For each path Q ∈ J , let x(Q)

denote the last vertex of Q that lies on some alternating path starting in A2;

if no such vertex exists, let x(Q) be the initial vertex of Q. We claim that

W := {Qx | Q ∈ J and x = x(Q) }

is a wave in G; since |A2| > κ > 0 and hence in [W ] = in [J ] $ A, this wave

W will be a hindrance and the lemma will be proved.

To show that W is a wave, we have to prove that ter [W ] separates A

from B. So let P be any A–B path. Since P is not an alternating path from

A2 to B2, it meets V [J ] and hence V [W ]; let y be its last vertex in V [W ], and

write Q := QJ (y) and x := x(Q). Suppose P avoids ter [W ]. Then x 6= y, and

so there exists an alternating path R from A2 to y which ends with an edge

of W . (Indeed, by definition of W , there is an alternating A2–x path R′; if x′

is the first vertex of R′ on ẙQx, then R′x′ followed by yQx′ in reverse order is
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an alternating path from A2 to y.) By definition of W , R avoids V [J ]\V [W ]

and is thus an alternating path with respect to W . Let z be the first vertex of

R on yP . Then either z = y or z /∈ V [W ], so RzP is again an alternating path

with respect to W . By definition of W , RzP avoids V [J ]\V [W ]. Therefore

zP avoids V [J ]\{ y } ⊇ B1. (Recall that y /∈ B, because y 6= x and hence

y ∈ Qx̊.) Thus RzP is an alternating path from A2 to B2, a contradiction.

We shall now assume that κ is infinite. To motivate our proof, let us

consider the (much easier) case of J = ∅. (This is an important special case,

and we recommend that the reader remain aware of it throughout the proof of

Lemma 1.) Assume Erdős’s conjecture as true, and let S be an A-B separator

as in the conjecture. Then |S| 6 |B| = κ. Let us think of the vertices in A as

being ‘to the left’ of S, and of those in B as ‘to its right’. Which other vertices

of G will be to the left of S? Surely those which cannot be separated from A

by 6 κ vertices, i.e. which are joined to A by a fan of size > κ. We shall call

these vertices ‘popular’. If a popular vertex is in S, it is the starting vertex

of a path to B that contains no other popular vertices; let us call such a path

‘lonely’, and its starting vertex ‘special’. The special vertices, i.e. the vertices

which are popular and from which we can get to B without hitting any other

popular vertex, are in a sense ‘rightmost’ among the popular vertices, even

when they are not in S. As we shall see, they turn out to be ‘close enough’ to

S that they themselves form the set of endvertices of a hindrance in Γ, which

is constructable without reference to S.

For the general case, we follow a similar approach, except that now all the

relevant paths and fans will be alternating. Let us call a vertex x ∈ V (G)\A1

popular if either x ∈ A2 or there exists an alternating A2–x fan of order > κ.

An alternating path P ending in B2 and with no inner vertex in A2 is called a

lonely path if all its vertices are unpopular, except possibly its starting vertex

and any vertices x ∈ V [J ] such that, if e is the edge following x on P , then

e /∈ E[J ]. (In the latter case, the edge preceding x on P must be the edge of J

starting in x.) Note that a final segment xieixi+1 . . . of a lonely path is again

lonely if and only if xi satisfies condition (iii) in the definition of an alternating

path, i.e. if and only if ei ∈ E[J ] when xi ∈ V [J ].

Our first lemma is merely a technical argument that will be used twice

later and has been extracted for economy. The first time we will use it is in the

proof of Lemma 3.2 below, and for motivation the reader may prefer to read

Lemma 3.2 and its proof first and then return to Lemma 3.1.

Lemma 3.1. Let α be a cardinal, L = {Lβ | β < α } a family of lonely paths,

andM = {Mβ | β < α } a family of pairwise disjoint alternating paths starting

in A2. Assume that, for each β < α, the last vertex of Mβ is the starting vertex

of Lβ. Then α 6 κ.

Proof. Suppose α > κ. For each β < α, let Pβ be an alternating path from

the starting vertex of Mβ to the final vertex of Lβ as provided by Lemma 2.2.
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Construct an undirected forest H =
⋃

β<α Hβ from these paths, as follows.

Let H0 be the undirected graph underlying P0. Now let β < α be given, and

assume that Hγ has been defined for every γ < β. Let zβ denote the first vertex

of Pβ that is in B2 ∪V (H−

β ), where H−

β :=
⋃

γ<β Hγ , and let Hβ be the union

of H−

β with the undirected graph underlying Pβzβ. (If zβ occurs twice on Pβ ,

we take Pβzβ to stop at the first occurrence of zβ.) Since |B2| 6 κ and every

path Pβ ends in B2, H has at most κ components. One of these components

must have size > κ, so it contains a vertex z of degree > κ. Then z lies on > κ

of the paths Pβ , so z = zβ for every β in some set ∆ ⊆ α of size > κ.

Let

F := {Pβz | β ∈ ∆ }.

Note that the paths in F are pairwise disjoint except for z, so F is an alternating

A2–z fan. Hence, z is popular. As the paths Mβ are pairwise disjoint, we have

z /∈ Mβ for all but at most one β ∈ ∆; let us delete this one β from ∆ if it

exists. Now for all β ∈ ∆, we have that z ∈ Lβ and z is not the starting vertex

of Lβ (since this is on Mβ).

Now consider any β ∈ ∆. Since Lβ is a lonely path and z is popular but

not the starting vertex of Lβ, we have z ∈ V [J ], and if e denotes the edge

following z on Lβ then e /∈ E[J ]. (Note that e exists, because z ∈ V [J ] but

Lβ ends in B2.) Since Lβ is alternating, this means that the edge f preceding

z on Lβ must be the edge of J starting at z (and such an edge exists). Since

z /∈ Mβ , the edge of Pβ preceding z is precisely this edge f .

As β was chosen arbitrarily, this is true for every β ∈ ∆ and thus contra-

dicts the fact that for these β the paths Pβ z̊ are disjoint. �

If the starting vertex of a lonely path is popular, then this vertex is called

special ; the set of all special vertices outside V [J ] is denoted by S. Special

vertices will be our prime candidates for the terminal vertices of the hindrance

we are seeking to construct. Since the corresponding paths of the hindrance will

have to be constructed from the fans connecting A2 to these terminal vertices

(making them popular), it is important that there are fewer special vertices to

be connected in this way than there are connecting paths available from those

fans.

Lemma 3.2. There are at most κ special vertices.

Proof. Suppose that { sβ | β < κ+ } is a set of distinct special vertices, where

κ+ is the successor cardinal of κ. For each β, let Lβ be a lonely path starting

at sβ . Using the popularity of the sβ , we may inductively choose a family

{Mβ | β < κ+ } of pairwise disjoint alternating paths Mβ from A2 to sβ . This

contradicts Lemma 3.1. �

Let E denote the set of all those edges in G that lie on some lonely path,

and let K be the graph

K :=
⋃

J −E.
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Let P be the set of all those (undirected) components of K that contain a spe-

cial vertex or a vertex from A. (Thus, P is a set of pairwise disjoint subpaths

of paths in J .) Let

T := {x ∈ V (G) | x is the last vertex on some P ∈ P } .

We shall define our desired hindrance W in such a way that

ter [W ] = S ∪T.

Lemma 3.3. If P = x . . . y is a non-trivial component of K and x /∈ A, then

x is special (and hence P ∈ P and y ∈ T ).

Proof. Let r be the predecessor and s the successor of x onQ(x). Then rx ∈ E,

so there exists a lonely path starting at x with the edge rx. But preceding this

path with s does not yield another lonely path (since xs ∈ E(P ), and hence

xs /∈ E). Therefore x must be popular (see the definition of lonely paths), and

hence special. �

To constructW , let us start from P . Let W0 be the set of all paths P ∈ P

that start in A. (These paths may be entire paths from J , and they may be

trivial.) Our aim is to completeW0 to our desired waveW by paths of the form

a . . . xPy, where a ∈ A2 and P = x . . . y is a path as in Lemma 3.3, together

with paths a . . . s where again a ∈ A2 and either s ∈ S or s is a special vertex

in V [J ] making up a singleton component of K. It will not be possible to

constructW in exactly this way, because the required paths may interfere with

the paths in W0. However, such interference will be limited by Lemmas 3.1

and 3.2, and can therefore be overcome by the alternating path tools developed

in Section 2.

Let

S′ = { sζ | ζ < ν 6 κ }

be a well-ordering of those special vertices that are either in S or else are the

initial vertex of some (possibly trivial) path P ∈ P (cf. Lemma 3.2). For each

ζ < ν in turn, we shall choose an alternating path Pζ from A2 to sζ , with the

following properties:

(i) Pζ ∩Pξ = ∅ for all ξ < ζ;

(ii) Pζ ∩QJ (s) ⊆ { sζ } for all s ∈ S′;

(iii) if Q ∈ J and ξ < ζ are such that Pξ ∩Q 6= ∅, then Pζ ∩Q ⊆ { sζ };

(iv) E(Pζ)∩E = ∅.

Let ζ < ν be given, and assume that paths Pξ for all ξ < ζ have been chosen

in accordance with (i)–(iv). By (ii), none of these paths contains (s =)sζ . Since

sζ is popular, there is an alternating A2–sζ fan F of size > κ. Clearly, at most

κ of the paths in F meet any of the paths Pξ (ξ < ζ) or Q(s) for s ∈ S′, except,
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for the latter, in sζ . Similarly, at most κ of the paths in F meet (in a vertex

6= sζ) any path Q ∈ J that is hit by some Pξ with ξ < ζ. By Lemma 3.1, at

most κ paths of F have an edge in E. (It is straightforward to check that the

first edge in E on any path in F starts a lonely path.) We may thus choose Pζ

from the paths in F according to (i)–(iv).

Lemma 3.4. For every ζ < ν, we have E(Pζ)∩E[J ] ⊆ E[W0]. Thus, Pζ is

in fact an alternating path with respect to W0.

Proof. If e ∈ E(Pζ)∩E[J ] then, by (iv) above, there is a component P of K

containing e. By (ii), the initial vertex of P is not in S′, and is therefore not

special. By Lemma 3.3, therefore, the starting vertex of P must be in A, and

so P ∈ W0. �

Applying Lemma 2.1 ν times with the paths Pζ , we now turn W0 into a

warp from A onto ter [W0]∪S′ with at most κ initial points in A2. (Here we use

that fact that, by (iii) above, no two of the alternating paths Pζ use the same

path in W0 to alternate on.) By (ii) above, the paths in P that start at the

vertices in S′\S extend this warp to a warpW . By Lemma 3.3, ter [W ] = S∪T

as desired.

To prove that W is a wave in Γ, it remains to show that the set

S ∪ T separates A from B; note that then W is also a hindrance, since

|in [W ]∩A2| = |S′| 6 κ by construction.

In order to prove that S ∪ T separates A from B, consider any A–B path

P = a . . . b in G. Suppose P avoids S ∪T .

Lemma 3.5. Either b ∈ B2, or b is the final vertex of an edge in E ∩E[J ]. In

either case, b is not special but starts a lonely path.

Proof. Suppose first that b ∈ B2. Then b is not special, because b /∈ S.

Moreover, { b } is a trivial lonely path.

Suppose now that b ∈ B1, and let P ′ = x . . . b be the component of K

containing b. As b /∈ T , we have P ′ /∈ P , so x /∈ A and neither x nor b is special.

By Lemma 3.3, therefore, P ′ is trivial, i.e. b = x /∈ A. The edge e of J that

ends in b is therefore in E, and hence lies on a lonely path. The final segment

of this lonely path that starts at b (with e as its first edge) is again a lonely

path, because e ∈ E[J ]. �

Lemma 3.6. The vertex a does not lie on a lonely path.

Proof. If a ∈ A2, then a is popular by definition, so being on—and hence

starting—a lonely path would imply a ∈ S. If a ∈ A1 and a lies on a lonely

path, then this path uses the edge of J starting at a. Then { a } is a component

of K, and hence a trivial path in W0 and in W , giving a ∈ T . �
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Let x be the last vertex of P that is not on any lonely path, and let y be

the vertex following x on P . Let L be a lonely path containing y. Then

(3.7) x /∈ L, and xyL is not a lonely path.

Since y /∈ T , y can only be in V [J ] if the edge of J ending in y is in E.

(Recall that L must use an edge of J incident with y, and apply Lemma 3.3.)

We may therefore make the following assumption:

(3.8) If y ∈ V [J ], then L starts at y (with the edge of J that ends in y).

Lemma 3.9. The vertex y is popular.

Proof. If y is not popular, then xyL can fail to be a lonely path only if it fails

to be an alternating path. By (3.7) and (3.8), this can happen only if x ∈ V [J ]

and xyL fails to start with an edge of J . But x /∈ B, so x has a successor

q on Q(x). By (3.7) and (3.8), we have q 6= y. Now qxyL is a lonely path

(possibly containing q twice) that contradicts the choice of x. �

Let z be the last popular vertex on P . Then z 6= b, because b is unpopular

by Lemma 3.5. As z ∈ yP by Lemma 3.9, the choice of x and definition of y

imply that z lies on some lonely path. But then z ∈ V [J ], say z ∈ Q ∈ J :

otherwise the final segment of this lonely path that starts at z would again be

lonely, and the popularity of z would mean that z ∈ S. Let q be the vertex

following z on Q, and let t be the vertex following z on P .

Lemma 3.10. zq /∈ E.

Proof. Let p be the vertex preceding z on Q. (This exists, since z 6= a.) If

zq ∈ E, then pz /∈ E: otherwise z would be not only popular but special, giving

{ z } ∈ P and z ∈ T . But if pz /∈ E, then zq ∈ E implies by Lemma 3.3 that

z ∈ T , a contradiction. �

Since t ∈ yP , there is a lonely path M containing t. As with y in (3.8), we

may assume the following:

(3.11) If t ∈ V [J ], then M starts at t (with the edge of J that ends in t).

By Lemma 3.10, zq is not an edge of M . By (3.11), this means that t 6= q;

in particular, zq and zt are distinct edges. Moreover, zt is not an edge of M ,

since then M would have to use its starting edge again. Therefore, qztM is an

alternating path. Since t is not popular (by the choice of z), this means that

qztM is even a lonely path. (Note that zt is a ‘real’ edge, not the reverse of a

J -edge, so the popularity of z does not prevent this path from being lonely.)

This, however, contradicts Lemma 3.10, completing the proof of Lemma 1.
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4. Consequences

In this section we apply Lemma 1 to deduce some concrete partial results

towards Erdős’s conjecture. First, we need another lemma.

Lemma 4.1. Let κ be an infinite cardinal. If Erdős’s conjecture holds for

all graphs of order 6 κ, then it holds for all webs Γ = (G,A,B) such that

|A|, |B| 6 κ.

Proof. Let Γ = (G,A,B) be a web with |A|, |B| 6 κ, and assume the conjecture

holds for every graph of order 6 κ. Let G′ be obtained from G by adding all

edges xy such that G contains a set of > κ independent x–y paths (i.e. paths

that are disjoint except in x and y). To prove the conjecture for Γ, it suffices

to find an orthogonal paths/separator pair (P , S) for Γ′ := (G′, A,B). Indeed,

then S is clearly also an A–B separator in G. As for the paths in P , their

foreign edges can be replaced inductively by paths in G whose interiors avoid

each other and all the paths in P (since |P| 6 κ), giving an A–B warp in G.

We thus obtain an orthogonal pair for Γ.

Let G′′ be the union of all minimal A–B paths in G′. (A path P = a . . . b is

minimal if G′ contains no a–b path Q with V (Q) $ V (P ).) It is now sufficient

to find an orthogonal paths/separator pair for Γ′′ = (G′′, A,B), which will

clearly also be an orthogonal pair for Γ′. It thus suffices to show that |G′′| 6 κ.

Suppose |G′′| > κ, and consider a set X ⊆ V (G′′)r (A∪B) of size > κ, say

X = { xβ | β < α }. (Recall that |A|, |B| 6 κ by assumption.) For each β < α,

use the definition of G′′ to find a minimal A–B path Pβ in G′ containing xβ .

For all β < α, define inductively P ′
β as the maximal final segment of Pβxβ

that meets
⋃

γ<β P
′
γ at most in its starting vertex sβ . Since |A| 6 κ, there is

a vertex s ∈ G′′ such that s = sβ for every β in some set ∆ ⊆ α of size > κ.

Then F1 :=
⋃

β∈∆
sPβxβ is a fan from s onto Y := { xβ |β ∈ ∆ }.

Similarly,
⋃

β∈∆ xβPβ contains a fan F2 from some set Z ⊆ Y of size > κ

to a vertex t. Clearly, F2 may be chosen so that no two of its paths meet a

common path of F1. It is then easy to combine F1 and F2 into a set of > κ

independent s–t paths in G′′. Thus st is an edge of G′, by definition of G′.

But s and t are non-consecutive vertices on some common path Pβ (take any

β such that xβ ∈ Z), which contradicts the minimality of Pβ . �

Combining Lemma 1 and Lemma 4.1, we can now easily prove the follow-

ing.

Theorem 4.2. Let κ be an infinite cardinal. If Erdős’s conjecture holds for all

graphs of order 6 κ, then it holds for all webs Γ = (G,A,B) such that |A| 6 κ.

Proof. Let Γ = (G,A,B) be a web with |A| 6 κ. Let
←−
W be a wave in

←−
Γ such

that
←−
Γ′ :=

←−
Γ /
←−
W has no non-trivial wave. Let B′ := ter [

←−
W ], and let H ⊆ G be

such that
←−
Γ′ = (

←−
H ,B′, A). (In other words, take the underlying graph of

←−
Γ′ ,
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reverse its edges, and call the resulting graph H .) Since
←−
Γ′ is unhindered, we

have |B′| 6 |A| 6 κ by Lemma 1. Now if the conjecture holds for all graphs

of size 6 κ, then by Lemma 4.1 it holds for
←−
Γ′ , and there is a warp

←−
J in

←−
Γ′

together with a B′–A separator S in
←−
H consisting of a choice of one vertex

from each path in
←−
J . But S is also a B–A separator in

←−
G (because ter [

←−
W ] is

one) and hence an A–B separator in G. Thus S, together with J followed by

a suitable subset of W , is an orthogonal paths/separator pair for Γ. �

Corollary 4.3. Erdős’s conjecture is valid for all webs Γ = (G,A,B) in which

A is countable.

Proof. By Theorem 4.2 and the fact that the conjecture holds for countable

graphs [ 2 ]. �

Not surprisingly, Corollary 4.3 on its own does not need the full strength of

Lemma 1. In fact, with hindsight, it is not too difficult to deduce the corollary

directly from the main result of [ 3 ].

We conclude this section with an application of Lemma 1 to webs that

come with a partial linkage.

Theorem 4.4. Let Γ = (G,A,B) be a web, and assume that G contains an

A–B warp J such that A\in [J ] is countable. Then Erdős’s conjecture holds

for Γ.

Proof. As in the proof of Theorem 4.2, we let
←−
W be a wave in

←−
Γ such that

←−
Γ′ :=

←−
Γ /
←−
W has no non-trivial wave. Let B′ := ter [

←−
W ], and let H ⊆ G be

such that
←−
Γ′ = (

←−
H ,B′, A). Then

←−
Γ′ is unhindered, and the final segments

in
←−
H of the paths in

←−
J form a B′–A warp

←−
J ′ in

←−
H . By Lemma 1, we have

|B′\in [
←−
J ′]| 6 |A\ter [

←−
J ′]| = |A\in [J ]| 6 ℵ0.

But such unhindered ‘countable-like’ webs as
←−
Γ′ are linkable [ 3 ]L̇et

←−
L be a

B′–A linkage in
←−
H . The concatenations of the paths in L with their unique

extensions in W then form an A–B warp in Γ, and B′ is an A–B separator in

G consisting of a choice of one vertex from each path in this warp. �
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