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Abstract

We show that the topological cycle space of a locally finite graph is a
canonical quotient of the first singular homology group of its Freudenthal
compactification, and we characterize the graphs for which the two coin-
cide. We construct a new singular-type homology for non-compact spaces
with ends, which in dimension 1 captures precisely the topological cycle
space of graphs but works in any dimension.

1 Introduction

Graph homology is traditionally, and conveniently, simplicial: a graph G is
viewed as a 1-complex, and one considers its first simplicial homology group.
In graph theory, coe�cients are typically taken from a field such as F2, R or C,
which makes the group into a vector space called the cycle space of G.

For reasons to become apparent later we denote this space as Cfin = Cfin(G).
For the moment it will su�ce to take our coe�cients from F2 and interpret the
elements of Cfin as sets of edges. For finite graphs G, there are a number of
classical theorems relating Cfin(G) to other properties of G, such as planarity.
(Think of MacLane’s or Whitney’s theorem, or the Kelmans-Tutte planarity
criterion.) The cycle space Cfin has thus become one of the standard aspects of
finite graphs used in their structural analysis.

When G is infinite, however, the space Cfin no longer adequately describes
the homology of G. Most of the theorems describing the interaction of Cfin with
other properties of G—including all those cited above—fail when G is infinite.
However, the traditional role of the cycle space in these cases can be restored by
defining it slightly di↵erently: when G is locally finite, one takes as generators
not the edge sets of the (finite) cycles in G—as one would to generate Cfin—but
the (possibly infinite) edge sets of all its topological circles, the homeomorphic
images of the circle S1 in the Freudenthal compactification |G| of G by its ends.
(One also has to allow infinite sums in the generating process; for these to be
well-defined, each edge may occur in only finitely many terms.) We denote this
more general space, the topological cycle space of G, by C = C(G).

The space C had not been considered in graph theory before [15] appeared,
and it has been surprisingly successful at extending the classical cycle space
theory of finite graphs to locally finite graphs; see e.g. [3, 4, 5, 8, 26, 38], or [13]
for a survey. However, a question raised in [10] but still unanswered is how new,
from a topological viewpoint, is the homology described implicitly by C. It is
the purpose of this paper to clarify this relationship.
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Our first result says that there is indeed a classical homology theory whose
first group is isomorphic to C: the Čech homology of |G|. However, the group
of C(G) as such does not carry all the information that makes it relevant to
the study of the (combinatorial) structure of G; one also needs to know, for
example, which group elements correspond to circuits and which do not. These
details are lost in the transition between C and the Čech homology, which is
why we do not pursue this approach further.

Since topological circles are (images of simplices representing) singular 1-
cycles in |G|, it is also natural to ask how closely C(G) is related to the first
singular homology group of |G|. Indeed it is not clear whether the two coincide
by some natural canonical isomorphism, so that C(G) would be just another
way of looking at H1(|G|).

Our first major aim in this paper is to answer this question. We begin by
studying the homomorphism f : H1(|G|)! C(G) that should serve as the desired
canonical isomorphism if indeed there is one. Surprisingly, this homomorphism
is easily seen to be surjective. However, it turns out that it usually has a
non-trivial kernel. Thus C(G), despite looking ‘larger’ because we allow infinite
sums in its generation from elementary cycles, turns out to be a (usually proper)
quotient of H1(|G|).

For the proof that f has a non-trivial kernel we have to go some way towards
the solution of another problem (solved fully in [20]): to find a combinatorial
description of the fundamental group of the space |G| for an arbitrary connected
locally finite graph G.1 We describe ⇡1(|G|), as for finite G, in terms of reduced
words in the oriented chords of a spanning tree. However, when G is infinite this
does not work for arbitrary spanning trees; we have to allow infinite words of any
countable order type; and reduction by cancelling adjacent inverse sequences of
letters does not su�ce. However, the kind of reduction we need can be described
in terms of word reductions in the free groups FI on all the finite subsets I of
chords, which enables us to embed the group F1 of infinite reduced words in
the inverse limit of those FI , and handle it in this form. On the other hand,
mapping a loop in |G| to the sequence of chords it traverses, and then reducing
that sequence (or word), turns out to be well defined on homotopy classes and
hence defines an embedding of ⇡1(|G|) as a subgroup in F1. This combinatorial
description of ⇡1(|G|) then enables us to define an invariant on 1-chains in |G|
that can distinguish some elements of the kernel of f from boundaries of singular
2-chains, completing the proof that f need not be injective.

Our second aim, then, is to begin to reconcile these di↵erent treatments of
the homology of non-compact spaces between topology and graph theory. In
Section 7 we present a first solution to this problem: we define a natural singular-
type homology which, applied to graphs, captures precisely their topological
cycle space. Essentially, we shall allow infinite sums of cycles and boundaries
when building their respective groups, but start from finite chains with zero
boundary as generators. Thus, topological circles are 1-cycles, as desired. But
if G is a 2-way infinite path, then its edges form an infinite 1-chain with zero
boundary that is not a 1-cycle, because it is not a (possibly infinite) sum of finite

1Covering space theory does not apply since, trivial exceptions aside, |G| is not semi-locally
simply connected at ends.
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1-cycles. Our homology thus lies between the usual singular homology and the
‘open homology’ that is built from arbitrary locally finite chains without any
further restriction (see, eg, [25, Ch. 8.8]).

Formally, we define our homology in Section 7 in a very general setting:
all we require is a topological space in which some points are distinguished as
‘ends’. A drawback of this combination of simplicity with generality is that
although we can define the groups as desired, our definitions do not lead to a
homology theory in the full axiomatic sense. However, it is possible to do that
too: to construct a singular homology theory that does satisfy the axioms and
which, for graphs, is equivalent to the homology of Section 7 and hence to the
topological cycle space. We may thus view our intuitive homology of Section 7
as a stepping stone towards this more general theory, to be developed in [22],
which will work for any locally compact space with ends. In both settings, ends
play a role that di↵ers crucially from that of ordinary points, which enables this
homology to capture the properties of the space itself in a way similar to how
the topological cycle space describes a locally finite graph.

Our hope with this paper is to stimulate further work in two directions. One
is that its new topological guise makes the cycle space C accessible to topolog-
ical methods that might generate some windfall for the study of graphs. And
conversely, that as the approach that gave rise to C is made accessible to more
general spaces and higher dimensions, its proven usefulness for graphs might
find some more general topological analogues—perhaps based on the homology
theory developed in [22] from the ideas presented in this paper.

2 Terminology and basic facts

In this section we briefly run through any non-standard terminology we use.
We also list without proof a few easy lemmas that we shall need, and use freely,
later on.

For graphs we use the terminology of [11], for topology that of Hatcher [30].
We reserve the word ‘boundary’ for homologousal contexts and use ‘frontier’
for the closure of a set minus its interior. Our use of the words ‘path’, ‘cycle’
and ‘loop’, where these terminologies conflict, is as follows. The word path is
used in both senses, according to context (such as ‘path in X’, where X was
previously introduced as a graph or as a topological space). Note that while
topological paths need not be injective, graph-theoretical paths are not allowed
to repeat vertices or edges. The term cycle will be used in the topological sense
only, for a (usually 1-dimensional) singular chain with zero boundary. When
we do need to speak about graph-theoretic cycles (i.e., about finite connected
graphs in which every vertex has exactly two incident edges) we shall instead
refer to the edge sets of those graphs, which we shall call circuits. Our graphs
may have multiple edges but no loops. This said, we shall from now on use the
term loop topologically: for a topological path � : [0, 1]! X with �(0) = �(1).
This loop is based at the point �(0). Given any path � : [0, 1] ! X, we write
�� : s 7! �(1 � s) for the inverse path. An arc in a topological space is a
subspace homeomorphic to [0, 1].
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Lemma 1 ([29, p. 208]). The image of a topological path with distinct end-
points x, y in a Hausdor↵ space X contains an arc in X between x and y.

All homotopies between paths that we consider are relative to the first and
last point of their domain, usually {0, 1}. We shall often construct homotopies
between paths segment by segment. The following lemma enables us to combine
certain homotopies defined separately on infinitely many segments.

Lemma 2. Let ↵,� be paths in a topological space X. Assume that there is a
sequence (a0, b0), (a1, b1), . . . of disjoint subintervals of [0, 1] such that ↵ and �
conincide on [0, 1] \

S
n(an, bn), while each segment ↵ � [an, bn] is homotopic in

↵([an, bn]) [ �([an, bn]) to � � [an, bn]. Then ↵ and � are homotopic.

Proof. Write D :=
S

n(an, bn). For every n 2 N let Fn = (fn
t )t2[0,1] be a

homotopy in ↵([an, bn]) [ �([an, bn]) between ↵ � [an, bn] and � � [an, bn]. We
define the desired homotopy F = (ft)t2[0,1] between ↵ and � as

ft(x) :=

(
fn

t (x) if x 2 (an, bn),
↵(x) = �(x) if x 2 [0, 1] \ D.

Clearly, f0 = ↵ and f1 = �. It remains to prove that F is continuous.
Let x, t 2 [0, 1] and a neighbourhood U of F (x, t) in X be given. We find an

" > 0 so that F ((x�", x], (t�", t+")) ✓ U ; the case F ([x, x+"), (t�", t+")) ✓ U
is analogous. Suppose first that there is an "0 > 0 such that (x�"0, x) ✓ D. As
the intervals (ai, bi) are disjoint, this means that (x�", x) ✓ (an, bn) for some n.
Then (x�"0, x] ✓ [an, bn], and hence F �(x�"0, x]⇥[0, 1] = Fn �(x�"0, x]⇥[0, 1].
As Fn is continuous, there is an " < "0 with F ((x� ", x], (t� ", t + ")) ✓ U .

Now suppose that for every " > 0 the interval (x � ", x) meets [0, 1] \ D.
Then also x 2 [0, 1] \ D, and hence F (x, t) = ↵(x) = �(x). Pick " > 0 with
x� " 2 [0, 1] \ D small enough that both ↵ and � map [x� ", x] into U . Then
F ((x� ", x], (t� ", x + ")) ✓ U . Indeed, for every x0 2 (x� ", x] \ D and every
t0 2 (t � ", t + ") we have F (x0, t0) = ↵(x0) = �(x0) 2 U . On the other hand,
for every x0 2 (x � ", x] \ D and t0 2 (t � ", t + ") we have x0 2 (an, bn) for
some n. As x and x� " lie in [0, 1] \D, we have (an, bn) ✓ (x� ", x) and hence
F (x0, t0) = Fn(x0, t0) 2 ↵([an, bn]) [ �([an, bn]) ✓ U .

All the CW-complexes we consider will be locally finite: every point has
an open neighbourhood meeting only finitely many cells. Note that a compact
subset of such a complex can meet the closures of only finitely many cells, and
that locally finite CW-complexes are metrizable [35, Ch. II, Prop. 3.8] and thus
first-countable.

Locally finite CW-complexes can be compactified by adding their ends. This
compactification can be defined, without reference to the complex, for any con-
nected, locally connected, locally compact topological space X with a count-
able basis. Very briefly, an end of X is an equivalence class of sequences
U1 ◆ U2 ◆ . . . of connected non-empty open sets with compact frontiers and
an empty overall intersection of closures,

T
n Un = ;, where two such sequences

(Un) and (Vm) are equivalent if every Un contains all su�ciently late Vm and
vice versa. This end is said to live in each of the sets Un, and every Un together
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with all the ends that live in it is open in the space whose point set is the union
of X with the set ⌦(X) of its ends and whose topology is generated by these
open sets and those of X. This is a compact space, the Freudenthal compacti-
fication of X [23, 24]. More topological background on this can be found in [2,
Ch. I.9]; for applications to groups see e.g. [36, 37, 40, 41].

For graphs, ends and the Freudenthal compactification are more usually de-
fined combinatorially, as follows [11, Ch. 8.5], [28, 33]. Let G be a connected
locally finite graph. A 1-way infinite path in G is a ray. Two rays are equivalent
if no finite set of vertices separates them in G, and the resulting equivalence
classes are the ends of G. It is not hard to see that this combinatorial defini-
tion of an end coincides with the topological one given earlier for locally finite
complexes.2 The Freudenthal compactification of G is now denoted by |G|; its
topology is generated by the open sets of G itself (as a 1-complex) and the sets
Ĉ(S,!) defined for every end ! and every finite set S of vertices, as follows.
C(S,!) =: C is the unique component of G� S in which ! lives (i.e., in which
every ray of ! has a tail, or subray), and Ĉ(S,!) is the union of C with the set
of all the ends of G that live in C and the (finitely many) open edges between
S and C.3 Note that the frontier of Ĉ(S,!) in |G| is a subset of S, and that
every ray converges to the end containing it. See [13] for (much) more on |G|.

The end structure of G is best reflected by a normal spanning tree; such trees
exist in every connected countable graph [11, 32]. A spanning tree T of G with
root r is normal if the vertices u, v of every edge e = uv of G are comparable
in the order  which (T, r) induces on V (G). (Recall that u  v if u lies on the
unique r–v path rTv of T between r and v.) A key property of normal spanning
trees is that the intersection of the down-closures of two vertices separates them
in G. This implies that every end of G is represented by a unique ray in T
starting at r, and hence that adding all the ends of G to T does not create any
circles. More generally, it is not hard to prove the following:

Lemma 3. Let T be a normal spanning tree of G, and let T := T [⌦(G) denote
its closure in |G|. Then for every closed connected set X ✓ T and x 2 X there
is a deformation retraction of X onto x.

Proof. Let X be a closed connected subset of T , and let x 2 X. Then X is also
closed in |G| and hence arc-connected [17, Theorem 2.6]. For every y 2 X there
is a unique x–y arc xTy in T [11, Theorem 8.5.7] which hence lies in X. The
space T is metrizable so that every edge between levels n and n + 1 has length
1/2n+1 and hence every end has distance 1 from the root [12]. X inherits this
metric d, note that d(x, y)  2 for all y 2 X. Further, if z 2 yTy0 for some
y, y0 2 T we have d(y, y0) = d(y, z) + d(z, y0). We construct a homotopy F in T
from the identity on T to the map T ! {x}; then we have F (y, t) 2 xTy ✓ X
for every y 2 X and t 2 [0, 1], and hence F � (X ⇥ [0, 1]) will be the desired
homotopy for X. For every y 2 T and t 2 [0, 1] let F (y, t) be the unique point
on xTy at distance (1� t)d(x, y) from x.

For the proof that F is continuous, we show that d(F (y, t), F (y0, t))  d(y, y0)
2For graphs that are not locally finite, the two concepts di↵er [14].
3The definition given in [11] is formally more general, but equivalent to the simpler defini-

tion given here when G is locally finite. Generalizations are studied in [34, 39].
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for every y, y0 2 T and t 2 [0, 1]; then for every " > 0 and every y, y0 2 T with
d(y, y0) < "/3 and t, t0 2 [0, 1] with |t� t0| < "/3 we have

d(F (y, t), F (y0, t0))  d(F (y, t), F (y0, t)) + d(F (y0, t), F (y0, t0))
 d(y, y0) + |t� t0| · d(x, y0)
< "/3 + ("/3) · 2 = ".

As xTy and xTy0 are closed, there is a last z point on xTy that is also in xTy0. As
T contains a unique arc between any two points in T , we have yTy0 = yTz[zTy0

and hence d(y, y0) = d(y, z) + d(z, y0). If F (y, t) 2 zTy and F (y0, t) 2 zTy0,
then d(F (y, t), F (y0, t))  d(F (y, t), z) + d(z, F (y0, t))  d(y, z) + d(z, y0) =
d(y, y0). Otherwise both F (y, t) and F (y0, t) are contained in xTy or in xTy0. In
particular, one of F (y, t), F (y0, t) lies on the arc between the other and x. Then
d(F (y, t), F (y0, t)) = |d(x, F (y, t))�d(x, F (y0, t))| = (1� t) · |d(x, y)�d(x, y0)| 
d(y, y0).

Lemma 3 implies that T contains no topological circle. Equivalently: for
any two points x, y 2 T there is a unique arc in T between x and y. We denote
this arc by xTy. The uniqueness of xTy implies that none of its inner points
can be an end. (Every arc containing an end also contains a vertex, and any
two vertices of T can also be joined by an arc in T itself.)

When T is a normal spanning tree of G, every end ! in |G| has a neighbour-
hood basis consisting of open sets Ĉ = Ĉ(S,!) such that S is closed downwards,
i.e. where s0  s 2 S implies s0 2 S. We call these sets Ĉ the basic open neigh-
bourhoods of the ends4 of G (given T ). An important property of these sets is
that for any two points x, y 2 Ĉ we also have xTy ✓ Ĉ.

Now let S0 = S[N(S), the (finite) set of vertices in S and their neighbours.
We call the subset Ĉ(S0,!) of C(S,!) the inside of Ĉ(S,!) around !. Note
that the neighbours v of vertices u 2 C(S0,!), as well as the edges uv, also lie
in C(S,!).

More background on normal spanning trees, including an existence proof,
can be found in [11, Ch. 8], [18, 19].

Let us now introduce the topological cycle space C of G. This is usually
defined over F2 (which su�ces for its role in graph theory), but we wish to
prove our main results more generally with integer coe�cients. (The F2 case
will follow, but it should be clear right away that the non-injectivity of our ho-
momorphism H1 ! C is not just a consequence of a wrong choice of coe�cients.)
We therefore need to speak about orientations of edges.

An edge e = uv of G has two directions, (u, v) and (v, u). A triple (e, u, v)
consisting of an edge together with one of its two directions is an oriented edge.
The two oriented edges corresponding to e are its two orientations, denoted by
!e and  e. Thus, {!e,  e} = {(e, u, v), (e, v, u)}, but we cannot generally say which
is which. However, from the definition of G as a CW-complex we have a fixed
homeomorphism ✓e : [0, 1]! e. We call (✓e(0), ✓e(1)) the natural direction of e,
and (e, ✓e(0), ✓e(1)) its natural orientation.

4The basic open neighbourhoods of a point x 2 G are the connected open neighbourhoods
of x containing no vertex other than possibly x.
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Given a set E of edges in G, we write
!
E for the set of their orientations, two

for every edge in E. Given a partition (U, V ) of the vertex set of G, we write
!
E(U, V ) for the set of all its oriented edges (e, u, v) with u 2 U and v 2 V , and
call this set an oriented cut of G.

Let � : [0, 1] ! |G| be a path in |G|. Given an edge e = uv of G, if [s, t] is
a subinterval of [0, 1] such that {�(s),�(t)} = {u, v} and �((s, t)) = e̊, we say
that � traverses e on [s, t]. It does so in the direction of (�(s),�(t)), or traverses
!e = (e,�(s),�(t)). We then call its restriction to [s, t] a pass of � through e,
or !e, from �(s) to �(t).

Using that [0, 1] is compact and |G| is Hausdor↵, one easily shows that a
path in |G| contains at most finitely many passes through any given edge:

Lemma 4. A path in |G| traverses each edge only finitely often.

Proof. Let � be a path in |G|, and let e = uv be an edge such that � con-
tains infinitely many passes � � [sn, tn] through e (n = 1, 2, . . . ). As [0, 1] is
compact, the sequence s1, s2, . . . has an accumulation point x, which is also an
accumulation point of t1, t2, . . . . But now � fails to be continuous at x, because
{�(sn),�(tn)} = {u, v} for each n but each of u and v has a neighbourhood not
containing the other.

A loop that is injective on [0, 1) is a circle in |G|. (In most of our references,
the term circle is used for the image of such a loop.) The set of all edges
traversed by a circle is a circuit . It is easy to show that the image of a circle is
uniquely determined by its circuit C, being the closure of

S
C in |G|.

Let
!
E =

!
E (G) denote the set of all integer-valued functions ' on the set

!
E

of all oriented edges of G that satisfy '( e) = �'(!e) for all !e 2
!
E. This is an

abelian group under pointwise addition. A family ('i | i 2 I) of elements of
!
E is thin if for every !e 2

!
E we have 'i(!e) 6= 0 for only finitely many i. Then

' =
P

i2I 'i is a well-defined element of
!
E : it maps each !e 2

!
E to the (finite)

sum of those 'i(!e) that are non-zero. We shall call a function ' 2
!
E obtained

in this way a thin sum of those 'i.
We can now define our oriented version of the topological cycle space of G.

When ↵ is a circle in |G|, we call the function '↵ :
!
E ! Z defined by

'↵ : !e 7!

8<
:

1 if ↵ traverses !e
�1 if ↵ traverses  e

0 otherwise.

an oriented circuit in G, and write
!
C =

!
C (G) for the subgroup of

!
E formed by

all thin sums of oriented circuits.
We remark that

!
C is closed also under infinite thin sums [15, Cor. 5.2],

but this is neither obvious nor generally true for thin spans of subsets of
!
E [6,

Sec. 3]. We remark further that composing the functions in
!
C with the canonical

homomorphism Z ! Z2 yields the usual topological cycle space C(G) of G as
studied in [3, 4, 5, 8, 7, 15, 16, 17, 26, 27, 38], the F2 vector space of subsets of
E obtained as thin sums of (unoriented) circuits.
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The topological cycle space C(G) can be characterized as the set of those
subsets of E that meet every finite cut of G in an even number of edges [15,
Thm. 7.1], [11, Thm. 8.5.8]. The characterization has an oriented analogue:

Theorem 5. An element ' of
!
E lies in

!
C if and only if

P
~e2 ~F '(!e) = 0 for

every finite oriented cut
!
F of G.

The proof of Theorem 5 is not completely trivial. But it adapts readily from
the unoriented proof given e.g. in [11], which we leave to the reader to check if
desired.

When G is fixed, we write Cn for the group of singular n-chains in |G| (with
coe�cients in Z unless otherwise mentioned), Zn = Ker @n and Bn = Im @n+1

for the corresponding groups of cycles and boundaries, and Hn = Zn/Bn. We
view all singular 1-simplices as maps from the real interval [0, 1] to |G|. The
homology class of a cycle z is denoted by [z].

A cycle that can be written as a sum of 1-simplices no two of which share
their first point is an elementary cycle. Every 1-cycle is easily seen to be a sum
of elementary 1-cycles, a decomposition which is not normally unique.

The following lemma enables us to subdivide or concatenate the simplices
in a 1-cycle while keeping it in its homology class.

Lemma 6. Let � be a singular 1-simplex in |G|, and let s 2 (0, 1). Write �0
and �00 for the 1-simplices obtained from the restrictions of � to [0, s] and to
[s, 1] by reparametrizing linearly. Then �0 + �00 � � 2 B1. ⇤

When � is a summand in a cycle z 2 Z1, we shall say that the equivalent
cycle z0 obtained by replacing � with �0+�00 in the sum arises by subdividing �
(at s or at �(s)). A frequent application of Lemma 6 is the following:

Corollary 7. Every non-zero element of H1(|G|) is represented by a sum of
loops each based at a vertex.

Proof. Pick a cycle representing a given homology class, and decompose it into
elementary cycles. Use Lemma 6 to concatenate their simplices into a single
loop. If such a loop ↵ passes through a vertex, we can subdivide it there and
suppress its original boundary point, obtaining a homologous loop based at
that vertex. If ↵ does not pass through a vertex, then Im ↵ ✓ e̊ for some edge e
(since non-trivial sets of ends are never connected), so ↵ is null-homotopic and
[↵] = 0.

3
!
C(G) and the Čech homology

In this section we briefly describe the relationship between the topological cycle
space of a graph with ends and its Čech homology. We shall see that their
groups are canonically isomorphic, but also that this isomorphism is not enough
to capture the relevance of

!
C(G) to the structure of G—the reason why graph

theorists study cycle spaces in the first place. The material from this section
will not be needed in the rest of the paper.
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The Čech homology of a space is an alternative to singular homology for
spaces that do not have a simplicial homology, and we begin by recalling its
definition. Consider a space X and an open cover U of X. Then U defines a
simplicial complex XU , the nerve of U : The 0-simplices of XU are the elements
of U , and any n + 1 elements of U form an n-simplex if and only if they have
a nonempty intersection. For two open covers U ,U 0 let U  U 0 if U 0 is a
refinement of U . In this case, it is easy to define a continuous map from XU 0
to XU : For each 0-simplex U of XU 0 (i.e. U 2 U 0) there is a 0-simplex ⇡(U) of
XU (an element of U) that contains it. Map each U to ⇡(U) and extend this
map linearly to the higher-dimensional simplices in XU 0 so as to obtain a map
⇢ : XU 0 ! XU . As U 2 U 0 can be contained in more than one element of U , the
choice of ⇡ : U 0 ! U is not unique and neither is ⇢. But it is easy to see that all
possible choices of ⇡ induce homotopic maps ⇢ and hence the induce a unique
homomorphism ⇢UU 0 : Hn(XU 0) ! Hn(XU ) on homology. Now the homology
groups Hn(XU ) for all open covers U together with the homomorphisms ⇢UU 0
form an inverse family. Define the nth Čech homology group Ȟn(X) to be the
inverse limit of the Hn(XU ).

For locally finite graphs the first Čech homology group and the topological
cycle space coincide:

Theorem 8. For a locally finite graph G we have a canonical isomorphism
Ȟ1(|G|) '

!
C (G).

Proof. To compute the inverse limit of the groups H1(XU ) it su�ces to to
consider a family U of open covers of |G| that contains a refinement for ev-
ery open cover of |G|, and to compute the inverse limit of the inverse family
(H1(|G|U ))U2U. We will now construct a suitable U.

Let T be a normal spanning tree of G and denote the subtree induced by the
first n levels by Tn. Now for each n and each " > 0 let U contain an open cover
Un," consisting of the following sets: An open star of radius " around each vertex
v 2 V (Tn), finitely many open subintervals of length " of each edge e 2 E(Tn),
and the sets Ĉ(V (Tn),!) for each end of omega. Note that Un is a finite family
as G� V (Tn) has only finitely many components.

Using that |G| is compact, it is not hard to see that for each open cover U of
|G| some Un," is a refinement of U . Clearly, every |G|Un," retracts to the graph
Gn obtained from G by contracting all components of G � Tn, and hence the
homology group H1(|G|Un,") = H1(Gn) is a direct product of Z’s, one for each
chord of T with at least one endvertex in Tn. Thus Ȟ1(|G|) also is the direct
product of copies of Z, one for each chord of T . As the same is true for

!
C (G),

we have that Ȟ1(|G|) and
!
C (G) are canonically isomorphic.

Although the first Čech homology group is isomorphic to the group of the
topological cycle space, it does not su�ciently reflect the combinatorial proper-
ties of

!
C (G). For example, a number of classical results about the cycle space

say which circuits generate it—as do the non-separating chordless circuits in
a 3-connected graph, say. In the Čech homology, however, it is not possible
to decide whether a homology class in Ȟ1(|G|) corresponds to a circuit in G.

9



One might think that since a homology class c 2 Ȟ1(|G|) corresponds to a fam-
ily (cn,") of homology classes in the groups H1(|G|Un,") = H1(Gn), the class c
should correspond to a circuit if every cn," with su�ciently large n corresponds
to a circuit in Gn. But this is not the case: the limit of a sequence of cycle
space elements in the Gn can be a circuit even if the elements of the sequence
are not circuits in the Gn.

In order to have a homology that reflects the properties of
!
C (G), we thus

need to take a singular approach.

4 Comparing H1(|G|) with
!
C(G)

Let G = (V,E) be a connected locally finite graph. Our aim in this section is to
compare the first singular homology group H1 of |G| (with integer coe�cients)
with the oriented topological cycle space

!
C (G) of G, the group of thin sums of

oriented circuits in G. When G is finite then |G| = G, and all circuits and their
thin sums are finite. Hence in this case

!
C is just the first simplicial homology

group of G, so the two groups are indeed the same.
When G is infinite, however, both circuits and thin sums can be infinite too.

So they are not just the simplicial 1-cycles in G. But there is an obvious singular
1-cycle in |G| associated with an oriented circuit '↵: the circle ↵, viewed as a
singleton 1-chain. Our aim is to extend this correspondence to one between H1

and
!
C .

Our approach will be to define a homomorphism f : H1 !
!
E (G) that counts

for a given homology class h how often the 1-simplices of a cycle representing h,
when properly concatenated, traverse a given edge !e; we then let f(h) 2

!
E (G)

map !e to this number.5 We shall prove that f(h) always lies in
!
C and, perhaps

surprisingly, that f maps H1 onto
!
C . However, we find that f is not normally

injective. Our first main result characterizes the graphs for which it is:

Theorem 9. The map f : H1(|G|)!
!
E (G) is a group homomorphism onto

!
C (G),

which has a non-trivial kernel if and only if G contains infinitely many (finite)
circuits.

Thus,
!
C turns out to be a canonical—but usually non-trivial—quotient

of H1. Taking this result mod 2 answers our original question: the topolog-
ical cycle space C of G is a canonical—but usually non-trivial—quotient of the
singular homology group of |G| with F2 coe�cients.

We remark that the last condition in Theorem 9 can be rephrased in various
natural ways: that G has a spanning tree with infinitely many chords; that every
spanning tree of G has infinitely many chords; or that G contains infinitely many
disjoint (finite) circuits [11, Ex. 37, Ch. 8]. The remainder of this section and
the next two sections will be devoted to the proof of Theorem 9.

Let us define f formally. Let S1 denote the unit circle in the complex plane.
The elements of H1(S1) are represented by the loops ⌘k : [0, 1]! S1, s 7! e2⇡iks,
k 2 Z. Write ⇡ : H1(S1) ! Z for the group isomorphism [⌘k] 7! k. For every

5The precise definition of f will be given shortly.
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edge e of G, let fe : |G|! S1 wrap e round S1 in its natural direction, defining
fe � e̊ as ⌘1 � ✓�1

e and putting fe(|G| \ e̊) := 1 2 C. Note that fe is continuous.
The following lemma is easy to prove using homotopies in S1, combined by

Lemma 2:

Lemma 10. Let ↵ : [0, 1] ! |G| be a loop based at a vertex. If ↵ traverses
e exactly k times in its natural direction and exactly ` times in the opposite
direction, then ⇡([fe � ↵]) = k � `.

Proof. Composing a pass of ↵ through e (in its natural direction) with fe yields
a map from a subinterval of [0, 1] to S1 which, after reparametrization, is ho-
motopic to ⌘1.

The domains of distinct passes of ↵ through e are closed subintervals of [0, 1]
meeting at most in their boundary points. The rest of [0, 1] is a finite disjoint
union of open intervals (s, t) (or (s, 1] or [0, t)). Each of these is in turn a
disjoint union, possibly infinite, of open intervals (s0, t0) which ↵ maps to e̊ and
closed intervals which fe � ↵ maps to 1 2 C. Since [s, t], by definition, contains
no pass through e, ↵ always maps s0 and t0 to the same endvertex of e. Then
↵� [s0, t0] is homotopic to the constant map to that vertex, and (fe �↵)� [s0, t0] is
homotopic to the constant map to 1. These homotopies combine to a homotopy
of (fe � ↵)� [s, t] to the constant map with value 1.

We deduce that fe � ↵ is homotopic to a concatenation �1 · . . . · �n of loops
in S1 of which (after reparametrization) k are equal to ⌘1 and ` are equal to
the inverse loop ⌘1 : � 7! 1� ⌘1(�), and the rest are constant with value 1. The
result follows.

Given h 2 H1(|G|), we now let f(h) 2
!
E (G) assign (⇡ � (fe)⇤)(h) 2 Z to the

natural orientation !e of e:

f(h) : !e 7! (⇡ � (fe)⇤)(h) 2 Z .

This completes the definition of f : H1(|G|) !
!
E , which is clearly a group

homomorphism.

Lemma 11. Im f ✓
!
C (G).

Proof. By Theorem 5 it su�ces to show that for every finite oriented cut
!
F of

G and every h 2 H1(|G|) we have
P

~e2 ~F f(h)(!e) = 0. Let
!
F =

!
E(U,U 0) and h

be given, let F = {e | !e 2
!
F }, and assume for simplicity that the orientations

!e 2
!
F of these edges are their natural orientations. Since f is a homomorphism,

we may assume that h is represented by an elementary 1-cycle, which we may
choose by Corollary 7 to consist of a loop ↵ based at a vertex. We shall prove
that ↵ traverses the edges in F as often from U to U 0 as it does from U 0 to U .
Then X

~e2 ~F

f(h)(!e) =
X
e2F

(⇡ � (fe)⇤)([↵]) =
X
e2F

⇡([fe � ↵]) = 0

by Lemma 10.
Let [s1, t1], . . . , [sn, tn] be the domains of the passes of ↵ through edges of F .

In order to prove that as many of these passes are from a vertex in U to one in
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U 0 as vice versa, it su�ces to show that each of the segments � = ↵ � [ti, si+1]
has either all its vertices in U or all its vertices in U 0, assuming for simplicity
that ↵ is based at tn =: t0. If the starting vertex �(ti) of � lies in U , say, put

s := sup { r 2 [ti, si+1] : V \ �([ti, r]) ✓ U } .

We wish to show that s = si+1. If not, then �(s) is an end, and this end lies
both in the closure of U and in the closure of U 0. But these closures are disjoint:
the set S of vertices incident with an edge in F is finite, and since S separates
U from U 0, the neighbourhood Ĉ(S,!) of any end ! avoids either U or U 0.

Next, we prove that f is surjective. At first glance, this may seem surprising:
after all, we have to capture arbitrary thin sums of oriented circuits, which may
well be disjoint, by finite 1-cycles.

Lemma 12. Im f ◆
!
C (G).

Proof. Let ' =
P

↵2A '↵ 2
!
C (G) be an arbitrary thin sum of oriented circuits,

where each ↵ is a circle in |G|. Ignoring any '↵ that are constant with value 0,
we may assume that each ↵ is based at a vertex v(↵). (Recall that if the image
of ↵ contains no vertex it must lie inside an edge, because non-trivial sets of ends
cannot be connected.) We shall construct a loop ⌧ in |G| such that f([⌧ ]) = '.

Let T be a spanning tree of G and pick a root r 2 V . Write Vn for the set
of vertices at distance n in T from r, and let Tn be the subtree of T induced by
V0 [ · · · [ Vn. Our first aim will be to construct a loop � in |G| that traverses
every edge of T once in each direction and avoids all other edges of G. We shall
obtain � as a limit of similar loops �n in Tn ✓ |G|. We shall then incorporate
our loops ↵ 2 A into �, to obtain ⌧ . When we describe these maps informally,
we shall think of [0, 1] as measuring time, and of a loop as a journey through |G|.

Let �0 be the unique (constant) map [0, 1] ! T0. Assume inductively that
�n : [0, 1] ! Tn is a loop traversing every edge of Tn exactly once in each di-
rection. Assume further that �n pauses every time it visits a vertex, remaining
stationary at that vertex for some time. More precisely, we assume for every
vertex v 2 Tn � r that ��1

n (v) is a disjoint union of as many non-trivial closed
intervals as v has incident edges in Tn, and of one more such interval in the
case of v = r. Let us call the restriction of �n to such an interval a pass of �n

through v. We are thus assuming that �n is the union of its passes through the
vertices and edges of Tn.

Let �n+1 be obtained from �n by replacing, for each leaf v of Tn, the unique
pass of �n through v by a topological path that starts out remaining stationary
at v for some time, then visits all the neighbours of v in Vn+1 in turn, pausing at
each and shuttling back and forth between v and those neighbours, and finally
returns to v to pause there. Outside the passes of �n through leaves of Tn, let
�n+1 agree with �n. Note that �n+1 satisfies our inductive assumptions for n+1:
it traverses every edge of Tn+1 exactly once each way, pauses every time it visits
a vertex, and is the union of its passes through the vertices and edges of Tn+1.

Let us now define �. Let s 2 [0, 1] be given. If the values �n(s) coincide for
all large enough n, let �(s) := �n(s) for these n. If not, then sn := �n(s) 2 Vn

12



for every n, and s0s1s2 . . . is a ray in T ; let � map s to the end of G containing
that ray.

Clearly every �n is continuous, and � is continuous at points not mapped to
ends. To show that � is continuous at every point s mapped to an end ! = �(s),
let a neighbourhood Ĉ(S,!) of ! in |G| be given. Put sn := �n(s). Choose n
large enough that the tree T 0 spanned in T by the vertices above sn—those
vertices v for which the r–v path in T contains sn—avoids the finite set S. We
claim that � maps the interval I := ��1

n (sn) to Ĉ(S,!). Since �n+1 agrees with
�n on the boundary points of I but not on s, we know that I is a neighbourhood
of s in [0, 1], so this will complete the proof that � is continuous. Let t 2 I be
given. Induction on m shows that �m(I) ✓ T 0 for every m � n. Hence if �(t) is
not an end, then �(t) = �m(t) 2 T 0 ✓ Ĉ(S,!) for some m. But if �(t) is an end,
then this is the end !0 of a ray that starts at �n(t) = sn and lies in T 0 ✓ Ĉ(S,!).
Hence so does !0 = �(t).

Let ⌧ be obtained from � by replacing for every vertex v one of the passes of
� through v with a concatenation of all the circles ↵ with ↵ 2 A and v(↵) = v.
Note that these are finitely many for each v, because G has only finitely many
edges at v and

P
↵2A '↵ is a thin sum.

Let us prove that ⌧ is continuous. As before, this is clear at points x 2 [0, 1]
which � does not map to an end: for such x the map ⌧ agrees on suitable
intervals [s, x] and [x, t] with � or some ↵ 2 A, which we know to be continuous.
The proof that ⌧ is continuous at points x which � maps to ends is similar to
our earlier continuity proof for �. The only di↵erence now is that we have to
choose n large enough also to ensure that none of the ↵ with v(↵) 2 T 0 passes
through a vertex of S. Such a choice of n is possible, because only finitly many
edges are incident with vertices in S and the '↵ form a thin family of functions.
Then Ĉ(S,!) contains not only T 0 but also the images of all ↵ with v(↵) 2 T 0,
because Im ↵ is connected but does not meet the frontier S of Ĉ(S,!).

Finally, recall that � traverses every edge of T once in each direction, and
that it does not traverse any other edges. Therefore f([�]) = 0 2

!
C (G), and

hence f([⌧ ]) =
P

↵2A '↵ = ' as desired.

To complete the proof of Theorem 9 it remains to show that f has a non-
trivial kernel if and only if G contains infinitely many circuits. The forward
implication of this is easy. Indeed, suppose that G contains only finitely many
circuits, and let T be a normal spanning tree of G. Then T has only finitely
many chords, so |G| is homotopy equivalent to a finite graph (Lemma 3). Hence,
as is well known, H1(|G|) equals the first simplicial homology group of G viewed
as a 1-complex, which in turn is clearly isomorphic to

!
C (G). Therefore f must

be injective.
The converse implication, surprisingly, is quite a bit harder. Assuming that

G contains infinitely many circuits, we shall define a loop ⇢ in |G| that traverses
every edge equally often in both directions (so that f([⇢]) = 0), and which is
easily seen not to be null-homotopic. To prove that [⇢] 6= 0, however, i.e. that ⇢
is not a boundary, will be harder: it turns out that we first have to understand
the fundamental group of |G| a little better. With this knowledge we shall then
be able to define an invariant of 1-chains that can distinguish ⇢ from boundaries.
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The next section, therefore, contains an interlude in which we describe the
fundamental group ⇡1(|G|) of an arbitrary locally finite connected graph G
combinatorially. We shall then complete the proof of Theorem 9 in Section 6.

5 A combinatorial characterization of ⇡1(|G|)
Our aim in this section is to prove some aspects of a combinatorial description
of ⇡1(|G|) that we need for our proof of Theorem 9. In [20], we give a more
comprehensive such description; see Theorem 18 below.

When G is finite, ⇡1(|G|) is the free group F on the set of chords (arbitrarily
oriented) of any fixed spanning tree, the edges of G that are not edges of the
tree. The standard description of F is given in terms of reduced words of those
oriented chords. The map assigning to a path in |G| the sequence of chords it
traverses defines the canonical group isomorphism between ⇡1(|G|) and F .

Our description of ⇡1(|G|) for infinite G will be similar in spirit, but more
complex. We shall start not with an arbitrary spanning tree but with a normal
spanning tree. (The trees that work are precisely the topological spanning trees
defined in [17] or [11, Ch. 8.5], which include the normal spanning trees.) Then
every path in |G| defines as its ‘trace’ an infinite word in the oriented chords of
that tree, as before. However, these words can have any countable order type,
and it is no longer clear how to define reductions of words in a way that captures
homotopy of paths.

Consider the following example. Let G be the infinite ladder, with a spanning
tree T consisting of one side of the ladder and all its rungs (drawn bold in
Figure 1). The path running along the bottom side of the ladder and back is a
null-homotopic loop. Since it traces the chords !e0,

!e1, . . . all the way to ! and
then returns the same way, the infinite word !e0

!e1 . . .  e1
 e0 should be reducible.

But it contains no cancelling pair of letters, such as !ei
 ei or  ei

!ei.

T
ω

→e0
→e1

Figure 1: The null-homotopic loop !e0
!e1 . . .! . . .  e1

 e0

This simple example suggests that some transfinite equivalent of cancelling
pairs of letters, such as cancelling inverse pairs of infinite sequences of letters,
might lead to a suitable notion of reduction. However, one can construct graphs
which, for any suitable spanning tree, contain null-homotopic loops whose trace
of chords contains no such cancelling subsequences (of any order type).6

6For example, consider for the binary tree T2 the loop � constructed in the proof of
Lemma 12, which traverses every edge of T2 exactly once in each direction. This loop is
null-homotopic in |T2| (Lemma 3), but no sequence of edges, of any order type, is followed
immediately by the inverse of that sequence. The edges of T2 aren’t chords of a spanning tree,
but this can be achieved by changing the graph: just double every edge and subdivide the
new edges once. The new edges then form a normal spanning tree in the resulting graph G,
whose chords are the original edges of our T2, and � is still a (null-homotopic) loop in |G|.
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We shall therefore define the reduction of infinite words di↵erently, in a non-
recursive way: just as a homotopy can shrink a loop simultaneously (rather
than recursively) in many places at once, our reduction ‘steps’ will be ordered
linearly but not be well-ordered. This definition is less straightforward, but it
has an important property: as for finite G, our notion of reduction will be purely
combinatorial and make no reference to the topology of |G|.

The main step then will be to show that ⇡1(|G|) embeds as a subgroup in
the group of reduced words, and how. We shall see that, as in the finite case,
the map assigning to a path in |G| its trace of chords and reducing that trace is
well defined on homotopy classes. In [20] we shall prove that the map it induces
on these classes is injective. Then ⇡1(|G|) can be viewed as a subgroup of the
group of reduced infinite words, which in turn can be viewed as a subgroup of
the inverse limit of the free groups with generators the finite sets of oriented
chords of any fixed normal spanning tree (Theorem 18).

Let us make all this precise. Let G be a locally finite connected graph, fixed
throughout this section. Let T be a fixed normal spanning tree of G, and write
T for its closure T [⌦(G) in |G|. Unless otherwise mentioned, the endpoints of
all paths considered from now on will be vertices or ends, and any homotopies
between paths will be relative to {0, 1}.

When we speak of ‘the passes’ of a given path �, without referring to any
particular edges, we shall mean the passes of � through chords of T . If T has
only finitely many chords, then |G| is homotopy equivalent to a finite graph,
by Lemma 3. Let us therefore assume that T has infinitely many chords. Enu-
merate these as e0, e1, . . . , and denote their natural orientations as !e0,

!e1, . . ..
The circles in T + ei are the fundamental circles of ei. (Up to orientation and
reparametrization, there is a only one such circle for every chord.)

Let us call the elements of the set

A := {!e0,
!e1, . . . } [ { e0,

 e1, . . . }

letters, and two letters !ei,
 ei inverse to each other. A word in A is a map

w : S ! A from a totally ordered countable set S, the set of positions of (the
letters used by) w, such that w�1(a) is finite for every a 2 A. The only property
of S relevant to us is its order type, so two words w : S ! A and w0 : S0 ! A will
be considered the same if there is an order-preserving bijection ' : S ! S0 such
that w = w0 � '. If S is finite, then w is a finite word; otherwise it is infinite.
The concatenation w1w2 of two words is defined in the obvious way: we assume
that their sets S1, S2 of positions are disjoint, put S1 before S2 in S1 [ S2, and
let w1w2 be the combined map w1 [ w2. For I ✓ N we let

AI := {!ei | i 2 I} [ { ei | i 2 I} ,

and write w � I as shorthand for the restriction w � w�1(AI). Note that if I is
finite then so is the word w �I, since w�1(a) is finite for every a.

An interval of S is a subset S0 ✓ S closed under betweenness, i.e., such that
whenever s0 < s < s00 with s0, s00 2 S0 then also s 2 S0. The most frequently
used intervals are those of the form [s0, s00]S := {s 2 S | s0  s  s00} and
(s0, s00)S := {s 2 S | s0 < s < s00}. If (s0, s00)S = ;, we call s0, s00 adjacent in S.
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A reduction of a finite or infinite word w : S ! A is a totally ordered set R
of disjoint 2-element subsets of S such that the two elements of each p 2 R are
adjacent in S \

S
{q 2 R | q < p} and are mapped by w to inverse letters !ei,

 ei.
We say that w reduces to the word w �(S\

S
R). If w has no nonempty reduction,

we call it reduced.
Informally, we think of the ordering on R as expressing time. A reduction

of a finite word thus recursively deletes cancelling pairs of (positions of) inverse
letters; this agrees with the usual definition of reduction in free groups. When w
is infinite, cancellation no longer happens ‘recursively in time’, because R need
not be well ordered.

As is well known, every finite word w reduces to a unique reduced word,
which we denote as r(w). Note that r(w) is unique only as an abstract word,
not as a restriction of w: if w = !e1

 e1
!e1 then r(w) = !e1, but this letter !e1 may

have either the first or the third position in w. The set of reduced finite words
forms a group, with multiplication defined as (w1, w2) 7! r(w1w2), and identity
the empty word ;. This is the free group with free generators !e0,

!e1, . . . and
inverses  e0,

 e1 . . . . For finite I ✓ N, the subgroup

FI := {w | Im w ✓ AI}

is the free group on {!ei | i 2 I}.
Consider a word w, finite or infinite, and I ✓ N. It is easy to check the

following:

If R is a reduction of w then
�
{s, s0} 2 R | w(s) 2 AI

 
,

with the ordering induced from R, is a reduction of w �I.
(1)

In particular:

Any result of first reducing and then restricting a word can
also be obtained by first restricting and then reducing it. (2)

Our aim is to define a reduction map r also for infinite words, so that
(w1, w2) 7! r(w1w2) makes the set of reduced (finite or infinite) words into a
group F1.7 This group F1 will contain ⇡1(|G|) as a subgroup by an embedding
h↵i 7! r(w↵), where w↵ is the word of chords traced out by ↵.

To define such a reduction map r, we need to show that every infinite word
reduces to a unique reduced word. Existence is immediate:

Lemma 13. Every word reduces to some reduced word.

Proof. Let w : S ! A be any word. By Zorn’s Lemma there is a maximal
reduction R of w. Since R is maximal, the word w �(S \

S
R) is reduced.

To prove uniqueness, we begin with a characterization of the reduced words.
Let w : S ! A be any word. If w is finite, call a position s 2 S permanent in w if
it is not deleted in any reduction, i.e., if s 2 S \

S
R for every reduction R of w.

If w is infinite, call a position s 2 S permanent in w if there exists a finite I ✓ N
7The notation F1 is chosen in analogy to the groups FI of finite words, but note that F1

will not be a free group.
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such that w(s) 2 AI and s is permanent in w �I. By (2), a permanent position
of w � I is also permanent in w �J for all finite J ◆ I. The converse, however,
need not hold: it may happen that {s, s0} is a pair (‘of cancelling positions’)
in a reduction of w � I but w � J has a letter from AJ \ AI whose position lies
between s and s0, so that s and s0 are permanent in w �J .

Lemma 14. A word is reduced if and only if all its positions are permanent.

Proof. The assertion is clear for finite words, so let w : S ! A be an infinite
word. Suppose first that all positions of w are permanent. Let R be any
reduction of w; we will show that R = ;. Let s be any position of w. As s is
permanent, there is a finite I ✓ N such that w(s) 2 AI and s is not deleted in
any reduction of w � I. By (1), the pairs in R whose elements map to AI form
a reduction of w � I, so s does not lie in such a pair. As s was arbitrary, this
proves that R = ;.

Now suppose that w has a non-permanent position s. We shall construct a
non-trivial reduction of w. For all n 2 N put Sn := {s 2 S | w(s) 2 A{0,...,n}};
recall that these are finite sets. Write wn for the finite word w � I with I =
{0, . . . , n}, the restriction of w to Sn. For any reduction R of wn+1, the set
R� :=

�
{t, t0} 2 R | t, t0 2 Sn

 
with the induced ordering is a reduction of wn,

by (1).
Pick N 2 N large enough that s 2 SN . Since s is not permanent in w, every

wn with n � N has a reduction in which s is deleted. As wn has only finitely
many reductions, König’s infinity lemma [11, Lem. 8.1.2] gives us an infinite
sequence RN , RN+1, . . . in which each Rn is a reduction of wn deleting s, and
Rn = R�

n+1 for every n. Inductively, this implies:

For all m  n, we have Rm =
�
{t, t0} 2 Rn | t, t0 2 Sm

 
, and

the ordering of Rm on this set agrees with that induced by Rn.
(3)

Let s0 2 S be such that {s, s0} 2 Rn for some n; then {s, s0} 2 Rn for every
n � N , by (3).

Our sequence (Rn) divides the positions of w into two types. Call a position t
of w essential if there exists an n � N such that t 2 Sn and t remains undeleted
in Rn; otherwise call t inessential. Consider the set

R :=
[

m�N

\
n�m

Rn

of all pairs of positions of w that are eventually in Rn. Let R be endowed with
the ordering p < q induced by all the orderings of Rn with n large enough that
p, q 2 Rn; these orderings are compatible by (3). Note that R is non-empty,
since it contains {s, s0}. We shall prove that R is a reduction of w.

We have to show that the elements of each p 2 R, say p = {t1, t2} with
t1 < t2, are adjacent in S \

S
{q 2 R | q < p}. Suppose not, and pick t 2

(t1, t2)S \
S
{q 2 R | q < p}. If t is essential, then t is a position of wn remaining

undeleted in Rn for all large enough n. But then {t1, t2} /2 Rn for all these n,
contradicting the fact that {t1, t2} 2 R. Hence t is inessential. Then t is deleted
in every Rn with n large enough. By (3), the pair {t, t0} 2 Rn deleting t is
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the same for all these n, so {t, t0} =: p0 2 R. By the choice of t, this implies
p0 6< p. For n large enough that p, p0 2 Rn, this contradicts the fact that t1, t2
are adjacent in Sn \

S
{q 2 Rn, q < p}, which they are since Rn is a reduction

of wn.

Note that a word can consist entirely of non-permanent positions and still
reduce to a non-empty word: the word !e1

 e1
!e1 is again an example.

Lemma 14 o↵ers an easy way to check whether an infinite word is reduced. In
general, it can be hard to prove that a given word w has no non-trivial reduction,
since this need not have a ‘first’ cancellation. By Lemma 14 it su�ces to check
whether every position becomes permanent in some large enough but finite w �I.

Similarly, it can be hard to prove that two words reduce to the same word.
The following lemma provides an easier way to do this, in terms of only the
finite restrictions of the two words:

Lemma 15. Two words w,w0 can be reduced to the same (abstract) word if and
only if r(w �I) = r(w0 �I) for every finite I ✓ N.

Proof. The forward implication follows easily from (2). Conversely, suppose
that r(w � I) = r(w0 � I) for every finite I ✓ N. By Lemma 13, w and w0 can
be reduced to reduced words v and v0, respectively. Our aim is to show that
v = v0, that is to say, to find an order-preserving bijection ' : S ! S0 between
the domains S of v and S0 of v0 such that v = v0 � '. For every finite I, our
assumption and the forward implication of the lemma yield

r(v �I) = r(w �I) = r(w0 �I) = r(v0 �I) .

Hence for every possible domain SI ✓ S of r(v � I) and every possible domain
S0I ✓ S0 of r(v0 � I) there exists an order isomorphism SI ! S0I that commutes
with v and v0. For every I, there are only finitely many such maps SI ! S0I ,
since there are only finitely many such sets SI and S0I . And for I ✓ J , every
such map SJ ! S0J induces such a map SI ! S0I with SI ✓ SJ and S0I ✓ S0J ,
by (2). Hence by the infinity lemma there exists a sequence '0 ✓ '1 ✓ . . . of
such maps 'n : S{0,...,n} ! S0{0,...,n}, whose union ' maps all of S onto S0, since
by Lemma 14 every position of v and of v0 is permanent.

With Lemma 15 we are now able to prove:

Lemma 16. Every word reduces to a unique reduced word.

Proof. By Lemma 13, every word w reduces to some reduced word w0. Suppose
there is another reduced word w00 to which w can be reduced. By the easy
direction of Lemma 15, we have

r(w0 �I) = r(w �I) = r(w00 �I)

for every finite I ✓ N. By the non-trivial direction of Lemma 15, this implies
that w0 and w00 can be reduced to the same word. Since w0 reduces only to w0

and w00 reduces only to w00, this must be the word w0 = w00.
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As in the case of finite words, we denote the unique reduced word that a
word w reduces to by r(w). The set of reduced words now forms a group F1,
with multiplication defined as (w1, w2) 7! r(w1w2), identity the empty word ;,
and the inverse w� of w : S ! A defined as the map on the same S, but with
the inverse ordering, that satisfies {w(s), w�(s)} = {!ei,

 ei} for some i for ev-
ery s 2 S. (Thus, w� is w taken backwards and with reverse chord orientations.)
Note that the proof of associativity requires an application of Lemma 16.

In [20], we prove that F1 embeds canonically in the inverse limit of the
groups FI (which by (2) form an inverse system with respect to restriction),
and that ⇡1(|G|) embeds canonically in F1. All we need here is the existence
of that particular homomorphism ⇡1(|G|)! F1, which is defined as follows.

Every path � in |G| defines a word w� by its passes through the chords
of T . Formally, we take as S the set of the domains [a, b] of passes of �, ordered
naturally as disjoint subsets of [0, 1], and let w� map every [a, b] 2 S to the
directed chord that � traverses on [a, b]. We call w� the trace of �.

Lemma 17. The traces of homotopic paths in |G| reduce to the same word.

Proof. We first consider homotopic loops ↵ ⇠ � in |G|, based at the same vertex
or end. We wish to show that r(w↵) = r(w�). By Lemma 15 it su�ces to show
that r(w↵ � I) = r(w� � I) for every finite I ✓ N. Consider the space obtained
from |G| by attaching a 2-cell to |G| for every j /2 I, by an injective attachment
map from the boundary of the 2-cell onto the unique image of the fundamental
circles of ej . This space deformation retracts onto T [ {ei | i 2 I}, and hence
by Lemma 3 onto a finite graph GI consisting of a subtree of T and the chords
ei with i 2 I. Composing ↵ and � with the map |G| ! GI in which this
retraction ends yields homotopic loops ↵0 and �0 in GI , whose traces in FI are
w↵0 = w↵ � I and w�0 = w� � I. Since h�i 7! r(w�) is known to be well defined
for finite graphs, we deduce that

r(w↵ �I) = r(w↵0) = r(w�0) = r(w� �I) .

This completes the proof of the lemma for loops. The general case follows, since
paths joining the same two vertices or ends can be made into loops by appending
a path in T joining their endpoints, which does not change their traces.

Lemma 17 implies in particular that the map h↵i 7! r(w↵) from ⇡1(|G|) to
F1 is well defined. By (2), it is a homomorphism. In [20] we prove that it is
injective—the converse of Lemma 17—and determine its image. All in all, the
fundamental group of |G| can be described combinatorially by canonical group
embeddings ⇡1(|G|)! F1 ! lim �FI as follows (see [20] for precise definitions):

Theorem 18 ([20]). Let G be a locally finite connected graph. Let T be a
normal spanning tree of G, and let e0, e1, . . . be its chords.

(i) The map h↵i 7! r(w↵) is an injective homomorphism from ⇡1(|G|) to the
group F1 of reduced finite or infinite words in {!e0,

!e1, . . . }[{ e0,
 e1, . . . },

with image the set of words whose monotonic subwords converge in |G|.
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(ii) The homomorphisms w 7! r(w �I) from F1 to FI embed F1 as a subgroup
in lim �FI . It consists of those elements of lim �FI whose projections r(w �I)
use each letter only boundedly often. (The bound may depend on the letter.)

Using this characterization of ⇡(|G|), it is not hard to see that
!
C (G) is the

strong abelianization of ⇡(|G|): the quotient of ⇡(|G|) obtained by identifying
classes h↵i, h�i whenever r(w↵) and r(w�) use each letter the same number of
times (see [9, Sec. 4] for a formal definition of strong abelianization).

6 Distinguishing boundaries from other chains

In this section we wind up our proof of Theorem 9, picking up the thread from
Section 4. There we had defined a group homomorphism f : H1(|G|)!

!
E (G),

shown that its image is
!
C (G) (Lemmas 11 and 12), and seen that f is injective

if G contains only finitely many circuits. The assertion left to prove is that f is
not injective if G contains infinitely many circuits, which we now assume.

Let T be a normal spanning tree of G. Each of the infinitely many cir-
cuits in G is a finite sum (mod 2) of distinct fundamental circuits of T [11,
Thm. 1.9.6]. Therefore T has infinitely many chords, e0, e1, . . . say. Since |G| is
compact, there is a sequence !ei0 ,

!ei1 , . . . of chords whose first points converge
to an end ! of G. There exists a loop ⇢ in |G|, based at a vertex, that tra-
verses !ei0 ,

!ei1 , . . . ,
 ei0 ,

 ei1 , . . . in this order and runs otherwise along T . (Thus,
⇢ starts with passes through !ei0 ,

!ei1 , . . . , interspersed with finite segments of T
between the endpoints of these passes, until it reaches !, from where it returns
along T to the starting vertex of  ei0 ; it then traverses  ei0 ,

 ei1 , . . . interspersed
with connecting segments of T to reach ! a second time, and finally returns from
there along T to its starting vertex. Note that the convergence of ei0 , ei1 , . . .
is essential for ⇢ to be a path: there is no path in |G| through an !-sequence
of chords that does not converge.) Since ⇢ traverses the chords of T equally
often in both directions, Theorem 5 and Lemmas 10 and 11 imply that ⇢ also
traverses the edges of T equally often in both directions.

Hence f([⇢]) = 0 2
!
C (G). To complete the proof that f is not injective,

and thereby the proof of Theorem 9, we show that [⇢] 6= 0, i.e. that ⇢ is not the
boundary of any 2-chain. In order to do so, we shall use our results from Sec-
tion 5 to define an invariant of 1-chains that can distinguish ⇢ from boundaries.
As in Section 5 we consider only paths whose boundary points are vertices or
ends, so our invariant will be defined only for chains of 1-simplices with this
property. However, it is easy to see that this entails no loss of generality.8

We need some more notation. Given k 2 N and a reduced word w : S ! A
(where A = {!e0,

 e0,
!e1,

 e1, . . . } as before), write n+(w, k) for the number of
8Indeed, if ⇢ =

P
�n@⌧n for 2-simplices ⌧n, we can modify each ⌧n into another 2-simplex

⌧ 0n whose 0-faces are vertices or ends, ans such that ⇢ =
P

�n@⌧n. For every inner point x
of an edge ex = uxvx in |G| pick a fixed path ⇡x from x to vx (say). Then append to every
1-simplex � occurring in the boundary of a ⌧n and ending in such a point x the path ⇡x after x,
turning � into a path �0 between two vertices by appending at most two such paths ⇡x. Then
if @⌧n = �0 � �1 + �2, say, it is easy to see that also �00 � �01 + �02 is the boundary of a
2-simplex ⌧ 0n. And clearly ⇢ =

P
�n@⌧n implies that also ⇢ =

P
�n@⌧ 0n, since we modified

only 1-simplices that cancelled out anyway in this sum.
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intervals in S which can be written as {s0, s1, . . . } with s0 < s1 < . . . and
w(sj) = !eik+j for every j 2 N. (This number exists: there are at most |w�1(!eik)|
such intervals, and this number is finite by our definition of ‘word’.) Put

n(w, k) := n+(w, k)� n+(w�, k) 2 Z .

(Recall that w� is w backwards with inverse letters, so n+(w�, k) counts the
intervals in S which can be written as {s0, s1, . . . } with s0 > s1 > . . . and
w�(sj) =  eik+j for every j 2 N.)

Given k 2 N and a path � in |G|, let N(�, k) := n(r(w�), k). Given a 1-chain
' =

P
n �n�n, let N(', k) :=

P
n �nN(�n, k) for every fixed k, and put

N(') := mink |N(', k)| .

Unlike N(', k) for fixed k, the function N is not a homomorphism. Nevertheless,
it will help us distinguish our special path ⇢ from boundaries: we shall prove
that N vanishes on boundaries, while clearly N(⇢) = 1. (Indeed, the word w⇢

is easily seen to be reduced (cf. Lemma 14); hence N(⇢, k) = n(w⇢, k) = 1 for
all k, since n+(w⇢, k) = 1 while n+(w�⇢ , k) = 0.)

We begin by noting a property of the function n(w, k):

If w = w1w2 is a reduced word, there exists a k 2 N such that
n(w, `) = n(w1, `) + n(w2, `) for all ` � k. (4)

Indeed, denote the domains of w1 and w2 by S1 and S2 (chosen disjoint); then
the domain of w is S = S1[S2, with S1 preceding S2. If S1 has a largest element,
s1 say, choose k large enough that w(s1) /2 {!eik ,  eik , !eik+1 ,

 eik+1 , . . . }. Then for
every ` � k none of the intervals in S counted by n(w, `) meets both S1 and S2,
since these intervals cannot contain s1. Hence every such interval is either an
interval of S1 or one of S2, so n(w, `) = n(w1, `) + n(w2, `) as desired. On the
other hand if S1 has no largest element, then no interval in S that meets both
S1 and S2 can be written as {s0, s1, . . . } with s0 < s1 < . . . or s0 > s1 > . . . ,
so none of the intervals counted by n(w, k) for any k meets both S1 and S2.
Hence, in this case, n(w, k) = n(w1, k) + n(w2, k) for all k.

For our proof that N vanishes on boundaries ', it su�ces to show that
every 2-simplex ⌧ satisfies N(@⌧, k) = 0 for large enough k: then N(', k) = 0
for some (large) k, and hence N(') = 0 as claimed. So consider a 2-simplex ⌧ ,
with boundary @⌧ = �2��1 +�0 denoted so that �2 ends at the starting vertex
of �0. Write wi := r(w�i) for the words to which the traces of the �i reduce
(i = 1, 2, 3), and w20 := r(w�20), where �20 := �2�0 is the path consisting of �2

followed by �0.
Note that w20 = r(w2w0). Indeed, we can reduce w�20 by first applying to

w�2 ✓ w�20 the reduction that turns w�2 into w2, and then apply to w�0 ✓ w�20

the reduction that turns w�0 into w0. Together this is a reduction of w�20 to
w2w0. Let R be a reduction of w2w0 to r(w2w0). Since we started with w�20 ,
the reduced word r(w2w0) we end up with is r(w�20) = w20 (Lemma 16).

Let us look at what R does. Since w2 and w0 are both reduced, every pair
of positions in R has one position in w2 and the other in w0. Hence if w denotes
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the subword of w2 whose positions are deleted by R, we have found reduced
words w,w02, w

0
0 such that

w2 = w02w and w0 = w�w00 and w20 = w02w
0
0 .

By (4), therefore, we have for all large enough k

n(w2, k) = n(w02, k) + n(w, k)
n(w0, k) = n(w�, k) + n(w00, k)

n(w20, k) = n(w02, k) + n(w00, k) .

As n(w�, k) = �n(w, k), we deduce that

n(w2, k) + n(w0, k)� n(w20, k) = 0

for all these k.
Since �20 is homotopic to �1 (across ⌧), Lemma 17 implies that w20 = w1.

We therefore deduce that

N(@⌧, k) = N(�2, k) + N(�0, k)�N(�1, k) = 0

for all large enough k, as desired. This completes the proof of Theorem 9.

7 A new homology for non-compact complexes

In this section we introduce a modification of singular homology for any topo-
logical space X embedded in a larger space X̂, which assigns a special role to
the points in X̂ \ X. The kind of example we have in mind is that X is locally
compact and X̂ a compactification of X; see e.g. [1] for more on such spaces.
For this reason we shall call the points in X̂ \ X the ends of X; but formally
we make no assumptions other than that X ✓ X̂. For compact X = X̂ our
homology will coincide with standard singular homology. When X is a graph
and X̂ its Freudenthal compactification, the first group of our homology will be
canonically isomorphic to the group of the topological cycle space of X.

Although our chains, cycles etc. will live in X̂, we shall denote their groups
as Cn(X), Zn(X) etc, with reference to X rather than X̂: this is because ends
will play a special role, so the information of which points of X̂ are ends must
be encoded in the notation for those groups.

Let us call a family (�i | i 2 I) of singular n-simplices in X̂ good if

(i) (�i | i 2 I) is locally finite in X, that is, every x 2 X has a neighbourhood
in X that meets the image of �i for only finitely many i;

(ii) every �i maps the 0-faces of �n (the standard n-simplex) to X.

Note that if X is locally compact, then (i) is equivalent to asking that every
compact subspace of X meets the image of �i for only finitely many i. Condi-
tion (ii), like (i), underscores that ends are not treated on a par with the points
in X: we allow them to occur on infinitely many �i (which (i) forbids for points
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of X), but not in the fundamental role of images of 0-faces: all simplices must be
‘rooted’ in X. Since X is, by assumption, a countable union of compact spaces,
(i) and (ii) together imply that good families are countable, i.e. that |I|  @0.

When (�i | i 2 I) is a good family, any formal linear combination
P

i2I �i�i

with all �i 2 Z is an n-chain in X. Since only finitely many �i in a good
family can be equal, we can add up the coe�cients of equal terms and thus
assume if desired that the �i in an n-chain are pairwise distinct; however, we
shall not normally assume this. We write Cn(X) for the group of all n-chains
in X, and C0

n(X) for its subgroup of finite n-chains. The boundary operator
@n : Cn ! Cn�1 is defined as usual by extending linearly from @�i. Note that
@ is well defined (i.e., that it preserves the local finiteness required of chains),
and @2 = 0. Chains in Im @ will be called boundaries.

As n-cycles, we do not take the entire kernel of @n. Rather, we define
Z0n(X) := Ker (@n �C0

n(X)), and let Zn(X) be the set of those n-chains that are
sums of such finite cycles:

Zn(X) :=
n
' 2 Cn(X) | ' =

X
j2J

zj with zj 2 Z0n(X) 8j 2 J
o

.

More precisely, an n-chain ' 2 Cn(X) shall lie in Zn(X) if we can write it as
' =

P
i2I �i�i in such a way that I admits a partition into finite sets Ij (j 2 J)

with zj :=
P

i2Ij
�i�i 2 Z0n(X) for every j 2 J . Any such representation of '

as a formal sum will be called a standard representation of ' as a cycle.9 We
call the elements of Zn(X) the n-cycles of X.

The chains in Bn(X) := Im @n+1 then form a subgroup of Zn(X): by def-
inition, they can be written as n-chains

P
j2J zj where each zj is the (finite)

boundary of a singular (n + 1)-simplex. We therefore have homology groups

Hn(X) := Zn(X)/Bn(X)

as usual. Alternatively, we may study the subgroups

H 0
n(X) :=

�
[z] : z 2 Z0n

 
of Hn(X) formed by the homology classes of finite cycles.

Note that if X is compact, then all good families and hence all chains are
finite, so the homology defined above coincides with the usual singular homol-
ogy. The characteristic feature of this homology is that while infinite cycles are
allowed, they are always of ‘finite character’: in any standard representation of
an infinite cycle, every finite subchain is contained in a larger finite subchain
that is already a cycle.

To illustrate all this let us look at a simple example,10 the double ladder. This
is the 2-ended graph G with vertices vn and v0n for all integers n, and with edges
en from vn to vn+1, edges e0n from v0n to v0n+1, and edges fn from vn to v0n. The
1-simplices corresponding to these edges, oriented in their natural directions, are

9Since the �i need not be distinct, ' has many representations as a formal sum. Not all
of these need admit a partition as indicated—see below.

10Another example will be given in (5) on page 25, which the reader is invited to skip to
now.
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✓en , ✓e0n and ✓fn . For the infinite chains ' :=
P
✓en , '0 :=

P
✓e0n and  := '�'0

we have @' = @ = 0, and neither sum as written above contains a finite cycle.
But while it can be shown that ' /2 Z1(G), we have  2 Z1(G), because  can
be rewritten as ' =

P
zn with finite cycles zn = ✓en + ✓fn+1 � ✓e0n � ✓fn . By

contrast, the unique representation of  as a formal sum in which like terms are
combined,  = '� '0, is not a standard representation of  as a cycle. As we
shall see in Section 8, we even have [ ] 2 H 0

1, although this is not obvious now.
There are some immediate questions that arise from the definitions given

above. For example, is Zn closed under locally finite sums? Is H 0
n = Hn, i.e., is

every homology class represented by a finite cycle? (For n = 1 we shall see in
the next section that it is.) We shall not pursue these questions here, but will
explore the properties of our homology (including more fundamental questions
than these) in another paper. In the remainder of this paper we show that
our homology achieves its aim: for graphs, it captures precisely the oriented
topological cycle space.

8 H1(G) equals
!
C(G)

In this section we show that, for graphs G, the groups H1(G) and H 0
1(G) defined

in Section 7 coincide, and are canonically isomorphic to the topological cycle
space

!
C (G) of G.

In analogy to our notation of Section 4, we shall denote this isomorphism
by f : H1(G)!

!
C (G). In our definition of f we shall have to refer to the map

which, in Section 4, was denoted as f : H1(|G|) !
!
E (G); this map will now

be denoted as f 0 : H1(|G|) !
!
E (G). (Recall that |G| denotes the Freudenthal

compactification of G, and that H1(|G|) is its usual first singular homology
group.11) When G is finite, our new function f will coincide with f 0.

In order to define f , let ' 2 Z1(G) be given in any standard representation
' =

P
i2I �i�i as a cycle, and let !e 2

!
E be any oriented edge. We shall first

define f(['])(!e) 2 Z with reference to ' and its given representation as a cycle,
and then show that our definition does not depend on these choices.

To define f(['])(!e), we show that for all large enough finite subchains '0 2
Z01(G) of ' the values of f 0(['0])(!e) agree (the homology class ['0] being taken
in H1(|G|)), and set f(['])(!e) to this common value. Write Ie for the set of
those i 2 I whose �i meets e; since e is compact and (�i | i 2 I) is a good
family, Ie is a finite set.

Let ⇡ : H1(S1)! Z and fe : |G|! S1 be defined as in Section 4, and write
(fe)] : C1(|G|)! C1(S1) for the chain map induced by fe.

Lemma 19. For all finite sets I 0 such that Ie ✓ I 0 ✓ I and '0 :=
P

i2I0 �i�i 2
Z1(|G|), the values of f 0(['0])(!e) agree.

Proof. Let 'e :=
P

i2Ie
�i�i. We show that even if 'e is not a cycle in |G|, the

chain (fe)]('e) is a cycle in S1 homologous to (fe)]('0) for every '0 as stated.
11We shall use C1(G), Z1(G), B1(G) and H1(G) to refer to our new homology of |G| that

relies on the information of which points of |G| are ends, while C1(|G|), Z1(|G|), B1(|G|) and
H1(|G|) continue to refer to the usual singular homology of the space |G|.
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Then, by definition of f 0,

f 0(['0])(!e) = ⇡((fe)⇤(['0])) = ⇡([(fe)]('0)]) = ⇡([(fe)]('e)])

for all such '0, and the result follows.
For a proof of [(fe)]('e)] = [(fe)]('0)], note that for all i 2 I \ Ie the map

fe ��i is constant (with value 1 2 C). So for such i, fe ��i is a null-homologous
cycle. But (fe)]('e) di↵ers from (fe)]('0), which is a cycle, precisely by the
terms �i(fe � �i) with i 2 I 0 \ Ie. Hence (fe)]('e) too is a cycle, and it is
homologous to (fe)]('0).

We now define f : H1(G)!
!
E (G) by letting f([']) map an oriented edge !e

to the common value of f 0(['0])(!e) for all '0 as in Lemma 19. In order to show
that f is well defined, let ' 2 Z1(G) and  2 B1(G) be given in any standard
representations ' =

P
i2I �i�i and  =

P
i2J �i�i with I \ J = ;. We show

that f assigns the same value to ['] = [' +  ] no matter whether we base its
computation on ' or on '+  : this proves that f([']) depends neither on the
choice of ' as a representative of ['] nor on its representation as

P
i2I �i�i.

Given !e 2
!
E, let Ie be the set of all i 2 I such that �i meets e, and define Je

likewise. Let I 0 ✓ I and J 0 ✓ J be finite sets containing Ie and Je, respectively,
such that '0 :=

P
i2I0 �i�i 2 Z1(|G|) and  0 :=

P
i2J0 �i�i 2 B1(|G|); such sets

exist since ' and  are given in standard representations. Then

f 0(['0])(!e) = f 0(['0 +  0])(!e) .

For our new function f , its value of ['] = [' +  ] computed with reference
to ' equals the left-hand side of this equation, while its value computed with
reference to '+  equals the right-hand side. This completes the proof that f
is well defined. Note that if ' is finite, then trivially f ['] = f 0['], where ['] is
taken in H1(G) and in H1(|G|), respectively.

Since f 0 is a homomorphism with image
!
C (G) (Section 4), Lemma 19 implies

that so is f . Indeed, for a proof that f([']) 2
!
C (G) consider the finite oriented

cuts
!
F of G, and apply Theorem 5 to any finite subchain '0 of ' containing all

the simplices that meet this cut. The proof that f is surjective is the same as
in Section 4: every element of

!
C (G) has the form f([⌧ ]) with ⌧ a single loop.

Thus in fact,
!
C (G) ✓ f(H 0

1(G)) ✓ f(H1(G)) ✓
!
C (G)

with equality.
The proof of Im f ✓

!
C (G) indicated above uses critically that infinite cycles

are of finite character. The following example illustrates that it also depends
critically on our rule that chains must be locally finite. Let G = R, with vertex
set Z. For vertices m < n let �m,n : [0, 1] ! G interpolate linearly between
m and n. Now consider the following sum of boundaries, each of the form
(�k,m + �m,n � �k,n):

X
i2Z

�i,i+1 =
X
i2N

(��(i+1),i + �i,i+1 � ��(i+1),i+1) (5)
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+
X
i2N

(��(i+2),�(i+1) + ��(i+1),(i+1) � ��(i+2),i+1) .

The combined sum on the right-hand side of the equation is well defined in
that every �m,n occurs at most twice. It also satisfies the requirements for a
standard representation of cycles in that it comes partitioned into finite cycles,
even boundaries. The left-hand side, which is obtained from the right-hand side
by deleting cancelling pairs of simplices, is a well-defined locally finite chain
with zero boundary. But it is not (and should not be) an element of Z1(G).
This is not a contradiction only because its apparent ‘standard representation’
as the combined sum on the right is not locally finite, and hence not a legal
chain: the point 0, for example, lies in the image of every ��n,m.

Our final goal is to show that f is injective. For finite G, the standard proof
is to rewrite a given cycle z 2 Z1(G) as a homologous sum of simplexes each
traversing exactly one edge. If [z] 2 Ker f , every edge is traversed equally often
in both directions, and we can pair up the simplices traversing it accordingly.
Each pair is homologous to a boundary, and hence so is z.

The reason why this proof does not work for f 0 on H1(|G|) is that the
simplices even in a finite cycle can traverse infinitely many edges. The proof
would therefore require us to break up the given finite cycle into a ‘homologous’
infinite chain, which is impossible in H1(|G|).

In our new setup, however, this can indeed be done. In fact, it turns out
that our restriction that any boundary chains to be added must be locally finite
exactly strikes the balance between being restrictive enough to rule out coun-
terexamples like the one above and being general enough to allow the subdivi-
sion into chains of single edges even of complicated cycle like our non-injectivity
example from Section 4.

This is shown in the following lemma. Although its proof looks somewhat
technical, the idea is very simple, so let us describe it informally first. Consider
a 1-simplex ⌧ traversing infinitely many edges. Our task is to ‘subdivide it
infinitely often’, into 1-simplices �1,�2, . . . each traversing exactly one edge, by
adding a locally finite sum of boundaries. We begin by targeting the first pass
of ⌧ through an edge, e = uv say. Let �1 be this pass, and let ⌧ 0 and ⌧ 00 be the
segments of ⌧ before and after �1. We now subdivide ⌧ at u and v: we add to
⌧ the boundary ⌧ 0 + �1 + ⌧ 00 � ⌧ , to obtain the chain ⌧ 0 + �1 + ⌧ 00. Next, we
target the second pass of ⌧ through an edge, �2. If this is a pass of ⌧ 0, say, with
segments ↵ and � before and after �2, we add the boundary ↵ + �2 + � � ⌧ 0
to insert �2 into our chain while eliminating ⌧ 0. Doing this for all passes of ⌧
in turn should leave us at the limit with only the chain �1 + �2 + . . . , since
all other simplices are eliminated again when the earliest pass they contain is
targeted. The main task of the formal proof of this, except for the inevitable
book-keeping, is to ensure that all the boundaries we add do indeed form a
locally finite chain, i.e. an element of B1(G).

Lemma 20. For every z 2 Z01(G) there exist a chain ' =
P

i2I �i 2 Z1(G) and
a chain b 2 B1(G) such that z + b = ', every �i maps [0, 1] homeomorphically
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to some edge e, and all these edges e as well as the images of the simplices in b
are contained in the image of the 1-simplices in z.

Proof. We may clearly assume that z is an elementary cycle consisting of a single
loop ⌧0 that is based at a vertex and is not null-homotopic. In particular, ⌧0
traverses an edge. Since ⌧0 traverses every edge only finitely often (Lemma 4),
⌧0 contains only countably many passes through edges, ⇡1,⇡2, . . . say, which we
reparametrize as maps from [0, 1].

In each of at most ! steps we shall add to our then current finite cycle

zn =
nX

i=1

�i +
X
j2Jn

⌧j

(which initially is z0 = ⌧0) finitely many simplices �i or ⌧j with coe�cients 1
or �1 so that the sum of simplices added lies in B1(G). We shall make sure
that all these simplices added or deleted form a good family; in particular, their
sum will not depend on the order of summation, although this order will help us
with our book-keeping. The result will be a chain of the form

P
i2I �i+

P
j2J ⌧j

in which every ⌧j is a null-homotopic loop (in particular 0 /2 J) and the �i are
those required in the statement of the lemma.

We shall choose the zn inductively so as to satisfy the following conditions,
which hold for n = 0 with J0 = {0}:

(i) �1, . . . ,�n and all ⌧j (j 2 Jn) are paths in |G| between (possibly identical)
vertices;

(ii) if n � 1, every ⌧j (j 2 Jn) is a segment of some ⌧i with i 2 Jn�1;

(iii) if n � 1, there exists j(n) such that Jn�1 \ Jn = {j(n)} and the finite
chain bn := �n � ⌧j(n) +

P
j02Jn\Jn�1

⌧j0 lies in B1(G);

(iv) �n is homotopic to ⇡n relative to {0, 1};

(v) suitably reparametrized, (⇡n+1,⇡n+2, . . . ) is the family of all edge-passes
of the paths ⌧j (j 2 Jn); specifically, the edge-passes in the paths ⌧j0 with
j0 2 Jn \ Jn�1 are precisely those in ⌧j(n) other than ⇡n.

Assuming that zn�1 satisfies these conditions, let us define zn. If ⇡n does not
exist, we terminate the construction, putting I := {1, . . . , n�1} and J := Jn�1.
If it does, then by (v) for n�1 there is a unique j 2 Jn�1 such that ⇡n is an edge-
pass in ⌧j . The path ⌧j is a concatenation of three segments ↵, ⇡n, and �, where
↵ and � may have trivial domain. Let Jn be obtained from Jn�1 by removing
j =: j(n) and adding new indices j0, j00 for ↵ =: ⌧j0 and � =: ⌧j00 whenever
these maps are paths (i.e., have non-trivial domain), reparametrizing each to
domain [0, 1]. Let �n be an injective path that is homotopic to ⇡n relative
to {0, 1}. Clearly, zn again satisfies the conditions. If the process continues
for ! steps, we complete it by putting I := N, and letting J :=

T
n2N

S
k>n Jk

consist of those j that are eventually in Jn.
Let us take a look at the simplices ⌧j with j 2 J . By definition of J , we

have j 2 Jn for all large enough n. By (i) and (ii), ⌧j is a segment of ⌧0 between
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two vertices, and by (v) it contains none of the passes ⇡1,⇡2, . . .. So it does not
traverse any edge. Hence,

⌧j is a null-homotopic loop based at a vertex. (6)

Notice that for only finitely many j 2 J can ⌧j be based at the same vertex v.
Indeed, given j 2 J , let n be the unique integer such that j 2 Jn \ Jn�1. Then
either j = 0, or ⌧j is a segment of ⌧0 followed or preceded by ⇡n, and hence ⇡n

is a pass through an edge at v. Since ⌧0 contains only finitely many such passes,
this can happen for only finitely many n, and indices j first appearing in Jn for
di↵erent n are distinct.

Next, let us show the following:

The family of all simplices added or deleted in the construction,
that is, of all �i (i 2 I), all ⌧j (j 2 J) and all ⌧j(n), is locally
finite and hence good.

(7)

To prove (7), let x be any point in G. If x is a vertex, let Ex be the set of edges
at x; if x 2 e̊ for an edge e, let Ex := {e}. Choose an open neighbourhood U of
x contained in

S
Ex. Since ⌧0 traverses each edge in Ex only finitely often, only

finitely many of the paths �i (i 2 I) meet U . Similarly, any path ⌧j with j 2 J
that meets U must be based at a vertex incident with an edge in Ex. Since
there are only finitely many such vertices, and at each only finitely many ⌧j are
based, only finitely many ⌧j with j 2 J meet U . Finally, consider a path ⌧j(n).
This path traverses an edge (in ⇡n), so if it meets U it must also traverse an
edge in Ex or adjacent to an edge in Ex. Only finitely many of the passes ⇡k

traverse such edges. By (v), any ⌧j containing ⇡k satisfies j 2 J1 [ . . . [ Jk�1,
so j(n) 2 J1 [ . . .[ Jk�1 for the largest such k. Since this is a finite set and the
map n 7! j(n) is injective, only finitely many n are such that ⌧j(n) meets U .
This completes the proof of (7).

To complete the proof, we show that z + b = ' for b :=
P

i2I bi �
P

j2J ⌧j ,
and in particular that b 2 B1(G). By (7), the family of all simplices in b is good,
so b 2 B1(G) by (iii) and (6). Likewise, the family of all �i is good. Since

z +
X
i2I

bi =
X
i2I

�i +
X
j2J

⌧j

by construction, we deduce that z + b =
P

i2I �i = ' as desired.

We can now easily complete the proof that our function f : H1(G)!
!
C (G)

is injective. Consider any [z] 2 Ker f . As z 2 Z1(G), it has a standard represen-
tation as z =

P
j2J zj with all zj 2 Z01(G). By Lemma 20, there are bj 2 B1(G)

(j 2 J) such that zj + bj = 'j , where 'j =
P

i2Ij
�i is a chain of simplices

each traversing exactly one edge, and these edges as well as the images of the
simplices in bj lie in the image of zj . The fact that z is a locally finite chain
therefore implies that so are

b :=
X
j2J

bj and ' :=
X
j2J

'j .
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Indeed, every x 2 G has an open neighbourhood U that meets the images of
simplices in zj for only finitely many j; let Jx be the set of those j. Hence U does
not meet the images of any simplices in bj or 'j for j /2 Jx. For each j 2 Jx,
we can find an open neighbourhood Uj ✓ U of x that meets only finitely many
simplices in bj or 'j , because bj and 'j are well-defined chains. The intersection
of these finitely many Uj thus is an open neighbourhood of x that meets only
finitely many simplices in b or in ', showing that b and ' are well-defined chains.

For I :=
S

j2J Ij , we thus have Z1 3 z + b = ' =
P

i2I �i, with b 2 B1(G).
Since [z] 2 Ker f , we thus have ['] 2 Ker f . Therefore the loops formed by the
elementary cycles in ' =

P
i2I �i traverse, in total, each edge of G equally often

in both directions (Lemma 10). Since each of the �i traverses precisely one edge,
we can thus pair them up into cancelling pairs �i+�i0 2 B1(G), where �i and �i0

traverse the same edge but in opposite directions. Hence ' =
P

i2I �i 2 B1(G),
giving z = '� b 2 B1(G) as desired.

We have thus shown that f is an injective group homomorphism from H1(G)
to
!
C (G) whose restriction to H 0

1(G) still maps onto
!
C (G). Hence all these groups

coincide, which is our second main result:

Theorem 21. The function f is a group isomorphism between H1(G) and
!
C (G),

as well as between H 0
1(G) and

!
C (G). In particular, H 0

1(G) = H1(G).
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