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Thomassen introduced the concept of a finitely spreading graph: an in-
finite graph whose edges can be oriented, each in one, both, or neither
direction, so that every vertex has finite out-degree and every ray has a
forward oriented tail. He conjectured that a graph is finitely spreading
if and only if it is bounded in the sense of Halin—equivalently (see [ 3 ]),
if it contains none of three specified infinitely spreading graphs.

We prove Thomassen’s conjecture in amended form, adding a
fourth minimal obstruction to the three conjectured ones.

1. Introduction

There are two basic structural phenomena that make an infinite graph ‘truly
infinite’: vertices of infinite degree, and infinite paths. These features are in a
sense dual: one or the other occurs in every infinite connected graph. If only
one occurs, i.e. if the graph is rayless or locally finite, its structure tends to
be much simpler and easier to describe. This makes it desirable to identify, if
possible, in an arbitrary infinite graph a (say) locally finite substructure that
captures the essence of certain aspects of the structure of the whole graph.
An important such aspect for an infinite graph, as suggested above, lies in its
rays—whose ‘essence’ is their eventual route, their behaviour at infinity.

The subject of this paper is a concept recently introduced by Thomassen:
call a graph ‘finitely spreading’ if its edges can be oriented, each in one, both, or
neither direction, so that every vertex has finite out-degree and every ray has a
forward oriented tail. This concept fits the bill exactly: it determines when the
rays in an infinite graph eventually follow a certain locally finite substructure.
We shall characterize the finitely spreading graphs by way of excluding four
infinitely spreading graphs as topological minors. This proves a conjecture of
Thomassen in amended form.

Let us be more precise. We wish to assign to some of the edges xy one or
both of their two possible orientations x→y and x ← y. If the orientation x→y

has been assigned to xy, we say that xy is oriented from x to y, or forward ;
note that this does not preclude the possibility that xy has the orientation
x ← y assigned to it as well. (The expression ‘forward’ here is a reference
not to the edge itself but to our present notation of it as xy rather than yx.)
The aim, then, is twofold. First, every vertex x should have only finitely many
neighbours y such that the edge xy is oriented from x to y. Second, every
ray (one-way infinite path) x0x1 . . . should have a tail (subray) xnxn+1 . . . such
that every edge xn+ixn+i+1 of this tail is oriented forward; such a tail will be
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called a forward oriented tail . If it is possible to orient the edges of a graph
in this way, the graph is called finitely spreading , and its orientation a finitely
spreading orientation; if not, the graph is infinitely spreading .

Thus, a finitely spreading orientation provides a graph with a locally finite
substructure mapping out the essential directions of its rays: every ray will
eventually coincide with a ray indicated by the orientation.

Before we state Thomassen’s conjecture formally, let us see some exam-
ples. Any locally finite graph is trivially finitely spreading: just orient every
edge both ways. Let us remark at this point that the provision for two-way
orientations of edges is necessary if we want the locally finite graphs to be
included among the finitely spreading ones (as seems clearly desirable): the
infinite ladder is an example of a locally finite graph which has no finitely
spreading orientation using only one-way orientations of edges.

The regular tree of countably infinite degree, which we denote by Tω, is
a simple example of an infinitely spreading graph. However, a graph need not
be ‘wide’ to be infinitely spreading: a ‘long and narrow’ example is given by
the graph B0 shown in Fig. 1. (Formally, B0 is obtained from a ray x0x1 . . . by
adding, for each n ∈ N, a countably infinite set of independent x3n+1–x3n+3

paths, disjoint for different n.)

FIGURE 1. The ‘bundle graph’ B0

It is clear that B0 does not admit a finitely spreading orientation: each
of the vertices x3n+1 would be incident with an edge on its right not oriented
away from it, and one would readily find a ray through B0 using all these edges
from left to right, i.e. against their possible orientation.

The graph F0 of Fig. 2, obtained from a ray R = x0x1 . . . by adding dis-
joint rays Q2, Q4, Q6, . . . with Qk ∩R = {xk }, and joining x2n+1 to all the
new vertices of Q2n+2 for every n ∈ N, is a similar example of an infinitely
spreading graph. Interestingly, this graph becomes finitely spreading (and our
first non-trivial example of such a graph) if its ‘fans’ are flipped horizontally,
i.e. if the vertices x2n+1 are joined to all the vertices of Q2n rather than to
those of Q2n+2 (add a ray Q0).

We are now ready to state Thomassen’s conjecture. In its original form,
the conjecture says that a countable graph is finitely spreading if and only if
it is bounded; a graph is called bounded if for every integer labelling of its
vertices there exists an infinite sequence of natural numbers which eventually
exceeds the labelling along any ray in the graph. (A more formal definition
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FIGURE 2. The ‘fan graph’ F0

of boundedness can be found in any of [ 3,4,5 ].) It is not difficult to prove
that a finitely spreading countable graph must indeed be bounded [ 5 ]; the
conjecture’s claim is that bounded graphs are finitely spreading.

Confirming a long-standing conjecture of Halin, it was proved in [ 3 ] that
a countable graph is bounded if and only if it contains no subdivision of Tω,
B0 or F0. (It is again easy to see that these graphs are themselves unbounded.
An exposition of the main ideas from the proof in [ 3 ] of the converse, as well
as of related results and problems, has been given in [ 4 ].) Thus, the following
is an equivalent version of Thomassen’s original conjecture [ 10 ]:

Conjecture. (Thomassen 1990)
A countable graph is finitely spreading if and only if it contains no subdivision

of Tω, B0 or F0.

It is not difficult to show that any topological subgraph of a finitely
spreading graph is again finitely spreading (with the ‘induced’ orientation).
Thomassen’s conjecture therefore makes sense, in that the finitely spread-
ing graphs can in principle be characterized by forbidding ‘minimal’ infinitely
spreading ones as topological subgraphs. In particular, we see that the ‘only
if’ implication of the conjecture is true: since Tω, B0 and F0 are themselves
infinitely spreading, they cannot be topological subgraphs of a finitely spreading
graph.

Despite the natural appeal especially of its original version (equating fi-
nite spreading with boundedness), Thomassen’s conjecture was recently dis-
proved [ 5 ]: the graph S0 shown in Fig. 3 contains no subdivision of Tω, B0

or F0, but is infinitely spreading.
The aim of this paper, then, is to prove that this counterexample to

Thomassen’s conjecture is essentially the only one, that the conjecture becomes
true if we add S0 as a fourth forbidden graph:

Theorem 1. An infinite graph is finitely spreading if and only if it has no

subgraph isomorphic to a subdivision of any of the graphs Tω, B0, F0 or S0.

Note that, in Theorem 1, we no longer require the graph to be countable.
We remark, however, that the equivalence to boundedness is restricted to the
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FIGURE 3. The ‘sail graph’ S0

countable case: there are uncountable finitely spreading graphs, such as the
disjoint union of continuum many rays, which are unbounded. Theorem 1,
therefore, is somewhat stronger than what remains of Thomassen’s original
conjecture:

Corollary. Every infinitely spreading bounded graph contains a subdivision

of S0. Thus, a countable graph not containing a subdivision of S0 is finitely

spreading if and only if it is bounded.

Our proof of Theorem 1 owes much to techniques developed in [ 3 ] for the
proof of Halin’s bounded graph conjecture. After a short section on basic temi-
nology, these techniques will be introduced and developed further in Sections
3 and 4. Section 5 contains the formal proof of Theorem 1.

2. Terminology

In this section we briefly review some of the basic notation used in this paper.
(See [ 1 ] for standard definitions not given here.) All the graphs we consider are
undirected and simple, i.e. have neither loops nor multiple edges. The axiom
of choice is assumed throughout the paper. The set of natural numbers, N,
includes 0.

Let G be a graph. The edge set of G will be denoted by E(G), its vertex
set by V (G), and its number of vertices by |G|. When H is a subgraph of G,
denoted by H ⊂ G, we may simply say that G contains H. The neighbourhood
of a vertex is the set of its neighbours. G is locally finite if the degree of
each vertex, the number of its neighbours, is finite. The complete graph on a
countably infinite vertex set is denoted by Kω.

A path may be finite or infinite; its length is its number of edges. A path
of length 0 is trivial . A one-way infinite path is a ray . Any infinite connected
subgraph of a ray R is a tail of R. We usually write a path as the sequence
of its vertices, which gives these a natural order. It then makes sense to say
that a path starts or ends at some particular vertex, that one vertex precedes
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another on it, and so on. Rays are thought of as having a starting vertex but
no last vertex.

The following theorem of König [ 9 ], a simpler version of his well-known
Infinity Lemma, is a standard tool which we shall use frequently:

König’s Theorem. Every infinite connected graph has a vertex of infinite

degree or contains a ray.

If P = x1 . . . xn is a path, we write P̊ for the interior of P , the subpath
x2 . . . xn−1. Two or more paths are independent if their interiors are disjoint.
The vertices of P̊ are the inner vertices of P . Similarly, if 1 � i � j � n, we
set Pxi := x1 . . . xi, Px̊i := x1 . . . xi−1, xiPxj := xi . . . xj , xjPxi := xj . . . xi,
xjP := xj . . . xn and x̊jP := xj+1 . . . xn for subpaths of P . Analogous notation
will be used for rays and for trees (so that xTy is the unique path from x to y in
the tree T ), and for the concatenation of paths. For example, if x is a common
vertex of two paths P and Q, then PxQ denotes the ‘walk’ Px∪xQ. The path
Pxi defined above is an initial segment of P .

For X,Y ⊂ G, we call a finite path P ⊂ G an X–Y path if its endvertices
are in X and Y , respectively, and its inner vertices lie in G− (X ∪ Y ). When
X or Y consists of only one vertex, we speak of (say) x–Y or X–y paths rather
than {x } –Y or X– { y } paths.

If X ⊆ G or X ⊂ V (G), we write G [X ] for the subgraph of G induced by
the vertices in X. For H ⊂ G and x ∈ V (G), we write H [x ] for the subgraph
of H induced by those of its vertices y for which G contains an x–y path that
has no vertices in H other than y. In particular, if x is a vertex of H then
H [x ] is just the singleton {x }. On the other hand, if x /∈ H and C is the
component of G−H containing x, then H [x ] contains precisely those vertices
of H that have a neighbour in C.

When T is a tree, we shall often pick a root r ∈ V (T ), and call T rooted
at r. This induces a natural partial order on V (T ), in which x � y iff x lies on
the unique r–y path rTy in T . Informally, we think of this order as expressing
the vertices’ heights in T ; we may then speak of y being above x if y > x, call
it an upper neighbour of x if it is above x and adjacent to it, and so on.

Note that, for each vertex z ∈ T , the set of all vertices x � z is linearly
ordered; the subgraph it spans in T will be denoted by �z�. For any vertex v

of T , the subtree of T spanned by all the vertices x � v will be denoted by T�v.
Similarly, we write T>v for T�v − v.

If T ⊂ G and V (T ) = V (G), then T is said to span the graph G. The
order � on V (T ) thus becomes an order on V (G); if we wish to be more specific,
we may denote it by �T .

A subdivision of a graph H is any graph obtained from H by replacing its
edges with independent paths of lengths � 1. H is a topological subgraph of
any graph containing a subdivision of H.
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3. Sails, fans, and bundles

In this section, we introduce some specific terminology and techniques needed
to handle the proof of Theorem 1. Just for the purpose of the next few defini-
tions, let us call a path P ′ a modification of a non-trivial path P = x . . . y if P ′

is a path from x to y (not from y to x !). If P is a ray, a ray P ′ will be called
a modification of P if P ′ shares its starting vertex and a tail with P .

Let a and b be distinct vertices. The union of an infinite set of independent
a–b paths of lengths � 2 will be called a bundle from a to b, or an a–b bundle.
The interior of any of those paths is a fibre of the bundle; note that these
fibres are pairwise disjoint. An a–b bundle B is said to be on a path P if
B ∩ P = { a, b }, a precedes b on P , and aPb has length at least 2. If Q is a
(possibly trivial) path from b to some vertex c such that Q∩B = { b }, then
B ∪Q is an extended bundle from a to c. Note that, formally, any ordinary
bundle is also an extended bundle (with b = c).

Let B∪Q be an a–b bundle extended to c (as above), let P be a path con-
taining both a and c, and assume (if P is infinite) that P meets only finitely
many fibres of B. Then, by the following construction, B ∪Q∪ P contains a
bundle B′ and a modification P ′ of P such that B′ is on P ′. Let B′′ be the
bundle obtained from B by deleting any fibres that meet P , let F be any a–b
path in B′′, and put B′ := B′′− F̊ . Let d be the vertex of P closest to b on the
extension Q = b . . . c. If d ∈ aP , then B′ is a bundle on P ′ := PaFbQdP . (In
other words, we replace the segment aPd of P with the bundle B′ followed by
the path bQd.) Similarly, if d ∈ Pa, then B′ is a b–a bundle on P ′ := PdQbFaP .

We shall refer to the above act of replacing P and B with a modification
P ′ of P and a bundle B′ on P ′, where both P ′ and B′ are subgraphs of P ∪B,
as the placing of B on P . To avoid cluttering our notation, we would normally
continue to use the terms P and B for their replacements. We have thus shown
the following.

(3.1) An extended bundle from a to c can be placed on any path that contains

a and c and meets only finitely many of the bundle’s fibres.

Let Q be a ray starting at a vertex b, and let Pn, n ∈ N, be paths from a
common starting vertex a /∈ Q to vertices qn ∈ b̊Q. Assume that qn precedes
qn+1 on Q for all n. (Informally, we shall think of Q as pointing upwards; thus,
qn+1 is above qn on Q.) The union F of Q with the paths Pn is called a fan
from a to b, or an a–b fan, if the paths Pn are pairwise disjoint except for a

and have no inner vertices on Q. The ray Q in such a fan is called its spine;
the paths aPnqn are its spokes.

A segment of F is any path of the form PnqnQqn−1 (if n > 0) or P0q0Qb.
Thus, every vertex v ∈ F − { a, b } is in the interior of a unique seg-
ment S(v), and F is the union of its segments S(q0), S(q1), . . . . Similarly,
we let S(b) := S(q0) = P0q0Qb. The order of the vertices qn along Q induces a
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total order on the segments of F : we write S(v) <F S(w) if S(v) = S(qn) and
S(w) = S(qm) with n < m. This in turn induces a partial order on the vertices
of F − a, where v <F w if S(v) <F S(w), and v, w are incomparable (denoted
as v ∼F w) if S(v) = S(w). For “v <F w or v ∼F w” we write v �F w.

An a–b fan F is said to be on a path P if F ∩P = { a, b } and a precedes b

on P . Placing a fan is defined analogously to placing a bundle. However, it
is not always possible to place an a–b fan F on a path P containing a and b,
even if P meets only a finite part of F . For example, if P meets F in exactly
a and b but b precedes a on P , then F ∪ P does not contain a fan F ′ and a
modification P ′ of P such that F ′ is on P ′. However:

(3.2) An a–b fan F can be placed on any path P such that P ∩ F is finite,

a, b ∈ P , and Pa avoids the spine of F .

Indeed, let c be the vertex of P highest on the spine Q of F (so that P ∩ c̊Q = ∅),
and let F ′ be the a–c fan obtained from F by deleting Qc̊ and any spoke’s
interior that meets P or attaches to Qc. F ′ is an a–c fan on P (unmodified).

Let a, b, c be distinct vertices. A sail from c to b, or a c–b sail , is any
union S of a ray Q1 starting at c, an a–b fan F (with spine Q2, say) such that
F ∩Q1 = ∅, and infinitely many disjoint Q1–Q2 paths avoiding F −Q2. The
ray Q1 is called the mast of this sail; its spine and spokes are those of F . S is
said to be on a path P if S ∩P = { c, b } and c precedes b on P .

We say that a sail S can be placed on P if S ∪P contains a modification
P ′ of P and either a sail or a fan on P ′. Placing sails is more complicated than
placing bundles or fans; the following sufficient conditions will be enough for
our purposes.

Lemma 3.3. Let S be a sail (with a, b, c,Q1, Q2, F as above), and let P be a

path such that P ∩ S is finite and a ∈ P . Assume further that aP ∩Q2 �= ∅,
and let q+

2 be the vertex of aP highest on Q2. S can be placed on P if at least

one of the following conditions is satisfied:

(i) Pa∩ q+
2 Q2 = ∅;

(ii) condition (i) fails and Pq−2 ∩Q1 �= ∅, where q−2 is the first vertex of Pa

on q+
2 Q2;

(iii) aP ∩Q1 �= ∅.

Proof. If (i) holds, then F contains an a–q+
2 fan which can be placed on P ,

by (3.2). Suppose now that (i) fails, and let q−2 be defined as in (ii). By
assumption, (ii) or (iii) holds, so Q1 ∩ (Pq−2 ∪ aP ) �= ∅; let q1 be the highest
vertex on Q1 in this set.

If q1 ∈ Pq−2 , choose a (q1Q1)–(q+
2 Q2) path U = u1 . . . u2 in S−P . Then

P ′ := Pq1Q1u1Uu2Q2q
+
2 P
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is a modification of P , and S contains a u1–u2 sail placed on P ′: note that
P q̊1 avoids q1Q1 by definition of q1, and it avoids q+

2 Q2 by definition of q−2 and
the fact that q1 ∈ Pq−2 ; q+

2 P avoids q1Q1 and q+
2 Q2 by definition of q1 and q+

2 ,
respectively; both Pq1 and q+

2 P avoid a, because a ∈ q̊1P q̊+
2 .

If q1 /∈ Pq−2 , then q1 ∈ aP . Let U be a q−2 –a path consisting of an initial
segment of q−2 Q2 followed by a spoke avoiding P − a. Let F ′ ⊆ S be an a–q1
fan with spine q1Q1 such that F ′ ∩U = { a } and no spokes of F ′ meet P − a.
By definition of q1, the path Pq−2 , and hence Pq−2 U , avoids the spine of this
fan. Thus if W is any a–q1 path in F ′, then by (3.2) F ′ can be placed on the
path Pq−2 UaWq1P , which is a modification of P . �

Let H = {H1, H2, . . . } be a finite or infinite, and possibly empty, set of
disjoint sails, fans and/or bundles, all on a fixed path P . Assume that the Hi

are arranged in such a way that the first vertex of P lies in none of them, and
both vertices of Hi∩P precede both vertices of Hi+1∩P on P for every i. If H
is infinite, then P ∪

⋃
H is called a sail-fan-bundle graph, or SFB-graph, on P ;

if H is finite, P ∪
⋃
H is called a partial SFB-graph on P .

Note that every SFB-graph contains a subdivision of one of the graphs B0,
F0 and S0 from Theorem 1. To prove the non-trivial direction of the theorem,
it will thus be sufficient to find an SFB-graph or a subdivision of Tω in every
infinitely spreading graph.

We conclude this section with one of the basic lemmas from [ 3 ]. The
construction used in its proof will be referred to later, so we include the proof
for the reader’s convenience.

Lemma 3.4. Let a and b be distinct vertices, and let P be an infinite set of

a–b paths whose second vertices are pairwise distinct. The union
⋃
P of these

paths then contains either an extended bundle from a to b, or an a–b fan all

whose segments are initial segments of paths in P.

Proof. Let Pn, n ∈ N, be distinct paths from P such that the second vertex of
Pn is not on Pk, for all k < n. Choose initial segments Sn of the Pn, as follows.
Let S0 := P0. Having defined S0, . . . , Sn for some n ∈ N, let Sn+1 be the initial
segment of Pn+1 which ends at the first vertex of Pn+1 in S0∪ . . .∪Sn. Let this
vertex be called wn+1, and let k(n+1) be the minimal k for which wn+1 ∈ Sk.
Call Sk(n+1) the predecessor of Sn+1.

Let K be the tree with vertex set N and edge set {nk(n) | n > 0 }. By
König’s theorem, K contains a ray or has a vertex of infinite degree. If K has
a vertex of infinite degree, k say, then Sk has a vertex w such that wn = w for
infinitely many n > k. The corresponding paths Sn are pairwise independent,
and they form an a–w bundle which extends to b along Pk (delete any fibres
hit by wkPk; Fig. 4).

On the other hand if K contains a ray N , without loss of generality starting
at 0, then the paths Sn with n ∈ N are easily seen to form an a–b fan (Fig. 4;
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FIGURE 4. An extended bundle or a fan from a to b

note that, by the construction of K, if m succeeds n on N then m > n, so Sn

is the predecessor of Sm). �

4. Normal spanning trees

In this section we introduce the main structural tool for our proof of Theorem 1,
the concept of a normal spanning tree. A rooted spanning tree T of a graph G

is called normal if the endvertices of every edge of G are comparable in the tree
order �T which T induces on V (G). Thus, if r is the root of T and xy ∈ E(G),
then either x lies on the r–y path in T or y lies on the r–x path in T . Intuitively,
all the edges of G are ‘along’ branches of T , never ‘across’.

It is easy to see that all finite connected graphs have normal spanning trees
(obtained, for example, by a ‘depth-first search’). Jung [ 8 ] characterized the
infinite graphs having normal spanning trees; his characterization implies that
every countable connected graph contains such a tree. For more on normal
trees, especially for uncountable graphs, see [ 6 ].

Starting from Jung’s result and using the theory of simplicial decomposi-
tions of graphs (see [ 2 ]), Halin [ 7 ] was able to prove the following:

Theorem 4.1. (Halin)
If G is connected and contains no subdivision of Kω, then G has a normal

spanning tree.

When we prove later that an infinitely spreading connected graph G must
contain one of the four topological subgraphs listed in Theorem 1, we may thus
assume that G has a normal spanning tree: if not, it contains a subdivision
of Kω, and hence all four of the desired types of subgraph.

We may already note one interesting consequence of Theorem 4.1 which
is somewhat less immediate from first principles. If G is finitely spreading, it
contains no subdivision of Kω, and so each of its components has a normal span-
ning tree. Then all the edges of G are between vertices that are comparable in
their respective tree order, and each vertex is adjacent to at most finitely many
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vertices below it. By orienting every edge in G downwards (in addition to any
previous orientation), we may therefore turn any finitely spreading orientation
of G into one in which every edge is oriented in at least one direction. The
provision in the definition of finite spreading for edges to remain undirected
thus turns out to be redundant.

We now collect together a number of simple facts about normal spanning
trees to be used later. All these are easy to prove, and they should help
the reader develop an intuition for the properties of a normal spanning tree.
(Explicit proofs can be found in [ 3; §3 ].)

Let G be a fixed graph, and assume that G contains a normal spanning
tree T with root r. Any reference to an order on the vertices of G (such as
‘above’, ‘below’, down-closures �x� and so on) will be assumed to refer to the
order �T induced by T . A ray in G will be called a normal ray if it starts at
r and is contained in T . The union of all normal rays, clearly a subtree of T ,
will be denoted by T ′.

Our first lemma translates the local defining property for T (that every
edge of G runs vertically along T ) into a more global separation property of G:

Lemma 4.2. Let x, y ∈ V (G). Then �x�∩�y� = �inf {x, y }� separates x from

y in G, i.e. every x–y path in G contains a vertex of �x� ∩ �y�.

Lemma 4.2 implies that, in terms of vertex sets, separators of the form �x�
leave the same components in G as in T :

(4.3) If x ∈ V (G) and C is an induced subgraph of G, then C is a component

of G−�x� if and only if C ∩T is a component of T −�x�.

Note that Lemma 4.2 does not imply that the interior of any x–y path P

meets �x� ∩ �y�. This is true only if x and y are incomparable; if x < y, then
P may well have a non-empty interior lying somewhere above x.

If x ∈ T ′ then �x� ⊂ T ′. Lemma 4.2 thus has another immediate conse-
quence:

(4.4) T ′ [x ] ⊂ �x� for every x ∈ V (G). Similarly, if R is a normal ray, then

R [x ] ⊂ �x�.

(4.4) implies that, if x is a vertex and R is a normal ray in G, the vertex
set of R [x ] is a finite chain with respect to �T . Let us define the R-height of x
to be the unique maximal vertex of R [x ]. Thus, the R-height of x is the first
vertex of R on the descending path xTr. Note that the R-height of a vertex
h ∈ R is h itself; the other vertices of R-height h are precisely those vertices
which lie above h but not above any vertex of h̊R. In particular, �h� separates
(in T and in G; cf. (4.3)) the vertices of R-height h from any vertices of different
R-height:
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(4.5) Let x, y ∈ V (G), and let R be a normal ray.

(i) If x and y are in a common component of G−R, then their R-heights

coincide.

(ii) If y > x, then the R-height of y is at least that of x.

If H ⊂ G or H ⊂ V (G), and R is a normal ray, we shall say that the R-
height of (the vertices in) H is bounded if R has a vertex h above the R-heights
of all the vertices in H. Another subgraph H ′ ⊂ G is H-clear with respect
to R if the R-height of each vertex of H ′ is strictly greater than the R-heights
of all the vertices in H. The R-height of H tends to infinity if H is infinite and
for each h ∈ R only finitely many vertices of H have R-height � h.

The concept of R-height will help us to organize our construction of an
SFB-graph in Section 5. For example, if H is a partial SFB-graph already
constructed at some point (on the path P , say) and H ′ is H-clear, we shall aim
to extend P into H ′ and continue our construction there; we can then be sure
that sails, fans or bundles constructed at later stages will not interfere with
earlier ones.

If R is any ray in G and R′ is a normal ray, let us say that R follows R′

if |R∩R′| = ∞.

(4.6) Every ray in G follows a unique normal ray.

If R follows R′ then, in terms of R′-height, the vertices of R behave like
those of R′ itself:

(4.7) Let R ⊂ G be a ray, and let R′ be the normal ray it follows. Then the

R′-height of R tends to infinity.

Our standard application of (4.7) for the construction of an SFB-graph will be
that if H ⊆ G has bounded R′-height and R follows R′, then R has an H-clear
tail.

And a last lemma from [ 3; §3 ]:

Lemma 4.8. Let R be a normal ray. If G has infinitely many vertices with

neighbourhoods of unbounded R-height, then G contains a subdivision of Kω.
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5. Proof of the classification theorem

The following special case of Theorem 1 was first observed by Thomassen [ 10 ];
for completeness, we sketch a proof.

Lemma 5.1. A tree is finitely spreading if and only if it contains no subdivision

of Tω.

Proof. Let G be a tree not containing a subdivision of Tω; we show that G

is finitely spreading. Pick a root r in G. Proceeding by ordinal recursion, we
shall orient some of the edges upwards and delete some of the vertices. For
each ordinal α, let Gα denote the subgraph of G induced by those vertices that
have not been deleted by time α. (If Gα is non-empty, it will be a subtree
of G rooted at r.) Find a vertex v ∈ Gα such that G�v

α is locally finite; such
a vertex v exists, as otherwise Gα contains a subdivision of Tω. Orient every
edge in G�v

α upwards, and delete G�v
α . This completes the recursion step. The

recursion ends only when all the vertices have been deleted; since at least one
vertex is deleted at each step, this happens after no more than |G|+ steps.

For each vertex x of G, the only time an edge incident with x gets oriented
is when x and this edge belong to the same locally finite tree G�v

α . Since these
trees are vertex disjoint, x has finite out-degree.

Now consider any ray in G. Let R be a tail of this ray going up in G.
Let α be minimal such that some vertex x of R was deleted at time α. Then
the entire tail xR of R was deleted at that time, and hence all its edges were
oriented upwards. �

As we observed in the Introduction, no finitely spreading graph can con-
tain a subdivision of B0, F0, S0 or Tω. We now prove the other direction of
Theorem 1, that every infinite graph G not containing any of these four types of
subgraph is finitely spreading. Obviously, we may assume that G is connected.
By Halin’s theorem (4.1) and our assumption that G contains no subdivision
of Tω (say), G has a normal spanning tree T . As before, we denote the union
of all normal rays by T ′, and denote the order �T on the vertices of G simply
by �. (Again, any unspecified reference to an order on vertices will refer to
this order.)

As T ′ contains no subdivision of Tω, Lemma 5.1 implies that T ′ has a
finitely spreading orientation. Let us fix such an orientation, and consider the
edges of T ′ that are oriented upwards as labelled . Every vertex of T ′ is thus
incident with finitely many labelled edges, and every normal ray has a tail whose
edges are all labelled. We shall use this labelling as guidance when we come to
orient the edges of G; this does not mean, however, that that orientation will
necessarily be an extension of the above orientation of T ′.

To define our desired orientation of the edges of G, we need some more
definitions.
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Let us call a pair (v, w) of vertices of T ′ good if G contains only finitely
many v–w paths whose interiors avoid T ′. For each good pair (v, w) let Gvw

be the union of all those v–w paths; this is a finite subgraph of G. Note that if
vw is an edge of T ′, then Gvw contains this edge. Let G+ be the union of the
graphs Gvw, taken over all good pairs (v, w). Then

(5.2) any vertex of infinite degree in G+ lies on T ′.

Indeed, recall that any subgraph of the form T ′ [x ] is finite (4.4). As
v, w ∈ T ′ [x ] whenever x ∈ Gvw − T ′, any x ∈ G+ − T ′ is in only finitely
many graphs Gvw, and thus has finite degree in G+.

It was shown in [ 3; pp. 147–149 ]* that if G has a ray without a tail in G+,
then it contains a subdivision of B0. Hence,

(5.3) every ray in G has a tail in G+.

It will thus suffice to orient the edges of G+.
Recall that, in terms of vertex sets, the deletion of a subgraph of the form

�x� from G or from T leaves exactly the same components (4.3). For each
a ∈ T ′, let Ca be the set of those components of G−�a� above a whose unique
minimal vertex is in T ′ and joined to a by a labelled edge.

Now consider a finite partition D of the graph G− �a� into unions of its
components, with ∅ ∈ D. (Thus, every component of G−�a� is either itself an
element of D or else a component of an element of D.) Note that a is uniquely
determined by D, as the maximal vertex of G−

⋃
D. A D-trace is any (2k)-

tuple (for some integer k > 0) of the form (v1, D1, . . . , vk, Dk), where the vi are
distinct vertices in �a� and the Di are elements of D. Note that for any fixed
D there are only finitely many D-traces.

Since �a� separates the elements of D pairwise in G, any finite or infinite
path P ⊆ G starting in �a� leaves a unique D-trace in a natural way: for each
i � k := |P ∩ �a�|, the vertex vi in this trace is the i’th vertex of P in �a�,
while Di is either empty (if vivi+1 is an edge of P or i = k and P ends in vk)
or else is the unique element of D containing v̊iP v̊i+1 (or v̊iP , in the case of
i = k).

The idea behind this definition is that such traces may help us in the
construction of an SFB-graph along a ray R, in the following way. If F is a
fan (say) not on R itself but on some other path P , we may still hope to use
F for our SFB-graph by substituting a segment of P carrying F for a suitable
segment of R. If P has the same D-trace τ as R for some D and F is contained
in a single D ∈ D, we may replace all the segments of R through D with the
corresponding segments of P . Unless D is the last element of D in τ , the
resulting modification of R will then again be a ray, and F will be properly
placed on it in the same way as it was placed on P .

* This is non-trivial. The relevant part of [ 3 ], however, uses the same terminology as
here and can be copied almost verbatim.
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We are now ready to orient the edges of G. We proceed in three steps;
observe that, in each step, every vertex has only finitely many edges oriented
away from it, so all out-degrees remain finite.

Step 1. Orient every edge downwards. (Recall that adjacent vertices of G are
comparable in the tree order of T , so one is below the other. Each
vertex has only finitely many vertices below it.)

Step 2. Orient any edge xy ∈ G+ from x towards y if x /∈ T ′. (Recall that
such vertices x have finite degree in G+, by (5.2).)

Step 3. Consider every vertex a ∈ T ′ in turn. For each a, let

D := Ca ∪{D+, D−, ∅ } ,

where D+ is the union of all components of G−�a� above a that are

not in Ca, and D− is the union of all other components of G− �a�
(i.e. of all components whose minimal vertex is not an upper neighbour

of a in T ). Consider every D-trace τ = (v1, D1, . . . , vk, Dk) such that

a = vi for some i ∈ { 1, . . . , k }. If a has only finitely many neighbours

x in Di such that a, x are consecutive vertices (in this order) on some

path in G with D-trace τ , then orient the edges ax from a towards x

for all these x.

It remains to prove that, with the above orientation of the edges of G, every
ray in G has a forward oriented tail. So let R be an arbitrary ray in G, and let
R′ be the normal ray it follows (4.6). Whenever we use the term ‘(·)-clear’ in
the rest of this paper, it will be with respect to R′.

Replacing R with a suitable tail of R if necessary, we may assume the
following four statements as true.

(5.4) R ⊂ G+.

(Recall that, by (5.3), R has a tail in G+.)

(5.5) The neighbourhood (in G) of each vertex on R has bounded R′-height.

(By Lemma 4.8, only finitely many vertices of G have neighbourhoods of un-
bounded R′-height, since G contains no subdivision of Kω.)

(5.6) The starting vertex r0 of R is on R′, and minimal in R∩R′.

(Recall that R∩R′ is infinite by definition of R′.) Note that, since R′ is normal
and hence �r0� ⊆ R′, Lemma 4.2 and (5.6) imply that r0 is in fact below all
the other vertices of R.

(5.7) All the edges of r0R
′ are labelled.
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r0

H1 Hi

G0
i

ri

R

∈ R∩R ′si

(Since the labelling of T ′ comes from a finitely spreading orientation, R′ has
only finitely many unlabelled edges. If (5.7) requires replacing R with a tail,
this may undo any previous adjustment to (5.6). However, this is easily mended
by another replacement according to (5.6).)

Suppose that R has infinitely many edges not oriented forward. We shall
inductively construct a sail-fan-bundle graph along R, adding one sail, fan or
bundle at a time.

More formally, let us define a sequence (Gi)i∈N of partial SFB-graphs on
paths Ri, with the following properties:

(5.8) (i) Gi is a partial SFB-graph on a path Ri, with sails, fans or bundles
H1, . . . , Hi in this order (the Hj with j < i being the same as for Gj);

(ii) Ri starts at r0 and ends at a vertex si ∈ R∩R′;

(iii) Ri has a vertex ri �= si such that all the sails, fans or bundles Hj of Gi

are on Riri;

(iv) riRi ⊂ R, and ri precedes si on R (so riRi = riRisi = riRsi);

(v) siR is G′
i-clear, where G′

i := Gi− r̊iRi;

(vi) if i > 0, then Riri ⊇ Ri−1ri−1 and G′
i ⊇ G′

i−1.

(See Figure 5.)

FIGURE 5. The partial SFB-graph Gi

Condition (v) means that every vertex on R from si onwards has R′-height
strictly greater than the R′-height of any vertex in Gi up to ri. So in particular,
the R′-height of G′

i, and hence that of Gi = G′
i ∪ riRsi, is bounded:

(5.9) Gi has bounded R′-height.

Condition (vi) ensures that the essential parts G′
i of Gi (which contain all

the sail, fans or bundles), and their principal paths Riri, are nested. When we
have completed the induction step, it will therefore be clear that the union of
all the G′

i is an SFB-graph, and the proof of Theorem 1 will be complete.
It is clear that the induction starts: just let s0 be any vertex in R ∩R′

such that s0R is { r0 }-clear (cf. (4.7)), and put G0 := R0 := Rs0. Turning
to the induction step, let us assume that graphs G0, . . . , Gi have been defined
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in accordance with (i)–(vi). Our aim is to find a new sail, fan or bundle of
bounded R′-height, which is disjoint from G′

i and can be placed on r̊iR.
To this end, choose a vertex a on R, far enough ahead that aR is (Gi ∪Rsi)-

clear, and so that the first edge ab of aR is not oriented forward. As both the
first and the second orientation step failed to orient ab from a to b, we have
a < b and a ∈ T ′ (5.4). Let c be the unique minimal vertex of the component
of T>a that contains b. Thus, c is an upper neighbour of a in T .

By the remark following (5.6) we have r0 ∈ �a�, so R has a well-defined
D-trace τ (where D is defined as in Step 3 above). Since ab did not get oriented
forward in Step 3, a must have infinitely many neighbours x each following a

on some (finite) path P (x) with D-trace τ ; let X be the set of these neighbours.
(We shall later replace X with an infinite subset of itself but continue to call
this subset X. Any properties of X established in the meantime and needed
later will be invariant under this replacement.) By (5.5),

(5.10) X has bounded R′-height.

Let C denote the element of D following a in τ . Thus, X ⊆ V (C), and
either C ∈ Ca (if the edge ac is labelled) or C = D+ (if ac is unlabelled). As C

lies above a, the R′-height of any vertex in C is at least the R′-height of a (4.5).
Our assumption that aR is Gi-clear thus implies that C is Gi-clear, and hence
that

(5.11) C ∩Gi = ∅.

Let us deal first with the case that ac is an edge of R′. Then a ∈ s̊iR
′,

by the choice of a. By (5.7), ac is labelled. Thus C ∈ Ca, so C is connected,
C ∩ T is a tree (4.3), and c is its minimal element. By Lemma 3.4, the graph⋃

x∈X ax(C ∩T )b contains a fan or extended bundle H from a to b. By (5.10),
H has bounded R′-height, so R∩H is finite (4.7). We may thus try to place
H on r̊iR.

By assumption (v) in the induction hypothesis, { si }, and hence siR
′, is

G′
i-clear. In particular, G′

i∩siR
′a = ∅. Let r be the first vertex of riRi in siR

′a;
r exists, since si is a candidate (Fig. 6).

As c ∈ R′, we have cR′ ⊂ C. Since R follows R′ and meets �a� only finitely
often, R has a tail R̂ in C (cf. Lemma 4.2). If R̂∩H = ∅, let ri+1 be the unique
vertex of R̂ on some b–R̂ path P ⊆ C. If R̂∩H �= ∅, let ri+1 be the last vertex
of R̂ in H, and let P be any b–ri+1 path in H. In both cases let si+1 be chosen
from R′ ∩ r̊i+1R so that si+1R is (Gi ∪H ∪P )-clear, and define

Ri+1 := RirR
′abPri+1Rsi+1 .

Note that Ri+1 is indeed a path: since Ri ∩C ⊂ Gi ∩C = ∅ (5.11), we have
Ri+1a∩C = ∅, while bRi+1 ⊆ C.
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FIGURE 6. Constructing Gi+1 when ac ∈ R′

Since Ri+1̊a∩H = ∅, we may place H on r̊iRi+1ri+1, no matter whether H

is a bundle or a fan. Let Hi+1 be the resulting bundle or fan. By the definition
of placing, Hi+1 and the new r̊iRi+1ri+1 will be contained in the union of H

and the old r̊iRi+1ri+1. Since this union meets ri+1R only in ri+1, the placing
of H will leave ri+1Ri+1 unaltered and hence satisfy (iv). Similarly, the choice
of si+1 ensures that si+1R will be G′

i+1-clear, as required by condition (v).
Verification of the other conditions in the induction hypothesis for i+1 is

straightforward.

Having dealt with the case when ac is an edge of R′, we shall from now
on assume that ac is not an edge of R′. Then R′ ∩C = ∅, even if C ∈ Ca. (We
already know from (5.7) that R′ cannot meet C if C = D+.) In particular:

(5.12) C has constant R′-height, namely that of a.

The fact that R′ ∩C = ∅ further implies that the last entry in τ cannot
be equal to C: since R follows R′, it cannot have a tail in C. Thus, R must
return to �a� after b, say first at the vertex d. Then d is the vertex following a

in τ , and so each of the paths P (x) hits d after a, with åP (x)d̊ ⊆ C.
Let C− be the subgraph of G induced by C together with those vertices

v ∈ R∩�a� for which R contains an edge between v and C. These are precisely
the vertices occuring in τ either before or after an occurrence of C (such as a

and d). Let us prove the following.

(5.13) To complete the induction step for (5.8), it suffices to find a sail, fan or

extended bundle H in C− that can be placed on some P (x), x ∈ X.

For a proof of (5.13), observe first that all the vertices of C− ∩�a� are on siR.
Indeed, Rsi ∩C = ∅, by (5.12) and the choice of a. As the vertices of C− ∩�a�
are on R and adjacent (in R) to a vertex in R∩C, they must be on siR.

17



a

P x

d

v x

u(x

F

x

S x

aP x

P x

( )

( )

)

( )

( )

( )a

Let H and x be given as in (5.13). As H ⊆ C−, the above considerations
and (5.11) imply that H ∩G′

i = ∅. Using the fact that P (x) has the same D-
trace τ as R, we may obtain a ray R̃ from R by replacing its segments through C

with the corresponding segments of P (x). As all the above segments (including
their endvertices) lie in C−, this will only affect siR. Moreover, the replacement
will only affect a finite part of siR : since the last entry in τ cannot be equal
to C, the tail R+ of R following its last vertex below a is also a tail of R̃. As
H is contained in C−, it can be placed on R̃ in the same way as it could be
placed on P (x); let Hi+1 be the resulting sail, fan or bundle on R̃. Again, the
placing will affect neither Rsi nor R+.

To complete the induction step, we pick ri+1 ∈ R+, choose si+1 ∈

R′ ∩ r̊i+1R so that si+1R is (Gi ∪ Rri+1)-clear, set Ri+1 := RisiR̃si+1, and
define Gi+1 accordingly. Since the R′-height of H ∪ (R̃ − R) is bounded by
that of a (5.12), our choice of si+1 will satisfy (5.8)(v); verification of the other
conditions in (5.8) is again straightforward. This completes the proof of (5.13).

By Lemma 3.4, the subgraph
⋃

x∈X aP (x)d of C− contains a fan or ex-
tended bundle H from a to d. If H is an extended bundle, it can be placed
on any P (x) and we are done by (5.13). We may therefore assume that H is
an a–d fan; let us call this fan F , and its spine Q. By Lemma 3.4, we may
assume that every segment of F is an initial segment of some path aP (x)d,
whose second vertex is x. The neighbours of a in F are therefore all in X; let
us replace X with the set of these neighbours. X is thus totally ordered by <F ,
and {S(x) | x ∈ X } is the set of the segments of F .

For each x ∈ X, F contains a subfan F (x) on S(x) ⊆ P (x). By (5.13),
however, we may assume that F (x) cannot be placed on P (x). By (3.2) this
means that, for each x, the path P (x)a hits the spine of F (x), which is the part
of Q above S(x) in F . For each x, let v(x) be the first vertex of P (x)a strictly
above S(x) in F (though not necessarily on Q), and let u(x) be the last vertex
of P (x)v(x) below a (Fig. 7). Note that ů(x)P (x)v(x) ⊆ C; thus, u(x) ∈ C−.

FIGURE 7. The fan F
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Our aim is to use the paths u(x)P (x)v(x) to extend F to a sail, in a
similar way as we constructed F from the paths aP (x)d. We proceed in three
steps. The first two steps are as in the construction of a fan (see the proof of
Lemma 3.4): we shall define a graph K on a set of vertices corresponding to
internally disjoint segments of the paths u(x)P (x)v(x), and then use König’s
theorem to select a sequence of these segments that defines a ray in K. In the
third step, we shall try to arrange the segments from this sequence to form,
together with F , a u(x)–d sail on P (x) for some x.

For the first step, we shall select an infinite increasing sequence
x1 <F x2 <F . . . in X, choose for each n a path Q(xn) ⊆ P (xn) starting
at v(xn) and ending at a vertex w(xn) ∈ u(xn)P (xn)̊v(xn) (thus, Q(xn) is a
subpath of P (xn) in reverse direction), and define a graph K with vertex set N

and coloured edges, so that the following conditions hold for all n > 0:
(5.14) (i) If n > 1, then xn ∼F v(xn−1).

(ii) Q̊(xn)∩
(
�a� ∪F ∪Q(x1)∪ . . .∪Q(xn−1)

)
= ∅.

(iii) Exactly one of the following three statements holds:

(a) w(xn) ∈ (C− ∩ �a�)− d;

(b) w(xn) ∈ F − a, with xm �F w(xn) <F xn for some m < n;

(c) there exists an m < n with w(xn) ∈ Q̊(xm)
(by (ii), this m will be unique).

(iv) In K, the vertex n has exactly one neighbour in { 0, . . . , n− 1 }.
If (a) of (iii) holds, then this neighbour is 0 and the edge n0 is

coloured blue.

If (b) of (iii) holds, then this neighbour is the maximal m < n with

xm �F w(xn), and the edge nm is coloured green.

If (c) of (iii) holds, then this neighbour is m as defined there, and

the edge nm is coloured red.

(v) If nm is a green edge of K with n > m, then w(xn) <F v(xm).
Let us now choose such a sequence x1, x2, . . . and paths Q(xn). Let x1

be the <F -minimal element of X, let Q(x1) be u(x1)P (x1)v(x1) in reverse
direction (i.e. from v(x1) to u(x1)), and set w(x1) = u(x1). For K, join 1 to
0 by a blue edge. Conditions (i)–(v) are then satisfied for n = 1. (Note that
Q̊(x1) cannot hit F , by the choice of x1 and definition of v(x1).)

Assume now that n > 1, and that x1, . . . , xn−1, with the corresponding
paths Q(xi) and edges of K [ 0, . . . , n− 1 ], have been chosen according to (i)–
(v). Let xn be the unique vertex in X with v(xn−1) ∈ S̊(xn). Note that (i)
holds for n. Let w(xn) be the last vertex of u(xn)P (xn)̊v(xn) in

{u(xn) }∪F ∪Q(x1)∪ . . .∪Q(xn−1) ,

and set Q(xn) := v(xn)P (xn)w(xn). This satisfies (ii) for n.
Note that w(xn) cannot be on S(xn), because w(xn) ∈ P (xn)̊a and

S(xn) ⊆ aP (xn). Thus, at least one of the following statements is true:
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(1) w(xn) = u(xn);

(2) w(xn) ∈ F − a, and w(xn) <F xn (compare the definition of v(xn));

(3) there is an m < n such that w(xn) ∈ v̊(xm)Q(xm).

If (1) holds, we join n to 0 in K and colour this edge blue. Then (iii)–(v)
are true for n. Suppose now that (2) holds. Then (iii) is true for n, with m = 1
in (b). Let m < n be maximal such that xm �F w(xn), and join n to m in K

by a green edge. This satisfies (iv). By the maximality of m and (i) for m+ 1
(� n; recall that we verified (i) for n above),

w(xn) <F xm+1 ∼F v(xm)

as required by (v).
Suppose finally that (3) holds but neither (1) nor (2). Then w(xn) /∈

F ∪ �a�; recall that w(xn) cannot be (on or) above S(xn) in F , by defini-
tion of v(xn). Let m < n be minimal with w(xn) ∈ v̊(xm)Q(xm). Then
w(xn) �= w(xm), by (iii) for m, so w(xn) ∈ Q̊(xm) and (iii) holds for n. Join n

to m in K by a red edge; this satisfies (iv) and makes (v) vacuous.
This completes the inductive definition of x1, x2, . . . and the corresponding

paths Q(xn).

We now turn to the second step in the construction of our sail. We shall
use the assertions of (5.14) freely. K is an infinite tree. By König’s theorem,
therefore, K either contains a ray or has a vertex of infinite degree. If m is a
vertex of infinite degree, and M is an infinite set of neighbours n > m of m,
then the paths Q(xn) with n ∈ M are pairwise disjoint except possibly for
their last vertices w(xn), and these last vertices are all in the union of the
three finite vertex sets of �a� ∩C− (if the edge nm is blue, i.e. if m = 0), of⋃

x<F v(xm) S(x) (if nm is green), and of Q̊(xm) (if nm is red). Hence infinitely
many of the paths Q(xn) have the same endvertex, w say. The corresponding
paths S(v(xn))v(xn)Q(xn) then form an a–w bundle, which can be placed on
any P (x) that contains w. We are thus done by (5.13).

Thus, K contains a ray N = n0n1 . . . . We may assume that n0 = 0, so
by (iv) we have ni < nj whenever i < j. For each i > 0, let us rename S(xni

),
Q(xni), u(xni), v(xni) and w(xni) as Si, Qi, ui, vi and wi. Note that N has
exactly one blue edge (its first edge), while both the number of red edges and
the number green edges may be either finite or infinite.

Let e0, e1, . . . be the green edges of N , in order. Then for consecutive green
edges ek−1 = {ni−1, ni } and ek = {nj , nj+1 } (thus, i � j), we have

wi <F vi−1 �F wj+1 <F vj . (5.15)

Indeed, the two strict inequalities here are both consequences of (5.14)(v). For
the middle inequality, observe that

vi−1 ∼F xni−1+1 �F xni �F xnj �F wj+1 ,
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where the first relation comes from (5.14)(i), the third from the fact that i �
j, and the fourth from the definition of green edges in (5.14)(iv).

FIGURE 8. Building a sail

We finally turn to the third step in our construction and build a sail from
F and the paths Qi. We first combine some of the Qi to longer paths Q′

j

and Q′′
j , which will in turn be combined into two rays Q′ and Q′′ for the mast

and spine of our sail (Fig. 8).
For each k > 0 such that ek is defined, let i and j be such that

ek−1 = {ni−1, ni } and ek = {nj , nj+1 } (so i � j), and consider the unique
vj–wi path in

⋃
i�h�j Qh. If k is even, call this path Q′

k (Fig. 9); if k is odd,
call it Q′′

k . For k = 0, let Q′
0 be the unique vj–w1 path in

⋃
h�j Qh, where

e0 = {nj , nj+1 }. Note that this path ends in (w1 =) u1 ∈ C− ∩ �a�; we shall
rename this vertex u1 as u. Finally, if N has a last green edge ek = {ni−1, ni },
consider the unique ray in

⋃
h�i Qh starting at wi, and call it Q′

∞ (if k is odd)
or Q′′

∞ (if k is even). Note that, by (5.14)(ii) and (5.15), the paths Q′
k and

Q′′
k defined in this paragraph are disjoint for different values of k ∈ N∪ {∞},

except only that the first vertex of Q′
k might coincide with the last vertex of

Q′
k+2 (and likewise for Q′′

k and Q′′
k+2), where Q′

k+2 := Q′
∞ or Q′′

k+2 := Q′′
∞ if

ek+1 is the last green edge. With the exception of the one vertex u, the paths
Q′

k and Q′′
k run entirely inside C and meet F only in their endvertices.

Similarly consider, for each k > 0 such that ek is defined, the unique wj+1–
vi−1 path in F − a, where i and j are again such that ek−1 = {ni−1, ni } and
ek = {nj , nj+1 }. By (5.15), we have vi−1 �F wj+1, so every vertex v on this
path satisfies

vi−1 �F v �F wj+1 . (5.16)

If k is odd, call this path Q′
k; if k is even, call it Q′′

k (Fig. 9). For k = 0, let Q′′
0

be the unique wj+1–d path in F −a, where e0 = {nj , nj+1 }. Finally, if N has
a last green edge ek = {ni−1, ni }, consider the unique ray in F − a starting
at vi−1, and call it Q′

∞ (if k is even) or Q′′
∞ (if k is odd). Note again that, by
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FIGURE 9. Defining the paths Q′
k and Q′′

k

(5.15) and (5.16), the paths Q′
k and Q′′

k defined in this paragraph are disjoint
for different values of k ∈ N∪{∞}, and they are all contained in F .

In summary, (5.15) and (5.16) imply that any path Q′
k running through

F − a meets only Q′
k−1 and Q′

k+1 among all the paths Q′
i and Q′′

i . (For paths
running outside F , the possible exception is that the first vertex of Q′

k may
coincide with the last vertex of Q′

k+2, in which case Q′
k+1 is the trivial path

consisting of this vertex.) Similarly, Q′′
k meets only Q′′

k−1 and Q′′
k+1. An easy

induction on k now shows that

Q′ :=
⋃

i�∞
Q′

i and Q′′ :=
⋃

i�∞
Q′′

i

are two disjoint rays, starting at u and d, respectively (Fig. 10).

FIGURE 10. Disentangling mast and spine

We shall use Q′ and Q′′ for the mast and spine of our sail, as follows. If N
has infinitely many green edges, we let Q′ be the mast and Q′′ the spine. Since
both Q′ and Q′′ meet F infinitely often, F contains infinitely many disjoint
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Q′–Q′′ paths as rungs, and infinitely many a–Q′′ paths, disjoint except for a,
as spokes. Our sail is thus complete.

If N has only finitely many green edges, either Q′ or Q′′ shares a tail
with Q; let this ray (Q′ or Q′′) be the spine, the other one the mast. We may
now borrow our spokes from F (chosen high enough). As rungs, we use the
paths Qnwn+1 (for large enough n) if vn ∈ Q. If vn ∈ S(vn)−Q, we let sn

denote the first vertex of aS(vn) in Q, and choose snS(vn)vnQnwn+1 as a rung.
As there are infinitely many such spokes and rungs to choose from, it is easy
to choose them disjoint.

We finally have to place our sail (or a fan derived from it) on one of the
paths P (x), x ∈ X. To this end, we shall choose x ∈ X so that P := P (x)
satisfies the requirements for placing sails listed in Lemma 3.3. If N has a green
edge, this is easy. Let {nj , nj+1 } be its first green edge; then vj is the starting
vertex of Q′

0, and hence on Q′. Now choose x so that vj ∈ S(x). Then aP (x)
meets both Q′ (in vj) and Q′′ (in d), and the requirements in Lemma 3.3 are
satisfied.

If N has no green edge, then Q′′ = Q corresponds in Lemma 3.3 to the
ray Q2, the sail’s spine, while Q′ corresponds to Q1, its mast. Let x := xn1 .
Since S(x) meets Q, we have aP (x)∩Q2 �= ∅ as required. As in Lemma 3.3,
let q+

2 be the highest vertex on Q of aP (x). If P (x)a∩ q+
2 Q = ∅, the require-

ments of Lemma 3.3 are again satisfied. So assume that P (x)a hits q+
2 Q, say

first in q−2 . Then q−2 lies on Q above S(x), and hence cannot precede v(x)
on P (x) (by definition of v(x)). Therefore u ∈ P (x)v(x) ⊂ P (x)q−2 ; recall that
u = u1 = w1, which is on P (x)v(x) by the choice of x. Thus P (x)q−2 ∩Q1 �= ∅
(as u ∈ Q′ = Q1), and the requirements of Lemma 3.3 are again satisfied.

With the placing of our sail on a path P (x) we have thus satisfied the
requirement of (5.13), and thereby completed the induction step for (5.8). The
proof of Theorem 1 is thus complete.
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