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We show that an arbitrary infinite graph can be compactified
by its ℵ0-tangles in much the same way as the ends of a locally
finite graph compactify it in its Freudenthal compactification. In
general, the ends then appear as a subset of its ℵ0-tangles.

The ℵ0-tangles of a graph are shown to form an inverse limit
of the ultrafilters on the sets of components obtained by deleting
a finite set of vertices. The ℵ0-tangles that are ends are precisely
the limits of principal ultrafilters.

The ℵ0-tangles that correspond to a highly connected part,
or ℵ0-block, of the graph are shown to be precisely those that are
closed in the topological space of its finite-order separations.

Introduction

Much of Halin’s legacy in graph theory stems from the fact that, in his seminal

paper [12] of 1964, he initiated the study of ends for infinite graphs. Our

aim in this paper is to unify this notion with that of a tangle introduced by

Robertson and Seymour [17] in 1991. It turns out that Halin’s ends can be

viewed as a special case of tangles of infinite order. These can, in turn, be used

to compactify an arbitrary infinite graph in the same way as ends compactify

locally finite graphs in their well-known Freudenthal compactification.

Inspired by Carathéodory’s notion of Primenden of regions in the complex

plane [1], but unaware of Freudenthal’s [10] generalization of these to more gen-

eral locally compact Hausdorff spaces, Halin [12] defined an end of a graph G

as an equivalence class of rays, or 1-way infinite paths, in G. Here, two rays

are equivalent if no finite set of vertices separates them in G.

Halin does not require these graphs to be locally finite. If they are, his

notion of an end is equivalent to Freudenthal’s. If a graph is locally finite

and connected, there is a natural topology that makes it and its ends into a

compact space, its Freudenthal compactification [4, 5]. The rays of an end, in

Halin’s definition, then converge to their ends. If the graph is not locally finite,

Halin’s notion of an end no longer agrees with Freudenthal’s [11] but is more

general [7]. There is no longer an obvious topology on the graph and its ends,

in either definition, that makes rays converge to ‘their’ ends – let alone one

that makes the graph and its ends compact.

An end ω of a graph G orients its separations {A,B} of finite order in

that either every ray from ω has a tail in A, or every ray from ω has a tail

in B. These orientations of finite-order separations are consistent in a number
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of ways; for example, if {C,D} is another such separation with C ⊆ A and

D ⊇ B, then ω must orient {C,D} towards D if it orients {A,B} towards B.

Robertson and Seymour [17], independently, introduced another notion of

consistently orienting all the low-order separations of G: the notion of a tangle.

It is easy to see that every end ω defines an ℵ0-tangle, one that orients all the

separations of finite order: if we orient them all towards the side where the rays

in ω have their tails, we obtain an ℵ0-tangle. Conversely, every ℵ0-tangle of a

locally finite and connected graph G is defined by an end in this way. Thus, if

G is locally finite, its ℵ0-tangles are just another way of identifying the points

at infinity in its Freudenthal compactification |G|.
When G is not locally finite, however, things get interesting. Now adding

its ends no longer compactifies G. But there can also be ℵ0-tangles that are not

defined by an end. And it turns out that adding these, in addition to the ends,

does compactify G. More precisely, we shall define a topology on the union

of G, viewed as a 1-complex, and its set Θ of ℵ0-tangles so that the resulting

space |G| = G∪Θ satisfies the following:

Theorem 1. Let G be any graph.

(i) |G| is a compact space in which G is dense and |G|rG is totally discon-

nected.

(ii) If G is locally finite and connected, then all its ℵ0-tangles are ends, and

|G| coincides with the Freudenthal compactification of G.

This compactification of G differs from its Stone-Čech compactification and

from other compactifications that have been suggested for graphs that are not

locally finite, e.g. by Cartwright, Soardi and Woess [3] or by Polat [15].

In order to prove Theorem 1, we shall need to understand the tangles that

are not ends. When X is a finite set of vertices of G, then every bipartition of

the set CX of the components of G−X defines a finite-order separation of G:

if CX = C1 ∪ C2, say, then {
⋃
C1 ∪X,

⋃
C2 ∪X} is such a separation. Every

ultrafilter U on CX contains exactly one Ci from such a bipartition. If we think

of U as orienting the corresponding separation of G towards this Ci, and there

are no other finite-order separations in G, then U defines an ℵ0-tangle of G.

Conversely, every ℵ0-tangle of G will orient all the separations of the above

form in such a way that the Ci it points to form an ultrafilter on CX . We shall

call all the ultrafilters on such sets CX with X finite the ultrafilters of cofinite

components of G.

Of course, there will normally be other finite-order separations {A,B} ofG.

But each of these also has the above form, with X := A∩B. And it turns out

that the ultrafilters UX which a tangle defines for different choices of X are all

compatible in a simple and natural way: they form the limits (UX | X ∈ X )

of a natural inverse system (UX | X ∈ X ) of the sets of ultrafilters of cofinite

components (where X is the set of finite sets of vertices of G). And conversely,

every such limit of ultrafilters comes from a tangle:
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Theorem 2. Let G be any graph.

(i) The ℵ0-tangles of G are precisely the limits of the inverse system of its

sets of ultrafilters of cofinite components.

(ii) The ends of G are precisely those of its ℵ0-tangles whose ultrafilters of

cofinite components are all principal.

When a tangle is defined by an end, every ray in that end can be used as

an ‘oracle’ to determine which of the two orientations of a given separation lies

in the tangle: it is the orientation that points to a tail of that ray. For tangles

that are not defined by an end we can use an ultrafilter in a similar way:

Theorem 3. Every ℵ0-tangle τ in G satisfies exactly one of the following:

• There is a ray R in G such that every separation in τ points to a tail of R.

• There is a non-principal ultrafilter U of cofinite components in G such that

every separation in τ points to an element of U .

In a finite graph, the tangles of order some fixed k ∈ N, those that orient

every separation of order < k, can be thought of as pointing towards some

‘highly connected substructure’ of that graph. This is clearly not the case

for all ℵ0-tangles: the ends of a tree, for example, are hardly highly connected

substructures. However, we can identify those ℵ0-tangles of an infinite graph G

that do point to a highly connected substructure in a meaningful sense: they

are the ℵ0-tangles that are closed in the set ~S of all oriented separations of

finite order of the graph, with respect to a natural topology on this set.

End tangles of trees are not closed in this topology, but ℵ0-tangles point-

ing to some fixed infinite complete subgraph, for example, are. More generally,

tangles pointing to a fixed ℵ0-block are closed: a κ-block in a graph G is a

maximal set of at least κ vertices no two of which can be separated in G by

fewer than κ vertices. As it turns out, the ends defined by an ℵ0-block are

precisely the ℵ0-tangles that are closed in ~S:

Theorem 4. Let G be any graph.

(i) The ℵ0-tangles of G that are not ends are never closed in ~S.

(ii) An end tangle of G is closed in ~S if and only if it is defined by an ℵ0-block.

The paper is organized as follows. We begin in Section 1 with a review

of tangles, especially those of infinite order, and their relationship to ends.

In Section 2 we introduce the inverse system of the sets UX of ultrafilters of

cofinite components, and prove Theorem 2. In Section 3 we take a closer look

at how tangles not defined by an end arise in this inverse system: we show that

each of them is already determined by a single non-principal ultrafilter among

those of which it is a limit. In Section 4 we topologize the set of ℵ0-tangles

by viewing it as lim←−UX , with the UX carrying the Stone-Čech topology. We
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then extend this space to include G itself, and prove Theorem 1. In Section 5,

finally, we introduce a topology on the set ~S of finite-order separations of a

graph, and prove Theorem 4. We close with a short section on the potential for

applications of Theorem 1 and possible further questions, one of which appears

to be quite far-reaching.

Any graph-theoretic notation not explained here can be found in [5]. In-

verse systems and inverse limits, including their topology, are explained in [16].

1. Tangles and ends

A separation of a graph G = (V,E) is a set {A,B} such that A∪B = V and

G has no edge between ArB and B rA. The order of a separation {A,B},
and of its orientations (see below), is the cardinal number |A∩B|.

The ordered pairs (A,B) and (B,A) are the orientations of a separation

{A,B} and are also called (oriented) separations. Given a set S of separations,

we write ~S for the set of their orientations. An orientation of S is a subset O

of ~S that contains for every {A,B} ∈ S exactly one of (A,B) and (B,A).

Mapping every (A,B) ∈ ~S to its inverse (B,A) is an involution on ~S that

reverses the partial ordering

(A,B) 6 (C,D) :⇔ A ⊆ C and B ⊇ D,

since the above is equivalent to (D,C) 6 (B,A). Informally, we think of (A,B)

as pointing towards B and away from A. Similarly, if (A,B) 6 (C,D), then

(A,B) points towards {C,D} and its orientations, while (C,D) points away

from {A,B} and its orientations.

A set σ of oriented separations is a star if they all point towards each

other: if (A,B) 6 (B′, A′) for all distinct (A,B), (A′, B′) ∈ σ. Note that if σ

is a star then
⋂
{B | (A,B) ∈ σ } contains A′ ∩B′ for every (A′, B′) ∈ σ.

A set of oriented separations is consistent if no two of them point away

from each other: if it contains no distinct separations (B,A) and (C,D) with

(A,B) < (C,D). For an orientation O of S, consistency is tantamount to

being closed down in ~S : that (A,B) < (C,D) ∈ O with {A,B} ∈ S implies

(A,B) ∈ O.

For the rest of this paper, let G = (V,E) be a fixed infinite graph. Let

S = Sℵ0 be the set of all its separations of finite order, and let S denote the

set of stars in ~S. Let X be the set of finite subsets of V . As usual, we write

Ω = Ω(G) for the set of ends of G, defined as in the Introduction or in [5].

Lemma 1.1. Every consistent orientation O of S contains every separation

(A, V ) of G with A finite.

Proof. Pick v ∈ V rA, and let A′ := A∪{v}. Since O contains one of (A′, V )

and (V,A′), and (A, V ) < (A′, V ) as well as (A, V ) < (V,A′), the consistency

of O requires that (V,A) /∈ O. Hence (A, V ) ∈ O, as claimed. �
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Given a set F ⊆ S of stars of separations, we call a consistent orientation

of S an F-tangle if it has no subset in F . Let us consider some particular

choices for F . For integers n > 1, let

Tn :=
{
{(A1, B1), . . . , (An, Bn)} ∈ S : B1 ∩ . . .∩Bn is finite

}
.

These (Ai, Bi) need not be distinct, so Tn is a set of stars in ~S of up to n

separations each. In particular, Tm ⊆ Tn for all m 6 n, so every Tn-tangle of S

is also a Tm-tangle.

Let us note the following observation for later use:

Lemma 1.2. Any T3-tangle O of S containing two separations (A,B), (A′, B′)

also contains (A∪A′, B ∩B′).

Proof. {A∪A′, B ∩B′} is a clearly a separation of G. It lies in S, because its

separator is a subset of (A∩B)∪ (A′∩B′) and hence has finite order. Suppose

(B ∩ B′, A ∪ A′) ∈ O. Since also (A ∩ B′, B ∪ A′) 6 (A,B) ∈ O lies in O,

because O is consistent, and (A′, B′) does by assumption, we have found three

separations in O forming a star in T3, a contradiction. �

Robertson and Seymour [17] defined tangles slightly differently, as follows.0

Given a cardinal κ, a tangle of order κ, or κ-tangle, of G is an orientation of

the set Sκ of its separations of order < κ that has no subset of the form

{ (A1, B1), (A2, B2), (A3, B3) : G[A1]∪G[A2]∪G[A3] = G }, (T)

where G[Ai] denotes the subgraph of G induced by Ai. As before, the (Ai, Bi)

need not be distinct, so in particular every κ-tangle is consistent.

Our T3-tangles of S = Sℵ0 , however, coincide with its ℵ0-tangles as defined

by Robertson and Seymour:

Lemma 1.3. The T3-tangles of S are precisely the ℵ0-tangles of G.

Proof. As remarked, both T3-tangles of S and ℵ0-tangles of G are consistent

orientations of S. It was shown in [9, Lemma 4.2] that consistent orientations

of S with no star subset as in (T) have no subset as in (T) at all, star or not.

Since any set as in (T) satisfies⋂3
i=1Bi = V ∩

⋂3
i=1Bi =

⋃3
i=1Ai ∩

⋂3
i=1Bi ⊆

⋃3
i=1(Ai ∩Bi),

which is finite, all T3-tangles of S are ℵ0-tangles of G.

Conversely, suppose some consistent orientation O of S is not a T3-tangle

but contains a star σ = {(A1, B1), (A2, B2), (A3, B3)} ∈ T3. We show that O

0 Formally, their definition of a k-tangle (for finite k and G) differs slightly from our
definition below, but is easily seen to be equivalent.
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also has a subset as in (T), and hence is not an ℵ0-tangle. As X := B1∩B2∩B3

is finite, we have (A′, B1) := (A1∪X,B1) ∈ ~S. Using that σ is a star, one easily

checks that G[A′]∪G[A2]∪G[A3] = G. Hence if (A′, B1) ∈ O, then

{(A′, B1), (A2, B2), (A3, B3)}

is our desired subset of O as in (T). But if not, then (B1, A
′) ∈ O. But then

{(A1, B1), (B1, A
′)} is a subset of O as in (T), since G[A1]∪G[B1] = G. �

We noted earlier that, trivially, every Tn-tangle of S is also a Tm-tangle for

all m 6 n. By the particular nature of our S = Sℵ0 , we also have a converse:

Lemma 1.4. Every Tn-tangle of S is also a Tn+1-tangle, for all n > 3.

Proof. Let O ⊆ ~S be a Tn-tangle of S, and let σ ∈ Tn+1 be given; we have to

show that σ 6⊆ O. Pick distinct (A1, B1), (A2, B2) ∈ σ. We may assume that

(A1, B1), (A2, B2) ∈ O, as otherwise σ 6⊆ O as desired.

Let A := A1 ∪A2 and B := B1 ∩B2, and let σ′ be obtained from σ by

replacing (A1, B1) and (A2, B2) with (A,B). It is easy to check that, since σ

is a star in S, so is σ′. Hence σ′ ∈ Tn, giving σ′ 6⊆ O by the choice of O.

Hence if σ ⊆ O then (A,B) /∈ O, and thus (B,A) ∈ O. (Here we use that

{A,B} ∈ S, which can fail for arbitrary S but clearly holds for our S = Sℵ0 .)

But now O contains the set {(B,A), (A1, B2), (A2, B2)} ∈ T3 ⊆ Tn, contrary to

its definition. Thus, σ 6⊆ O as desired. �

For T<ℵ0 :=
⋃∞
n=3 Tn, Lemma 1.4 implies

Corollary 1.5. The T<ℵ0-tangles of S are exactly its T3-tangles. �

As we have seen, all choices of Tn or of T<ℵ0 as F yield the same F-tangles:

if a consistent orientation of S avoids all 3-stars whose target sides have a finite

intersection, it avoids all finite such stars. In view of Lemma 1.3, we shall from

now on refer to all these F-tangles of S as the ℵ0-tangles in G, and write

Θ = Θ(G) for the set of all these.

But how about excluding infinite stars of separations as well? Let

T :=
{
{(Ai, Bi) | i ∈ I} ∈ S :

⋂
i∈I

Bi is finite
}
,

where the I are arbitrary index sets. Thus T<ℵ0 ⊆ T , and hence all T -tangles

are ℵ0-tangles. Unlike in Lemma 1.4, the converse does not hold. But before

we give an example, let us show something more surprising: the T -tangles of

S correspond precisely to the ends of G!

One way of this correspondence is easy. Given an end ω of G, exactly one

of the two orientations (A,B) of each separation in S has the property that

B contains a tail of every ray in ω (for which we say that ω lives in B): this
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is immediate from the notion of ray-equivalence in the definition of an end.

Hence ω defines an orientation of S, which is easily seen to be consistent. This

orientation τ has no subset σ = {(Ai, Bi) | i ∈ I} in T . Indeed, as X :=
⋂
iBi is

finite, our end ω lives in some component C of G−X. If C ∩Ai 6= ∅, say,1 then

C ⊆ Ai rBi, because Ai ∩Bi ⊆ X since σ is a star. Therefore (Bi, Ai) ∈ τ ,

and hence σ 6⊆ τ as claimed.

We have thus defined a map

ω 7→ τω (1)

from the ends of G to its ℵ0-tangles, whose images are in fact T -tangles. We

shall say that τω is defined by ω.

The map in (1) is clearly injective. Indeed, distinct ends are, by defi-

nition, distinguished by some X ∈ X in the sense that they live in different

components of G−X. Then any separation {A,B} ∈ S with A∩B = X for

which these components lie on different sides will get oriented differently by

the corresponding two ℵ0-tangles.

Conversely, every T -tangle is defined by an end in this way. To prove this

we need a result from [7] (see also [18]), which requires another definition.

A direction in G is a function f that assigns to every finite set X ⊆ V

one of the components of G−X so that f(X ′) ⊆ f(X) whenever X ⊆ X ′.

Clearly, every end ω of G defines a direction f by taking as f(X) the unique

component of G−X in which ω lives. It was shown in [7] that this map

ω 7→ fω (2)

is a bijection: not only do different ends define different directions (which is

immediate), but every direction is defined by an end in the way indicated.

Hence all we have to show is that the T -tangles in a graph correspond to its

directions:

Lemma 1.6. For every T -tangle τ of S there is a unique direction f = fτ
in G such that, for every X ∈ X and every component C of G−X, we have

(V rC,X ∪C) ∈ τ if and only if C = f(X). This map

τ 7→ fτ (3)

is a bijection from the T -tangles of S to the directions in G, which commutes

with the maps from (1) and (2).

Proof. To define f given τ , let X ∈ X be given. There is a unique component

C of G−X such that (V rC,X ∪C) ∈ τ : existence follows from τ ∈ T , while

uniqueness follows from the consistency of τ . Let f(X) := C.

1 To simplify notation, we do not always distinguish between graphs and their vertex sets.
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To show that f :X 7→ C is a direction of G, consider X ⊆ X ′ ∈ X . As

C ′ := f(X ′) is connected, it lies inside a component of G−X. If this component

was not C, the separations (V rC,X ∪C), (V rC ′, X ′ ∪C ′) ∈ τ would make

τ inconsistent, contradicting our assumptions.

τω f
(1)

(2)

(3)

FIGURE 1. Ends, tangles, and directions

Clearly, our map τ 7→ f composes with the map ω 7→ τ from (1) as shown in

Figure 1, to yield the bijection ω 7→ f from (2). In particular, it is surjective. In

order to show that it is injective, consider distinct T -tangles of S, say τ and τ ′.

Let {A,B} ∈ S be a separation which they orient differently, with (A,B) ∈ τ

and (B,A) ∈ τ ′ say. Since τ is consistent, fτ maps X = A∩B to a component

of G−X contained in BrA. Similarly, fτ ′ maps X to a component of G−X
contained in ArB. Thus fτ 6= fτ ′ , as desired. �

Corollary 1.7. The map ω→ τω defined in (1) is a bijection from the ends

of G to its T -tangles. �

Corollary 1.7 says that those T<ℵ0 -tangles of S that are even T -tangles

are precisely the ℵ0-tangles that are defined by an end via (1). We shall call

these ℵ0-tangles the end tangles of G. Let us look at an example.

ω0 ω1 ω2

ω

FIGURE 2. All ℵ0-tangles in this graph are end tangles

Example 1.8. If G is the comb of rays shown in Figure 2, then every ℵ0-

tangle τ in G is an end tangle. Indeed, if there exists an i ∈ N such that ωi
lives in B for every (A,B) ∈ τ , then ωi 7→ τ in the map of (1), so τ is an end

tangle. Suppose, then, that there is no such i.

We claim that ω lives in every B with (A,B) ∈ τ , so that ω 7→ τ in (1),

again making τ an end tangle. If not then, for some (A,B) ∈ τ , the end ω lives

in A. Then only finitely many ωi live in B. By assumption, each of these ωi
lives in Ai for some (Ai, Bi) ∈ τ . By the consistency of τ , these (Ai, Bi) can

be chosen so as to form a (finite) star σ ⊆ τ together with (A,B). But the

intersection of B with these Bi is finite. Hence τ ⊇ σ ∈ T<ℵ0 , so τ is not an

ℵ0-tangle, contrary to our assumption. �
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Next, let us see an example of an ℵ0-tangle that is not an end tangle: a

consistent orientation of S that has infinite but no finite stars in T .

ω0 ω1 ω2

FIGURE 3. This graph has both end and ultrafilter tangles

Example 1.9. If G is the graph shown in Figure 3, it has ℵ0-tangles that

are not end tangles. Indeed, let U be any ultrafilter on N. Every separation

{A,B} ∈ S induces a bipartition of N into

Ā = { i ∈ N | ωi lives in A } and B̄ = { i ∈ N | ωi lives in B }.

As U is an ultrafilter, exactly one of these sets is an element of U . Hence

τ = { (A,B) ∈ ~S | B̄ ∈ U }

is an orientation of S. Since the intersection of two sets in U lies in U and

hence is non-empty, τ is consistent. Similarly, let σ ⊆ τ be a finite star. The

set of all i ∈ N whose ωi lives in every B with (A,B) ∈ σ is a finite intersection

of sets in U , and hence is non-empty. Consider any i in this set, and a ray

in ωi. This ray has a tail outside every A with (A,B) ∈ σ, and hence has a

tail in
⋂
{B | (A,B) ∈ σ}. In particular, this intersection is infinite, and hence

σ /∈ T<ℵ0 . Thus, τ is indeed an ℵ0-tangle.

If U is a principal ultrafilter generated by {n}, say, then τ is an end tangle

defined by ωn. If U is a non-principal ultrafilter, then τ is not defined by any ωi
and hence is not an end tangle. �

We shall see in Section 3 that every ℵ0-tangle that is not an end tangle is

defined by a non-principal ultrafilter in a way similar to Example 1.9.

We conclude this section with a couple of simple lemmas about ℵ0-tangles.

The first is that if we change a separation in an ℵ0-tangle τ only finitely, the

resulting separation will again lie in τ . For sets A,A′ ⊆ V let us write A ∼ A′

if their symmetric difference is finite.

Lemma 1.10. Let τ be an ℵ0-tangle of S and (A,B) ∈ τ . Let (A′, B′) be a

separation such that A′ ∼ A and B′ ∼ B. Then (A′, B′) ∈ τ .

Proof. It suffices to show that (A,B) ∈ τ implies (A∪A′, B ∪B′) ∈ τ : then

also (A′, B′) ∈ τ , since otherwise (B′, A′) ∈ τ and therefore (B∪B′, A∪A′) ∈ τ .

As (A,B ∪B′) 6 (A,B), we have (A,B ∪B′) ∈ τ by the consistency of τ .

But {(A,B ∪B′), (B ∪B′, A∪A′)} ∈ T2. Therefore (B ∪B′, A∪A′) /∈ τ , and

hence (A∪A′, B ∪B′) ∈ τ as desired. �
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Lemma 1.11. For every ℵ0-tangle τ and (A,B) ∈ τ , the set B is infinite.

Proof. If B is finite, then A ∼ V . Since (B, V ) ∈ τ by Lemma 1.1, this implies

(B,A) ∈ τ by Lemma 1.10. �

2. Tangles and ultrafilters

We are considering a fixed infinite graph G = (V,E), with X denoting the set

of finite subsets of V . For each X ∈ X , write CX for the set of components of

G−X, and let UX denote the set of all ultrafilters on CX .

Our aim in this section is to study those ℵ0-tangles of G that are not end

tangles. We shall see that they define ultrafilters on the sets CX , and conversely

that every way of choosing such ultrafilters consistently defines an ℵ0-tangle.

More precisely, we shall see that the ℵ0-tangles of G correspond to the points

of a natural inverse limit of the sets UX , with the end tangles among them

corresponding to the limits of principal ultrafilters.

Recall that every end tangle τ = τω of G defines a direction f in G: a

way of choosing for every X ∈ X one component of G−X, the component

C in which ω lives. As we saw in Example 1.9, an arbitrary ℵ0-tangle τ may

not select one C ∈ CX in this way, but it still cannot orient the separations

{A,B} with A∩B = X arbitrarily. Indeed, as τ is consistent and has no subset

in T<ℵ0 , it defines an ultrafilter on CX , the collection of all C ⊆ CX that such

that
⋃
C = BrA for some (A,B) ∈ τ with A∩B = X:

U(τ,X) :=
{
C ⊆ CX |

(⋃
(CX r C)∪X,

⋃
C ∪X

)
∈ τ

}
∈ UX .

It is easy to check that this is indeed an ultrafilter. Every (A,B) ∈ τ with

A∩B = X partitions CX into two sets, the components in A versus those in B,

and τ puts the latter set in the ultrafilter. The intersection of two such subsets

of CX are also chosen by τ : if (A,B), (A′, B′) ∈ τ then also (A∪A′, B∩B′) ∈ τ
by Lemma 1.2. By Lemma 1.1, these filter sets are non-empty, and they are

closed under taking supersets in CX because τ is consistent.

For every X ∈ X , we thus have a map

τ 7→ U(τ,X) (4)

from Θ to UX . These maps are not in general injective: if some C ∈ CX is

home to more than one end, for example, then {C} will generate U(τ,X) for

all the corresponding end tangles τ . However, we shall see in Lemma 3.3 that

distinct τ, τ ′ ∈ Θ can never map to the same non-principal ultrafilter as in (4).

We shall also see later in Lemma 3.7 that the maps in (4) are nearly surjec-

tive: only principal ultrafilters in UX generated by {C} for a finite component

C of G−X are not of the form U(τ,X).
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The ultrafilters U(τ,X) for a given τ but variable X are compatible for

X ⊆ X ′ just as the choices of f(X) ∈ CX and f(X ′) ∈ CX′ are compatible when

f is a direction in G. Indeed, consider the maps

fX′,X : UX′→UX

defined for all X ⊆ X ′ ∈ X by mapping an ultrafilter U ′ ∈ UX′ to U ′�X ⊆ 2CX ,

where U ′ � X is the set of all supersets in CX of sets of the form C′ � X with

C′ ∈ U ′ and C′�X := {C ∈ CX | ∃C ′ ∈ C′ : C ′ ⊆ C }. Less formally, from an

ultrafilter U ′ ∈ UX′ we obtain an ultrafilter U = fX′,X(U ′) ∈ UX by putting the

following sets C ⊆ CX in U : pick some C′ ∈ U ′, and let C consist of at least all

those components of G−X that contain some C ′ ∈ C′ as a subset (Fig. 4).

X

X

C1

C2

C3

C0

C2

C3

C4C1 =

FIGURE 4. C = {C0, C1, C2, C3} ∈ U if C′ = {C′
1, . . . , C

′
4} ∈ U ′

Lemma 2.1. The maps fX′,X make (UX | X ∈ X ) into an inverse system,

with X partially ordered by inclusion.

Proof. It is immediate that for X ⊆ X ′ ⊆ X ′′ we have fX′,X ◦fX′′,X′ = fX′′,X ,

as required for an inverse system, as long as these compositions are defined.

But to establish this we first have to show that, given X ⊆ X ′ and U ′ ∈ UX′ ,
the set U := fX′,X(U ′) ⊆ 2CX is indeed an ultrafilter.

To this end, notice that every component C ′ of G−X ′ lies inside some

component C ofG−X, because C ′ is connected and does not meetX ⊆X ′. Let

f :C ′ 7→ C be this map from CX′ to CX . Now consider a partition CX = C1∪C2.

For i = 1, 2 define C′i := {C ′ ∈ CX′ | f(C ′) ∈ Ci }. Since f has domain all of CX′ ,
the C′i partition CX′ . As U ′ is an ultrafilter on CX′ , it contains exactly one of

the C′i as an element. By definition of fX′,X , the corresponding Ci lies in U : it

is a superset2 of C′i �X = { f(C ′) | C ′ ∈ C′i }.

2 The superset can be strict if G−X has (finite) components contained in X′.
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The other two properties required of an ultrafilter, that it is closed under

taking finite intersections and does not contain ∅, follow for U from the corre-

sponding properties of U ′ in a similar way. �

For want of a better expression, let us call the ultrafilters in the sets UX
the ultrafilters of cofinite components in G, and put

U := lim←− (UX | X ∈ X ).

Conveniently, our maps τ 7→ U(τ,X) commute with the maps fX′,X :

Lemma 2.2. For all X ⊆ X ′ ∈ X and all ℵ0-tangles τ we have

fX′,X
(
U(τ,X ′)

)
= U(τ,X).

Every ℵ0-tangle τ therefore defines a limit υτ = (UX | X ∈ X ) ∈ U in which

UX = U(τ,X) for all X.

Proof. Let U := fX′,X
(
U(τ,X ′)

)
, consider any C ∈ U , and let (A,B) ∈ ~S be

such that A∩B = X and BrA =
⋃
C. Our aim is to show that (A,B) ∈ τ :

then C ∈ U(τ,X), giving U ⊆ U(τ,X), with equality since both are ultrafilters.

By definition of fX′,X , there exists C′ ∈ U(τ,X ′) such that C ⊇ C′�X. The

separation (A′, B′) ∈ ~S with A′ ∩B′ = X ′ and B′ rA′ =
⋃
C′ thus lies in τ .

Since (A,B ∪X ′) 6 (A′, B′), this implies (A,B ∪X ′) ∈ τ by the consistency

of τ . Now (A,B) ∈ τ follows by Lemma 1.10. �

Conversely, every υ ∈ U comes from a tangle in this way:

Lemma 2.3. For every limit (UX |X ∈ X ) ∈ U there exists a unique ℵ0-tangle

τ in G such that UX = U(τ,X) for all X ∈ X . The map

τ 7→ υτ (5)

defined in Lemma 2.2, therefore, is a bijection from Θ to U .

Proof. Let τ := { (A,B) ∈ ~S | CA∩B ∩2B ∈ UA∩B }. Clearly, U(τ, U) = UX for

all X ∈ X if τ is indeed an ℵ0-tangle, so let us check this; uniqueness will be

clear, since distinct ℵ0-tangles τ, τ ′ differ on some separation {A,B}, so that

U(τ,X) 6= U(τ ′, X) for X = A∩B.

For every separation {A,B} ∈ S, the sets CX ∩2A and CX ∩2B partition CX ,

so UX contains exactly one of them. Hence, τ is an orientation of S.

To show that τ is consistent, consider (A,B) < (A′, B′) ∈ τ . Let

X := A ∩B and X ′ := A′ ∩B′, and put X ′′ := X ∪X ′. Let C := CX ∩ 2A

and C′ := CX′ ∩ 2B
′
. Note that C, C′ ⊆ CX′′ , since (A,B) 6 (A′, B′). Now if

(B,A) ∈ τ , then

fX′′,X : UX′′ 7→ UX 3 C ⊇ C′′ �X

for some C′′ ∈ UX′′ . Since C ⊆ CX′′ , this means that in fact C ⊇ C′′, and hence

that C ∈ UX′′ . Similarly, C′ ∈ UX′′ . But C ∩C′ = ∅, a contradiction.
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It remains to show that τ has no subset σ = {(A1, B1), (A2, B2), (A3, B3)}
in T3. Suppose it does. For i = 1, 2, 3 let Xi := Ai ∩Bi, and put X :=

⋂
iBi.

This is finite by definition of T3, and includes every Xi since σ is a star. Then

fX,Xi
: UX 7→ UXi

3 CXi
∩ 2Bi ⊇ Ci �Xi

for some Ci ∈ UX , for each i. Every C ∈ Ci is a subset of some Ci ∈ CXi
∩ 2Bi ,

and hence of Bi. Hence any C ∈ C1 ∩ C2 ∩ C3 is both a subset of
⋂
iBi = X

and an element of CX , which is impossible. As C1 ∩C2 ∩C3 ∈ UX is non-empty,

this is a contradiction. �

We have seen that every end ω of G defines a tangle τω by (1), which in

turn defines a limit υ ∈ U by (5). The composition

ω 7→ τω 7→ υτω (6)

maps ω to a limit υ = (UX | X ∈ X ) in which every UX is a principal ultrafilter

in UX , generated by {C} say, where C is the component of G−X in which

ω lives. The converse of this is also true: if every UX in (UX | X ∈ X ) = υτ
is principal, then τ is an end tangle:

Lemma 2.4. The following assertions are equivalent for all ℵ0-tangles τ :

• τ is an end tangle;

• U(τ,X) is a principal ultrafilter, for all X ∈ X .

Proof. We only have to show the backward implication. For each X ∈ X , let

CX be the unique component of G−X such that {CX} generates U(τ,X). By

Lemma 2.2, the map f :X 7→ CX is a direction in G. Since the map ω 7→ f

is surjective [7], there is an end ω of G such that f = fω. This ω lives in

every CX , giving τ = τω as desired. �

Let us call τ ∈ Θ an ultrafilter tangle if at least one of the ultrafilters UX in

υτ = (UX | X ∈ X ) is non-principal. Of every such X we say that it witnesses

that τ is an ultrafilter tangle.

Lemma 2.4 tells us that the ℵ0-tangles in G divide into its end tangles and

its ultrafilter tangles. We have thus proved Theorem 2:

Theorem 2. Let G be any graph.

(i) The ℵ0-tangles of G are precisely the limits of the inverse system of its

sets of ultrafilters of cofinite components.

(ii) The ends of G are precisely those of its ℵ0-tangles whose ultrafilters of

cofinite components are all principal.

13



3. A closer look at ultrafilter tangles

Recall that our aim was to understand better those ℵ0-tangles that are not

defined by an end. We have seen that these are the ultrafilter tangles, those

τ ∈ Θ such that at least one of the UX = U(τ,X) in their υτ = (UX | X ∈ X )

is non-principal. In this section we show that each of these UX already deter-

mines τ . Thus, every ultrafilter tangle is determined by a single ultrafilter of

cofinite components, not just by a limit of such ultrafilters.

In particular, if U = U(τ,X) is non-principal and X ⊆ X ′, then both υτ
and U ′ = U(τ,X ′) are determined by U , since U determines τ and τ determines

υτ and U ′. However we shall prove this directly, without involving τ : we show

that for every element U of the set

U∗X := {U ∈ UX | U is non-principal }

there is a unique U ′ ∈ UX′ such that fX′,X(U ′) = U . (This U ′ will also lie

in U∗X′ .) Thus, the maps fX′,X have inverses on the sets U∗X of non-principal

ultrafilters. Hence there is also a unique υ ∈ U = lim←− (UX | X ∈ X ) with

UX = U .

We finally show that the set Xτ of all X ∈ X witnessing that a given τ is an

ultrafilter tangle has a least element X. From its corresponding U = UX we can

thus directly construct all the ultrafilters of cofinite components induced by τ ,

the filters U(τ,X ′) with X ′ ∈ Xτ , by applying the inverses of the maps fX′,X .

Lemma 3.1. Let X ⊆ X ′ ∈ X , and let U ∈ U∗X be a non-principal ultrafilter

on CX . Then there is a unique ultrafilter U ′ on CX′ such that fX′,X(U ′) = U .

This ultrafilter U ′ ∈ UX′ is also non-principal, and it satisfies

U ′ = { C ⊆ CX′ | ∃D ∈ U : D ⊆ C }.

Proof. As fX′,X maps principal ultrafilters to principal ultrafilters, it is clear

that any U ′ ∈ UX′ satisfying fX′,X(U ′) = U lies in U∗X′ . Let us show that there

is a unique such U ′ ∈ UX′ .
Consider any bipartition CX′ = C ∪ C′. Since every component of G−X

that does not meet X ′ is also a component of G−X ′, our partition of CX′
induces a partition D− ∪D ∪D′ of CX , where D− is the set of components of

G−X meeting X ′, and D ⊆ C and D′ ⊆ C′.
As U is non-principal, it does not contain the finite set D−. Hence

exactly one of D and D′ lies in U , say D. Then any U ′ ∈ UX′ satisfying

fX′,X(U ′) = U contains C: otherwise it would contain C′, and then UX would

contain D− ∪D′ ⊇ C′ �X which it does not.

Let U ′ be the set of all C obtained in this way: the set of all C ⊆ CX′ such

that C ∩ CX ∈ U . If U ′ is a filter, it will be an ultrafilter, because it contains

a set from every bipartition of CX′ . It thus remains to show that U ′ is indeed
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a filter, and that it satisfies fX′,X(U ′) = U ; we have already seen that U ′ will

then be unique in UX′ with this property.

Since every C ∈ U ′ has a subset D ∈ U , clearly ∅ /∈ U ′. And for C1, C2 ∈ U ′,
with Di ⊆ Ci in U say, we have U 3 D1∩D2 ⊆ C1∩C2∩CX , giving C1∩C2 ∈ U ′.
Thus, U ′ ∈ UX′ .

It is straightforward from the definitions that fX′,X(U ′) ⊆ U . Since both

these are ultrafilters on the same set (cf. Lemma 2.1), this implies the desired

equality. �

As a consequence of Lemma 3.1, we have inverses of the maps fX′,X on

the non-principal ultrafilters:

Lemma 3.2. For all X ⊆ X ′ ∈ X there exists a map gX,X′ : U∗X→UX′ such

that fX′,X ◦ gX,X′ is the identity on U∗X . �

Our aim was to show that if τ ∈ Θ is an ultrafilter tangle and X wit-

nesses this, then U(τ,X) alone determines τ . This is an easy consequence of

Lemma 3.1:

Lemma 3.3. Let τ ∈ Θ and X ∈ X be such that U(τ,X) is non-principal.

Then U(τ ′, X) 6= U(τ,X) for every τ ′ ∈ Θr {τ}.

Proof. As τ 6= τ ′, there exists (A,B) ∈ τ such that (B,A) ∈ τ ′. For

X ′ := A ∩ B this gives U(τ,X ′) 6= U(τ ′, X ′). Then also U(τ,X ∪ X ′) 6=
U(τ ′, X ∪ X ′): if these were the same filter U ∈ UX∪X′ we would have

U(τ,X ′) = fX∪X′,X′(U) = U(τ ′, X ′) by Lemma 2.2. By Lemma 3.1, the fact

that U(τ,X ∪X ′) 6= U(τ ′, X ∪X ′) implies U(τ ′, X) 6= U(τ,X). �

Every U ∈ U∗X can be used to define the unique τ with U(τ,X) = U directly,

by telling us which orientation of a given separation {A,B} ∈ S lies in τ :

Lemma 3.4. Let τ ∈ Θ be an ultrafilter tangle, witnessed by X ∈ X . Then

τ =
{

(A′, B′) ∈ ~S | ∃ C ∈ U(τ,X) :
⋃
C ⊆ B′

}
.

Proof. For a proof of ‘⊆’ let (A′, B′) ∈ τ be given, and put X ′ := A′∩B′. Pick

(A,B) ∈ τ with A∩B = X. By Lemma 1.2, also (A′′, B′′) ∈ τ for A′′ = A∪A′
and B′′ = B ∩B′. For X ′′ = X ∪X ′ then also (A′′, X ′′ ∪B′′) 6 (A′′, B′′) lies

in τ , by the consistency of τ . The set C′′ of components of G−X ′′ contained

in B′′ then lies in U(τ,X ′′). As fX′′,X(U(τ,X ′′)) = U(τ,X) by Lemma 2.2, the

set C′′ has a subset C ∈ U(τ,X) by Lemma 3.1. Then
⋃
C ⊆

⋃
C′′ ⊆ B′′ ⊆ B′

as desired.

Conversely, any (A′, B′) ∈ ~S with
⋃
C ⊆ B′ for some C ∈ U(τ,X) must lie

in τ : otherwise (B′, A′) ∈ τ with
⋃
C′ ⊆ A′ for some C′ ∈ U(τ,X), as shown

above, but C ∩C′ is finite and hence not in U(τ,X), a contradiction. �
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Note that Lemma 3.4 also implies Lemma 3.3. Also, we could replace the

requirement of
⋃
C ⊆ B with

⋃
C ⊆ BrA: our proof yield this directly, but it

also follows retrospectively since U is non-principal and A∩B can meet only

finitely many elements of C.

For an end tangle τ = τω, a single ray R ∈ ω can be used as an ‘oracle’

to determine which of the two orientations of a given separation {A,B} ∈ S is

in τ : it is the unique orientation that points to a tail of R. Lemma 3.4 says

that for ultrafilter tangles we have similar oracles, given by a single ultrafilter

in

UX :=
⋃
X∈X

UX .

We have thus proved the following more precise version of Theorem 3:

Theorem 3.5. Every ℵ0-tangle τ in G satisfies exactly one of the following:

• ∃ ray R ⊆ G such that τ = { (A,B) ∈ ~S : G[B] contains a tail of R };
• ∃ ultrafilter U ∈ UX such that τ = { (A,B) ∈ ~S | ∃ C ∈ U :

⋃
C ⊆ BrA }.

Proof. We have shown everything claimed, except that no tangle can satisfy

both statements. But this is clear: an ultrafilter U as in the second state-

ment cannot be principal since, given its generating set {C}, we can choose

{A,B} ∈ S with A∩B ∩C 6= ∅, in which case
⋃
C ⊇ C will not be contained

in either BrA or ArB, so τ ∩{(A,B), (B,A)} = ∅, a contradiction. �

Let us now prove that, for every ultrafilter tangle τ ∈ Θ, the set

Xτ := {X ∈ X | U(τ,X) ∈ U∗X }

of all X witnessing that τ is an ultrafilter tangle is the up-closure in X of a

single element:

Theorem 3.6. For every ultrafilter tangle τ the set Xτ has a least element Xτ .

Then Xτ = {X ∈ X | Xτ ⊆ X }.

Proof. We already noted in Lemma 3.1 that Xτ is closed upwards in X . It

remains to show that it has a least element.

Suppose not. Let X ′, X ′′ be incomparable minimal elements of Xτ . Pick

x′ ∈ X ′rX ′′, and let X := X ′r {x′}. By the minimality of X ′, the ultrafilter

U(τ,X) is principal, and hence generated by {C} for some C ∈ CX . As U(τ,X ′)

is non-principal and fX′,X(U(τ,X ′)) = U(τ,X), the set C of components of

C − x′ lies in U(τ,X ′). As X ′′ meets only finitely many elements of C, the

others form a set C′ ∈ U(τ,X ′). Similarly, pick x′′ ∈ X ′′ rX ′ and find a set

C′′ ∈ U(τ,X ′′) of components of G−X ′′ that avoid X ′.

Every C ′ ∈ C′ lies inside the same component C ′′ of G−X ′′ as x′, because

both avoid X ′′ but G contains an edge from x′ to C ′: otherwise, C ′ would be
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in CX , which it is not since C − x′ contains it. Since the components in C′′
avoid X ′ 3 x′, we thus have C ′ ⊆ C ′′ /∈ C′′ for every C ′ ∈ C′.

Thus,
⋃
C′ and

⋃
C′′ are disjoint sets of vertices separated by the finite

set X ′′ (as well as by X ′); let {A,B} ∈ S with A ∩B = X ′′ separate them.

Both orientations of {A,B} must be in τ , by Lemma 3.4 applied with X ′ and

with X ′′, respectively. This contradicts our assumption that τ is an orientation

of S. �

Finally, let us go back and use the maps gX,X′ from Lemma 3.2 to prove

that the maps τ 7→ U(τ,X) in (4) are essentially surjective; we shall need this

in our proof of Theorem 1.

Lemma 3.7. Let X ∈ X , and let U ∈ UX be an ultrafilter on CX not generated

by {C} for any finite component C of G−X. Then there exists an ℵ0-tangle

τ ∈ Θ such that U = U(τ,X).

Proof. Assume first that U is non-principal. Our aim is to find a limit point

υ = (UY | Y ∈ X ) ∈ U such that UX = U . By Lemma 2.3 there will then exist

some τ ∈ Θ with υ = υτ , for which U(τ,X) = UX = U as desired.

f

f

f?

f?

UX∪Y

UX∪Y

UY

UY

g

g

U = UX

FIGURE 5. The known maps are drawn as solid lines,
the desired maps as broken lines

For every X ′ ∈ X with X ⊆ X ′ let UX′ := gX,X′(U), and for all other

Y ∈ X let UY := fX′,Y (UX′) for X ′ := X ∪Y (Fig. 5). Then, in fact,

UY = fX∪Y,Y ◦ gX,X∪Y (U)

for every Y ∈ X , and UX = U . To show that (UY | Y ∈ X ) ∈ U , we have to

show that fY ′,Y (UY ′) = UY for all Y ⊆ Y ′ ∈ X . To see this, note first that

UX∪Y = gX,X∪Y (U)

= gX,X∪Y (fX∪Y ′,X(UX∪Y ′))

= gX,X∪Y (fX∪Y,X(fX∪Y ′,X∪Y (UX∪Y ′)))

= fX∪Y ′,X∪Y (UX∪Y ′).
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Hence

fY ′,Y (UY ′) = fY ′,Y (fX∪Y ′,Y ′(gX,X∪Y ′(U)))

= fY ′,Y (fX∪Y ′,Y ′(UX∪Y ′))

= fX∪Y ′,Y (UX∪Y ′)

= fX∪Y,Y (fX∪Y ′, X∪Y (UX∪Y ′))

= fX∪Y,Y (UX∪Y )

= fX∪Y,Y (gX,X∪Y (U))

= UY ,

as desired.

Suppose now that U is principal, generated by {C} with C ∈ CX say,

and that C is infinite. If C contains a ray, the end ω of this ray defines τω, for

which U = U(τω, X) as desired. If not, then C has a finite set Z of vertices such

that C − Z has infinitely many components: otherwise we could construct a

ray z0z1 . . . in C inductively by choosing each zn from an infinite component of

C−{z0, . . . , zn−1}. Pick a non-principal ultrafilter UZ on the set of components

of C − Z, notice that these are also components of G−X ′ for X ′ = X ∪ Z,

and let U ′ be the (non-principal) ultrafilter on CX′ generated by UZ . Then

fX′,X(U ′) = U , by definition of U ′ and fX′,X . By the case already treated,

there exists τ ∈ Θ such that U ′ = U(τ,X ′). This τ achieves our aim, since

U(τ,X) = fX′,X(U(τ,X ′)) = fX′,X(U ′) = U

by Lemma 2.2. �

4. Tangles at infinity: compactifying an arbitrary graph

Our aim in this section is to prove Theorem 1: that the ℵ0-tangles can be

used as points at infinity to compactify G, in a way that yields its Freudenthal

compactification when G is locally finite (and hence all its ℵ0-tangles are end

tangles). To make this process more transparent we shall first define a topology

on U itself, which can be done in a rather canonical way. We shall then adapt

this to define a topology on all of G∪U that induces this topology on U , as well

as the usual 1-complex topology on G. This space |G| = G∪U or, equivalently

by Lemma 2.3, the space |G| = G∪Θ, will be the desired compactification of G.

For each X ∈ X , take the topology on UX whose basic open sets are those

of the form

O(C) := {U ∈ UX | C ∈ U },

one for each C ⊆ CX . This topology, the Stone topology on CX , makes UX into a
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compact topological space3 in which the principal ultrafilters on CX are dense.

The space UX is clearly Hausdorff, indeed totally disconnected.

Our inverse system (UX | X ∈ X ) is compatible with these topologies:

Lemma 4.1. The maps fX′,X : UX′→UX are continuous. �

In fact, for X ⊆ X ′ ∈ X the open sets f−1X′,X(O(C)) ⊆ UX′ are themselves basic:

f−1X′,X(O(C)) = O(C′) for C′ = {C ′ ∈ CX′ | ∃C ∈ C : C ⊇ C ′ }. (7)

Topologizing the UX has an interesting windfall for graphs without ends:

Proposition 4.2. Every infinite graph has an ℵ0-tangle.

Proof. Inverse limits of non-empty compact spaces are non-empty [16]. Hence

U is not empty, and so by Lemma 2.3 neither is Θ. �

Let us give the set Θ = U = lim←− (UX | X ∈ X ) of ℵ0-tangles in G the sub-

space topology from
∏
X∈X UX endowed with the product topology of the UX .

Proposition 4.3. The topological space of all ℵ0-tangles of an infinite graph

is compact and totally disconnected.

Proof. Since the UX are Hausdorff and the fX′,X are continuous, the space

U = lim←− (UX | X ∈ X ) is closed in
∏
X∈X UX , which inherits its own compact-

ness from that of the UX by Tychonov’s theorem. It is totally disconnected,

because the UX are. �

To describe this topology more explicitly, consider any X ∈ X and C ⊆ CX .

Let

O(X, C) := { υ ∈ U | C ∈ UX } = f−1X (O(C)),

where υ = (UX | X ∈ X ) and fX is the (continuous) projection U →UX .

Lemma 4.4. The sets O(X, C) form a basis of open sets in U .

Proof. By definition of the topology on U , these sets form a subbasis. By (7)

they even form a basis, because every finite intersection of such sets O(X, C)
can be rewritten as the union of sets O(X ′, C′) with X ′ the (finite) union of

these X. �

3 The Stone-Čech compactification of CX . Its compactness is immediate from Tychonov’s

theorem when we view UX as a subspace of 22
CX: the set UX is closed in this compact space,

since any violation of the ultrafilter axioms involves only finitely many subsets of CX .
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When G is locally finite and connected, it is compactified by its ends in

the so-called Freudenthal compactification [10, 11; 5]. The following definition

for our arbitrary G defaults to this when G is locally finite and connected, and

hence all its ℵ0-tangles are end tangles.

Let us view G as a 1-complex with the usual topology. Its edges are copies

of the real interval [0, 1], and choosing for every edge e = vw at some vertex v

any half-open partial edge ex = [v, x) ⊆ e with x ∈ e̊, makes
⋃
e ex into an open

neighbourhood of v. Let us extend G to a topological space

|G| = G∪ U = G∪Θ

(cf. Lemma 2.3) by also declaring as open, for all X ∈ X and all C ⊆ CX , the

sets

OG(X, C) :=
⋃
C ∪ E̊(X,

⋃
C) ∪ O(X, C) (8)

and taking the topology on |G| that this generates. Here, E̊(X,
⋃
C) is the set

of all inner points of edges between X and components of G−X in C. Note

that the subspace topology on U ⊆ |G| is our original topology on U , and that

the subspace topology on G is its orginal 1-complex topology.

Let us prove that |G| = G ∪ U = G ∪Θ is a compact space, the tangle

compactification of G:

Theorem 1. Let G be any graph.

(i) |G| is a compact space in which G is dense and |G|rG is totally discon-

nected.

(ii) If G is locally finite and connected, then all its ℵ0-tangles are ends, and

|G| coincides with the Freudenthal compactification of G.

Proof. (i) Consider any cover O of |G| by open subsets of G and basic open

sets of the form OG(X, C). Since U is compact in the subspace topology of |G|,
this has a finite subset of the form

F = {OG(X,DX) | X ∈ X ′ }

(with X ′ ⊆ X finite) that covers U . Our aim is to show that, for X ′ :=
⋃
X ′,

the sets in F and G[X ′] together cover |G|: since G[X ′] is a finite graph and

hence compact, there will then also be a finite subcover of O for all of |G|.
For every X ∈ X ′, let

D′X := {C ′ ∈ CX′ | ∃C ∈ DX : C ⊇ C ′ }.

Then f−1X′,X(O(DX)) = O(D′X) by (7). As fX = fX′,X ◦ fX′ , this implies

O(X,DX) = f−1X (O(DX)) = f−1X′ (O(D′X)) = O(X ′,D′X) (9)

and henceOG(X,DX)⊇OG(X ′,D′X), since
⋃
DX ⊇

⋃
D′X by definition of D′X .

20



It thus suffices to show that the OG(X ′,D′X) cover |G|rG[X ′], i.e., that

every component of G−X ′ is an element of some D′X with X ∈ X ′. Suppose

not, and let

C′ := CX′ r
⋃
X∈X ′

D′X .

If
⋃
C′ is a finite graph, we add this to G[X ′] and achieve C′ = ∅ as desired.

We may therefore assume that
⋃
C′ is infinite.

If C′ contains an infinite component C ′, let U ′ ∈ UX′ be the ultrafilter

on CX′ generated by {C ′}. If not, then C′ is infinite; pick a non-principal

ultrafilter on C′ and let U ′ ∈ UX′ be the (non-principal) ultrafilter it generates

on all of CX′ . By Lemmas 3.7 and 2.3, there exists υ = (UX | X ∈ X ) ∈ U
such that UX′ = U ′. By (9) and the definition of C′, this υ does not lie in

⋃
F ,

a contradiction.

(ii) This is easy; see [5] for the definition of the Freudenthal compactifica-

tion. To see that the topology for |G| defined there coincides with ours here,

remember that if G is locally finite then any finite X ⊆ V sends only finitely

many edges to G−X. �

We remark that, as defined above, |G| is not in general Hausdorff: the

centre of an infinite star, for example, cannot be topologically separated from

any open set containing a tangle of that star. However, every two points of

V ∪ Θ ⊆ |G| have neighbourhoods in |G| that meet only in inner points of

edges. If we delete the set E̊ of all inner edge points from |G|, the resulting

space |G|r E̊ will be a Hausdorff compactification of V that still reflects the

structure of G.

Conversely, if we are prepared to give up the compactness of |G| (while

keeping U = |G|rG and V ∪Θ = |G|r E̊ compact, which may be more crucial),

we can make |G| itself Hausdorff: we just have to allow more open sets in (8) by

replacing E̊(X,
⋃
C) with unions of either arbitrary half-edges (y, z) ⊆ (x, z) for

each e = (x, z) ∈ E̊(X,
⋃
C), or by uniformly chosen such half-edges (where all

y have distance some fixed positive ε < 1 from z ∈
⋃
C when the edge e = [x, z]

is viewed as a copy of the real interval [0, 1].

5. Closed tangles

When Robertson and Seymour introduced tangles for finite graphs, their in-

tended key feature was that they point to parts of the graph that are in some

sense highly connected. Any large enough grid, for example, defines a k-tangle

for any fixed k, even though it is not highly connected as a subgraph: since

every separation {A,B} of order < k leaves most of the grid on one side, it

can be oriented ‘towards’ that side, and these orientations satisfy the tangle

axioms.
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Our ℵ0-tangles do not all point to a highly connected part of G. Indeed,

G could be a locally finite tree, but it would still have end tangles pointing to its

ends – which can hardly be seen as highly connected structures in any sense.

On the other hand, an infinite complete subgraph also defines an ℵ0-tangle,

for which a better case could be made. Ultrafilter tangles, however, have no

connected – let alone highly connected – focus at all.

Some attempts have been made to at least identify those kinds of ends

that tell us where our graph is highly connected. Candidates included the

Halin ends that are not Freudental (or topological) ends [2], which are those

that have one or more vertices send an infinite fan to each of their rays [7].

The earliest attempt, perhaps, was to consider ‘thick’ ends [13, 20], those of

infinite (vertex) degree: these are the ends that contain an infinite set of dis-

joint rays [5, 4]. Halin [13] showed that these are precisely the ends (whose

ℵ0-tangle is) defined by a half grid minor. An obvious analogue would be to

consider the ends defined by a full grid minor – these have been characterized

by Heuer [14] – or infinite clique minors or subdivision as in [18, 19].

I would like to propose a new alternative: that an ℵ0-tangle is deemed

to signify a highly connected part of G if and only if it is closed in a certain

natural topology on ~S = ~Sℵ0 . We shall be able to characterize those tangles in

graph-theoretical terms. They will all be end tangles, including those defined

by an infinite complete subgraph but not, for example, the end tangles of a tree.

The topology on ~S has the following basic open sets. Pick a finite set

Z ⊆ V and an oriented separation (AZ , BZ) of G[Z]. Then declare as open the

setO(AZ , BZ) of all (A,B) ∈ ~S such that A∩Z = AZ andB∩Z =BZ . We shall

say that these (A,B) induce (AZ , BZ) on Z, writing (AZ , BZ) =: (A,B) � Z,

and that (A,B) and (A′, B′) agree on Z if (A,B) �Z = (A′, B′) �Z.

It is easy to see that the sets O(AZ , BZ) do indeed form the basis of a

topology on ~S. Indeed, (A,B) ∈ ~S induces (A1, B1) on Z1 and (A2, B2) on Z2

if and only if it induces on Z = Z1 ∪ Z2 some separation (AZ , BZ) which in

turn induces (Ai, Bi) on Zi for both i. Hence O(A1, B1) ∩ O(A2, B2) is the

union of all these O(AZ , BZ).

Example 5.1. If G is a single ray v0v1 . . . with end ω, say, then τ = τω is

not closed in ~S. Indeed, τ contains (∅, V ) by Lemma 1.1, and hence does not

contain (V, ∅). But for every finite Z ⊆ V the restriction (Z, ∅) of (V, ∅) to Z is

also induced by ({v0, . . . , vn}, {vn, vn+1, . . .}) ∈ τ for every n large enough that

Z ⊆ {v0, . . . , vn−1}. So (V, ∅) ∈ ~Sr τ has no open neighbourhood in ~Sr τ. �

Example 5.2. Ultrafilter tangles τ ∈ Θ are never closed in ~S. Indeed, let

X ∈ X witness that τ is an ultrafilter tangle, pick C ∈ U(τ,X), and consider

(A,B) ∈ ~S for A = X ∪
⋃
C and B = V r

⋃
C. This is a separation in ~Sr τ (cf.

Lemma 3.4), but every open neighbourhood of (A,B) meets τ : for every finite

Z ⊆ V we can find a separation (A′, B′) ∈ τ such that (A′, B′)�Z = (A,B)�Z.

Such a separation (A′, B′) can be obtained from (A,B) by moving all the com-
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ponents of C that lie in ArZ to B. Then (A′, B′) ∈ τ , again by Lemma 3.4

(and Lemma 1.10). The details are left to the reader; Theorem 4 below includes

a formal proof. �

Are any ℵ0-tangles closed in ~S? As we have seen, they must be end tangles.

And such end tangles do exist. Here is the example promised earlier:

Example 5.3. If K ⊆ V spans an infinite complete graph in G, then the ℵ0-

tangle

τ = { (A,B) ∈ ~S | K ⊆ B } (10)

is closed in ~S. We omit the easy proof. �

Perhaps surprisingly, it is not hard to characterize the ℵ0-tangles that are

closed. They are all essentially like Example 5.3: we just have to generalize

the infinite complete subgraph used appropriately. Of the two obvious gen-

eralizations, infinite complete minors [19] or subdivisions of infinite complete

graphs [18], the latter turns out to be the right one.

Let κ be any cardinal. A set of at least κ vertices of G is (< κ) - inseparable

if no two of them can be separated in G by fewer than κ vertices. A maximal

(< κ) - inseparable set of vertices is a κ-block . For example, the branch vertices

of a TKκ are (< κ) - inseparable. Conversely:

Lemma 5.4. When κ is infinite, every (< κ) - inseparable set of vertices in G

contains the branch vertices of some TKκ ⊆ G.

Proof. Let K ⊆ V be (< κ) - inseparable. Viewing κ as an ordinal we can find,

inductively for all α < κ, distinct vertices vα ∈ K and internally disjoint vα–vβ
paths in G for all β < α that also have no inner vertices among those vβ or on

any of the paths chosen earlier; this is because |K| > κ, and no two vertices

of K can be separated in G by the < κ vertices used up to that time. �

Note, however, that a κ-block in G need not itself be the set of branch vertices

of a TKκ, even if it has size exactly κ. (Consider a Kκ minus an edge.)

We can now prove our last remaining theorem. Let us say that a setK ⊆ V

defines an ℵ0-tangle τ if τ satisfies (10). Note that all the infinite subsets of

an ℵ0-block define the same ℵ0-tangle.

Theorem 4. Let G be any graph.

(i) The ℵ0-tangles in G that are not end tangles are never closed in ~S.

(ii) An end tangle in G is closed in ~S if and only if it is defined by an ℵ0-block,

or equivalently, by the set of branch vertices of some TKℵ0 .
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Proof. For every TKℵ0 = H ⊆ G there is a unique end ω of G containing all

the rays in H. Then τ ∈ Θ is defined by the set of branch vertices of this TKℵ0
if and only if τ = τω. In view of Lemma 5.4 it thus suffices to show that an

arbitrary τ ∈ Θ is closed in ~S if and only if it is defined by an ℵ0-block.

Suppose first that τ is defined by an ℵ0-block K. To show that τ is closed,

we have to find for every (A,B) ∈ ~S r τ a finite set Z ⊆ V such that no

(A′, B′) ∈ ~S that agrees with (A,B) on Z lies in τ . As (A,B) /∈ τ , we have

K ⊆ A; pick z ∈ K rB. Then every (A′, B′) ∈ ~S that agrees with (A,B) on

Z := {z} also also lies in ~Sr τ , since z ∈ A′rB′ and this implies K 6⊆ B′.

Conversely, consider any τ ∈ Θ and let

K :=
⋂
{B | (A,B) ∈ τ }.

No two vertices in K can be separated by in G by a finite-order separation:

one orientation (A,B) of this separation would be in τ , which would contradict

the definition of K since ArB also meets K. If K is infinite, it will clearly be

maximal with this property, and hence be an ℵ0-block. This ℵ0-block K will

define τ : by definition of K we have K ⊆ B for every (A,B) ∈ τ , while also

every (A,B) ∈ ~S with K ⊆ B must be in τ : otherwise (B,A) ∈ τ and hence

K ⊆ A by definition of K, but K 6⊆ A∩B because this is finite. Hence τ will

be defined by an ℵ0-block, as desired for the forward implication.4

It thus suffices to show that if K is finite then τ is not closed in ~S, which

we shall do next.

Assume that K is finite. We have to find some (A,B) ∈ ~S r τ that is a

limit point of τ , i.e., which agrees on every finite Z ⊆ V with some (A′, B′) ∈ τ .

We choose (A,B) := (V,K) ∈ ~Sr τ (Lemma 1.1).

To complete our proof as outlined, let any finite set Z ⊆ V be given. For

every z ∈ Z rK choose (Az, Bz) ∈ τ with z ∈ Az rBz: this exists, because

z /∈ K. By Lemma 1.2, the supremum of all these elements of τ and (K,V ) ∈ τ

is again in τ : we have (A′, B′) ∈ τ for

A′ := K ∪
⋃

z∈ZrK
Az and B′ := V ∩

⋂
z∈ZrK

Bz .

As desired, (A′, B′)�Z = (A,B)�Z (which is (Z,Z∩K), since (A,B) = (V,K)):

every z ∈ Z rK lies in some Az and outside that Bz, so z ∈ A′ rB′, while

every z ∈ Z ∩K lies in K ⊆ A′ and also, by definition of K, in every Bz (and

hence in B′), since (Az, Bz) ∈ τ . �

4 Whether or not τ is closed in ~S is immaterial; we just did not use this assumption.
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6. Outlook

There are some obvious leads the reader may like to follow up, as well as one

not so obvious one.

The most obvious is to study the space |G| more closely. There are plenty

of basic questions about |G| that we have not even addressed. For example,

how is |G| related to the Stone-Čech compactification of G? For which G is |G|
the coarsest compactification in which its ends appear as distinct points? If it

is not, is there a unique such topology, and is there a canonical way to obtain

it from |G|?
More important, and probably a good guidance also for which of these basic

questions to address, is the potential of |G| for applications in graph theory. For

locally finite graphs, the study of its end compactification |G| has proved very

enlightening indeed, and has led to some considerable advances even for purely

graph-theoretic problems not originally involving ends [4]. Might considering

our tangle compactification |G| lead to similar advances for arbitrary infinite

graphs G?

Another obvious lead is to consider κ-tangles for cardinals κ > ℵ0. Do

the κ-tangles that are closed in the space ~Sκ of all oriented separations of G of

order < κ form interesting highly connected substructures that do not coincide

with classical such structures such as TKκ subgraphs?

Finally, there is an intriguing way to generalize ℵ0-tangles to separation

systems of much more general discrete structures than graphs, introduced in [6].

Essentially, all we need to remember of ~S is that it is a poset with an order-

reversing involution. One can then define stars of ‘oriented separations’ (elem-

ents of ~S) as earlier in Section 1, and for a set F of such stars one can consider

F-tangles. Perhaps there is a natural (submodular) ‘order’ function on ~S, as is

the case, for example, for separations in matroids. But even if not, there is a way

of expressing ℵ0-tangles in this framework without any reference to an order

function – or, indeed, to the cardinality of
⋂
iBi as in the definition of T<ℵ0 .

We need one more definition to express this. Call an oriented separation
→s ∈ ~S small if →s 6 ←s , where ←s denotes the image of →s under the involution.5

Using this term, we can rephrase the definition of a T<ℵ0-tangle of S without

mentioning cardinalities:

Observation. The T<ℵ0-tangles of S are the consistent orientations τ of S

such that no finite star σ ⊆ τ has a supremum in ~S whose inverse ist small.

Proof. A T<ℵ0-tangle cannot contain such a star σ = { (Ai, Bi) | i = 1, . . . , n }:
since the supremum of σ is (

⋃
iAi,

⋂
iBi), the inverse of this can be small only

if
⋂
iBi is finite, which would place σ in T<ℵ0 .

Conversely, let us show that if τ is a consistent orientation of S such that

no star σ ⊆ τ has a supremum in ~S with a small inverse, then τ has no subset

5 For →s = (A,B), this would be ←s = (B,A). The small separations in our ~S are those of

the form (A, V ): they satisfy (A, V ) 6 (V,A), and are the only separations with this property.
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in T<ℵ0 . For let σ = { (Ai, Bi) | i = 1, . . . , n } ⊆ τ be such a subset. Then

X :=
⋂
iBi is finite, and the separations (A′i, Bi) > (Ai, Bi) with A′i := Ai∪X

still lie in ~S. In fact, they must also lie in τ . For if (Bi, A
′
i) ∈ τ for some i, then

{(Ai, Bi), (Bi, A′i)} ⊆ τ is a star whose supremum (Ai ∪Bi, Bi ∩A′i) = (V,X)

has a small inverse. But the supremum of σ′ := { (A′i, Bi) | i = 1, . . . , n } ⊆ τ

is (
⋃
A′i,
⋂
Bi) = (V,X), which has a small inverse – a contradiction to the

choice of τ . �

If our characterization of the ℵ0-tangles of G in terms of U can be re-

done in this abstract setting, it may become meaningful to consider ultrafilter

tangles in more general structures than graphs, such as ends in matroids, that

have been sought for some time.
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[7] R. Diestel & D. Kühn, Graph-theoretical versus topological ends of graphs,

J. Comb. Theory B 87 (2003), 197–206.

[8] R. Diestel & S. Oum, Tangle-tree duality in abstract separation systems,

Adv. Math. 377 (2021), 107470.

[9] R. Diestel & S. Oum, Tangle-tree duality: in graphs, matroids and beyond,

Combinatorica 39 (2019), 879–910.
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