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Abstract

We apply a recent tangle-tree duality theorem in abstract separation sys-
tems to derive tangle-tree-type duality theorems for width-parameters in
graphs and matroids. We further derive a duality theorem for the exis-
tence of clusters in large data sets.

Our applications to graphs include new, tangle-type, duality theorems
for tree-width, path-width, and tree-decompositions of small adhesion.
Conversely, we show that carving width is dual to edge-tangles. For ma-
troids we obtain a tangle-type duality theorem for tree-width.

Our results can also be used to derive short proofs of all the classical
duality theorems for width parameters in graph minor theory, such as
path-width, tree-width, branch-width and rank-width.

1 Introduction

There are a number of theorems in the structure theory of sparse graphs that
assert a duality between high connectivity present somewhere in the graph and
an overall tree structure. For example, a graph has small tree-width if and
only if it contains no large-order bramble. Amini, Lyaudet, Mazoit, Nisse and
Thomassé [1, 17] generalized the notion of a bramble to give similar duality
theorems for other width parameters, including branch-width, rank-width and
matroid tree-width. The highly cohesive substructures, or HCSs, dual to low
width in all these cases are what we call concrete HCSs: like brambles, they are
sets of edges that hang together in a certain specified way.

In [10] we considered another type of HCSs for graphs and matroids, which
we call abstract HCS. These are modelled on the notion of a tangle introduced
by Robertson and Seymour [20] for the proof of the graph minor theorem. They
are orientations of all the separations of a graph or matroid, up to some given
order, that are ‘consistent’ in a way specified by a set F . This F can be varied
to give di↵erent notions of consistency, leading to di↵erent notions of F-tangles.

⇤Supported by the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (No. NRF-2017R1A2B4005020).
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In [10, Theorem 4.3] we proved a general duality theorem for F-tangles in
an abstract setting that includes, but goes considerably beyond, graphs and
matroids. Applied to graphs and matroids, the theorem says that a graph or
matroid not containing an F-tangle has a certain type of tree structure, the type
depending on the choice of F . Conversely, this tree structure clearly precludes
the existence of an F-tangle, and thus provides an easily checked certificate for
their possible nonexistence.

Classical tangles of graphs are examples of F-tangles for a suitable choice
of F , so our abstract duality theorem from [10] implies a duality theorem for clas-
sical tangles. The tree structures we obtain as witnesses for the non-existence of
such tangles di↵er slightly from the branch-decompositions of graphs featured in
the tangle-tree duality theorem of Robertson and Seymour [20]. While our tree
structures are squarely based on graph separations, their branch-decompositions
are, in spirit, translated from decompositions of the graph’s cycle matroid, which
takes a toll for low-order tangles where our result is a little cleaner.

Conversely, we show thatF-tangles can be used to witness large tree-width or
path-width of graphs, giving new duality theorems for these width-parameters.
Like the classical, bramble-based, tree-width duality theorem of Seymour and
Thomas [21], and their duality theorem for path-width with Bienstock and
Robertson [2], our duality theorem is exact. Our theorems easily imply theirs,
but not conversely. By tweaking F , we can obtain tailor-made duality theorems
also for particular kinds of tree-decompositions as desired, such as those of some
specified adhesion.

Matroid tree-width was introduced only more recently, by Hliněný and Whit-
tle [14], and we shall obtain a tangle-type duality theorem for this too.

Another main result in this paper is a general width-duality theorem for
F-tangles of bipartitions of a set. Applied to bipartitions of the ground set of a
matroid this implies the duality theorem for matroid tangles derived from [20]
by Geelen, Gerards and Whittle [13]. Applied to bipartitions of the vertex set
of a graph it implies a duality theorem for rank-width [18]. Applied again to
bipartitions of the vertex set of a graph, but with a di↵erent F , it yields a
duality theorem for the edge-tangles introduced recently by Liu [16] as a tool
for proving an Erdős-Pósa-type theorem for edge-disjoint immersions of graphs.
Interestingly, it turns out that the corresponding tree structures were known
before: they are the carvings studied by Seymour and Thomas [22], but this
duality appears to have gone unnoticed.

Our F-tangle-tree duality theorem for set partitions is in fact a special case
of a duality theorem for set separations: pairs of subsets whose union is a given
set, but which may overlap (unlike the sets in a bipartition, which are disjoint).

Indeed, we first proved the abstract duality theorem of [10] that we keep
applying here for the special case of set separations. This version already implied
all the results mentioned so far. However we then noticed that we needed much
less to express, and to prove, this duality theorem. As a result, we can now use
‘abstract’ F-tangles to describe clusters not only in graphs and matroids but
in very di↵erent contexts too, such as large data sets in various applications,
and derive duality theorems casting the set into a tree structure whenever it
contains no such cluster. As an example to illustrate this, we shall derive an
F-tangle-tree duality theorem for image analysis, which provides fast-checkable
witnesses to the non-existence of a coherent region of an image, which could be
used for a rigorous proof of the low quality of a picture, e.g. after transmission
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through a noisy channel.1
Let us briefly explain these ‘abstract’ tangles. The oriented separations in

a graph or matroid are partially ordered in a natural way, as (A,B)  (C,D)
whenever A ✓ C and B ◆ D. This partial ordering is inverted by the involution
(A,B) 7! (B,A). Following [7], let us call any poset (~S,) with an order-
reversing involution !s 7!  s an abstract separation system. If this poset is a
lattice, we call it a separation universe. The set of all the separations of a graph
or matroid, for example, is a universe, while the set of all separation of order < k
for some integer k is a separation system that may fail to be a universe.

All the necessary ingredients of F-tangles in graphs, and of their dual tree
structures, can be expressed in terms of (~S,). Indeed, two separations are
nested if and only if they have orientations that are comparable under . And
the consistency requirement for classical tangles is, essentially, that if !r and !s
‘lie in’ the tangle (i.e., if the tangle orients r as !r and s as !s ) then so does their
supremum !r _ !s , if it is in ~S. It turned out that this was not a special case:
we could express the entire duality theorem and its proof in this abstract set-
ting. Put more pointedly, we never need that our separations actually ‘separate’
anything: all we ever use is how they relate to each other in terms of (~S,).

For example, the bipartitions of a (large data) set D form a separation
universe: they are partially ordered by inclusion of their sides, and the involution
of flipping the sides of the bipartition inverts this ordering. Depending on the
application, some ways of cutting the data set in two will be more natural than
others, which gives rise to a cost function on these separations of D.2 Taking
this cost of a separation as its ‘order’ then gives rise to tangles: abstract HCSs
signifying clusters. Unlike clusters defined by simply specifying a subset of D,
clusters defined by tangles will be fuzzy in terms of which data they ‘contain’ –
much like clusters in real-world applications.

If the cost function on the separations of our data set is submodular –
which in practice may not be a severe restriction – the abstract duality theorem
from [10] can be applied to these tangles. For every integer k, our application
of this theorem will either find a cluster of order at least k or produce a nested
‘tree’ set of bipartitions, all of order < k, which together witness that no such
cluster exists. An example from image analysis, with a cost function chosen so
that the clusters become the visible regions in a picture, is given in [12]. This
information could be used, for example, to assess the quality of an image, eg.
after sending it through a noisy channel.

Our paper is organized as follows. We begin in Section 2 with a brief de-
scription of abstract separation systems: just enough to state in Section 3, as
Theorem 3.2, the tangle-tree duality theorem of [10] that we shall be applying
throughout.

In Section 4 we prove our duality theorem for classical tangles as intro-
duced by Robertson and Seymour [20], and indicate how to derive their tangle-

1We make no claim here as to how fast such a witness might be computable, only that
checking it will be fast. This is because such a check involves only linearly many separations.
Exploring the F-tangle-tree theorem from an algorithmic point of view is a problem we would
indeed like to see tackled. Any good solution is likely to depend on F , though, and thus on
the concrete application considered.

2The bipartitions of D considered could be chosen according to some property that some
elements of D have and others lack. We could also allow the two sides to overlap where this
property is unclear: then we no longer have bipartitions, but still set separations.
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branchwidth duality theorem if desired.
In Section 5 we apply Theorem 3.2 to set separations with a submodular

order function. By specifying this order function we obtain duality theorems for
rank-width, edge-tangles, and carving-width in graphs, for tangles in matroids
and, as an example of an application beyond graphs and matroids, for clusters
in large data sets such as coherent features in pixellated images.

In Sections 6 and 7 we obtain our new duality theorems for tree-width and
path-width, and show how to derive from these the existing but di↵erent duality
theorems for these parameters.

In Section 8 we prove our duality theorem for matroid tree-width. In Sec-
tion 9 we derive duality theorems for tree-decompositions of bounded adhesion.

The ArXiv version of this paper [11] has a further section in which we show
how our duality theorem for abstract tangles, Theorem 3.2, implies the duality
theorem for abstract brambles of Amini, Mazoit, Nisse, and Thomassé [1] under
a mild additional assumption, which holds in all their applications.

2 Abstract separation systems

In this section we describe the basic features of abstract separation systems [7] –
just enough to state the main duality theorem from [10] in Section 3, and thus
make this paper self-contained.

A separation of a set V is a set {A,B} such that A [ B = V . The ordered
pairs (A,B) and (B,A) are its orientations. The oriented separations of V are
the orientations of its separations. Mapping every oriented separation (A,B) to
its inverse (B,A) is an involution that reverses the partial ordering

(A,B)  (C,D) :, A ✓ C and B ◆ D.

Note that this is equivalent to (D,C)  (B,A). Informally, we think of (A,B)
as pointing towards B and away from A. Similarly, if (A,B)  (C,D), then
(A,B) points towards {C,D} and its orientations, while (C,D) points away from
{A,B} and its orientations.

Generalizing these properties of separations of sets, we now give an axio-
matic definition of ‘abstract’ separations. A separation system (~S, ,⇤) is a
partially ordered set ~S with an order-reversing involution *. Its elements are
called oriented separations. When a given element of ~S is denoted as !s , its
inverse !s ⇤ will be denoted as  s , and vice versa. The assumption that * be
order-reversing means that, for all !r , !s 2 ~S,

!r  !s ,  r �  s . (1)

A separation is a set of the form {!s ,  s }, and then denoted by s. We call !s
and  s the orientations of s. The set of all such sets {!s ,  s } ✓ ~S will be denoted
by S. If !s =  s , we call both !s and s degenerate.

When a separation is introduced ahead of its elements and denoted by a
single letter s, its elements will then be denoted as !s and  s .3 Given a set
S0 ✓ S of separations, we write

!
S0 :=

S
S0 ✓ ~S for the set of all the orientations

3It is meaningless here to ask which is which: neither !s nor  s is a well-defined object
just given s. But given one of them, both the other and s will be well defined. They may be
degenerate, in which case s = {!s } = { s }.
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of its elements. With the ordering and involution induced from ~S, this is again
a separation system.4

Separations of sets, and their orientations, are clearly an instance of this if
we identify {A,B} with {(A,B), (B,A)}.

If a separation system (~U, ,⇤) is a lattice, i.e., if there are binary operations
_ and ^ on ~U such that !r _ !s is the supremum and !r ^ !s the infimum of !r
and !s in ~U , we call (~U, ,⇤,_,^) a universe of (oriented) separations. By (1),
it satisfies De Morgan’s law:

(!r _ !s )⇤ =  r ^  s . (2)

A separation system ~S ✓ ~U , with its ordering and involution induced from ~U ,
is submodular if for all !r , !s 2 ~S at least one of !r ^ !s and !r _ !s also lies in ~S.

The oriented separations of a set V form such a universe: if !r = (A,B) and
!s = (C,D), say, then !r _ !s := (A [ C,B \D) and !r ^ !s := (A \ C,B [D)
are again oriented separations of V, and are the supremum and infimum of !r
and !s . Similarly, the oriented separations of a graph form a universe. Its
oriented separations of order < k for some fixed k, however, form a separation
system Sk inside this universe that may not itself be a universe with respect to
_ and ^ as defined above. However, it is easy to check that Sk is submodular.

A separation !r 2 ~S is trivial in ~S, and  r is co-trivial , if there exists s 2 S
such that !r < !s as well as !r <  s . Note that if !r is trivial in ~S then so is every
!
r0  !r . If !r is trivial, witnessed by !s , then !r < !s <  r by (1). Separations !s
such that !s   s , trivial or not, will be called small .

For example, the oriented separations of a set V that are trivial in the uni-
verse of all the oriented separations of V are those of the form !r = (A,B) with
A ✓ C \D and B ◆ C [D = V for some separation s = {C,D} 6= r of V. The
small separations (A,B) of V are all those with B = V .

Two separations r, s are nested if they have comparable orientations; other-
wise they cross. Two oriented separations !r , !s are nested if r and s are nested.5
We say that !r points towards s, and  r points away from s, if !r  !s or !r   s .
Then two nested oriented separations are either comparable, or point towards
each other, or point away from each other. A set of separations is nested if every
two of its elements are nested.

A set O ✓ ~S of oriented separations is antisymmetric if it does not contain
the inverse of any of its nondegenerate elements. It is consistent if there are no
distinct r, s 2 S with orientations !r < !s such that  r , !s 2 O. (Informally: if it
does not contain orientations of distinct separations that point away from each
other.) An orientation of S is a maximal antisymmetric subset of ~S: a subset
that contains for every s 2 S exactly one of its orientations !s ,  s .

Every consistent orientation of S contains all separations !r that are trivial
in ~S, because it cannot contain their inverse  r : if the triviality of !r is witnessed
by s 2 S, say, then  r would be inconsistent with both !s and  s .

4For S0 = S, our definition of
!
S0 is consistent with the existing meaning of ~S. When we

refer to oriented separations using explicit notation that indicates orientation, such as !s or
(A, B), we sometimes leave out the word ‘oriented’ to improve the flow of words. Thus, when
we speak of a ‘separation (A, B)’, this will in fact be an oriented separation.

5Terms introduced for unoriented separations may be used informally for oriented separa-
tions too if the meaning is obvious, and vice versa.
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Given a set F , a consistent orientation of S is an F-tangle6 if it avoids F ,
i.e., has no subset F 2 F . We think of F as a collection of ‘forbidden’ subsets
of ~S. Avoiding F adds another degree of consistency to an already formally
consistent orientation of S, one that can be tailored to specific applications by
designing F in di↵erent ways. The idea is always that the oriented separations
in a set F 2 F collectively point to an area (of the ground set or structure which
the separations in S are thought to ‘separate’) that is too small to accommodate
some particular type of highly cohesive substructure.

A set � of nondegenerate oriented separations, possibly empty, is a star of
separations if they point towards each other: if !r   s for all distinct !r , !s 2 �
(Fig. 1). Stars of separations are clearly nested. They are also consistent: if
 r , !s lie in the same star we cannot have !r < !s , since also !s  !r by the star
property. A star � need not be antisymmetric; but if {!s ,  s } ✓ �, then any
other !r 2 � will be trivial.

E
F

C
D

A

B

B ∩ D ∩ F

A ∩ B

Figure 1: The separations (A,B), (C,D), (E,F ) form a 3-star

Let S be a set of separations. An S-tree is a pair (T,↵) of a tree7 T and a
function ↵ : ~E(T ) ! ~S from the set

~E(T ) := { (x, y) : {x, y} 2 E(T ) }

of the orientations of its edges to ~S such that, for every edge xy of T , if ↵(x, y) =
!s then ↵(y, x) =  s . It is an S-tree over F ✓ 2~S if, in addition, for every node
t of T we have ↵(~Ft) 2 F , where

~Ft := {(x, t) : xt 2 E(T )}.

We shall call the set ~Ft ✓ ~E(T ) the oriented star at t in T (even if it is empty).
Its image ↵(~Ft) 2 F is said to be associated with t in (T,↵).

An important example of S-trees are (irredundant) S-trees over stars: those
over some F all of whose elements are stars of separations.8 In such an S-tree
(T,↵) the map ↵ preserves the natural partial ordering on ~E(T ) defined by
letting (x, y) < (u, v) if {x, y} 6= {u, v} and the unique {x, y}–{u, v} path in T
joins y to u (see Figure 2).

6The tangles introduced by Robertson and Seymour [20] for graphs are, essentially, the Tk-
tangles for the set Tk of triples of oriented separations (A, B) of order less than some fixed k
whose three ‘small’ sides A together cover the graph. See Section 4 for details.

7Trees have at least one node [6].
8For example, a tree-decomposition of width < w and adhesion < k of a graph is an Sk-tree

for the set Sk of separations of order < k over the set Fw of stars {(A1, B1), . . . , (An, Bn)}
such that |

Tn
i=1 Bi| < w. See Section 6.

6



x
y

u v

A B

C D

Figure 2: Edges (x, y) < (u, v) and separations (A,B) = ↵(x, y)  ↵(u, v) = (C,D)

3 Tangle-tree duality in abstract separation
systems

The tangle-tree duality theorem for abstract separation systems, the result
from [10] which we seek to apply in this paper to various di↵erent contexts,
says the following. Let (~S,) be a separation system and F a collection of
‘forbidden’ sets of separations. Then, under certain conditions, either S has an
F-tangle or there exists an S-tree over F . We now define these conditions and
state the theorem formally. We then prove a couple of lemmas that will help us
apply it.

Let !r be a nontrivial and nondegenerate element of a separation system
(~S, ,⇤) contained in some universe (~U, ,⇤,_,^) of separations, the ordering
and involution on ~S being induced by those of ~U . Consider any !s0 2 ~S such
that !r  !s0. As !r is nontrivial and nondegenerate, so is !s0.

Let S�!r be the set of all separations s 2 S that have an orientation !s � !r .
Since !r is nontrivial, only one of the two orientations !s of every s 2 S�!r r{r}
satisfies !s � !r . Letting

f#
!r
!s0

(!s ) := !s _ !s0 and f#
!r
!s0

( s ) := (!s _ !s0)⇤

for all !s � !r in ~S�!r r{ r} thus defines a map ~S�!r ! ~U , the shifting map f#!r!s0

(Fig. 3, right). Note that f#!r!s0
(!r ) = !s0, since !r  !s0. Shifting maps preserve

the partial ordering on a separation system, and in particular map stars to stars:

→r
→r

r

→s

→s

→e

→s0

s →s ∨ →s0

s0

→ex

x

Figure 3: Shifting !s to !s _ !s0

Lemma 3.1. [10] The map f = f#!r!s0
preserves the ordering  on ~S�!r r { r}.

In particular, f maps stars to stars.

Let us say that !s0 emulates !r in ~S if !s0 � !r and every !s 2 ~S r { r} with
!s � !r satisfies !s _ !s0 2 ~S. We call ~S separable if for every two nontrivial
and nondegenerate !r ,

 
r0 2 ~S such that !r  !

r0 there exists an s0 2 S with an
orientation !s0 that emulates !r and its inverse  s0 emulating  r0.
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Given a set F ✓ 2~U of stars of separations, we say that !s0 2 ~S emulates !r 2 ~S
in ~S for F if !s0 emulates !r in ~S and for any star � ✓ ~S�!r r { r} in F that has
an element !s � !r we also have f#!r!s0

(�) 2 F .
Let us say that a set F forces the separations !s 2 ~S for which { s } 2 F .

And that ~S is F-separable if for all nontrivial and nondegenerate !r ,
 
r0 2 ~S

that are not forced by F and satisfy !r  !
r0 there exists an s0 2 S with an

orientation !s0 that emulates !r in ~S for F and such that  s0 emulates  r0 in ~S
for F . (As earlier, any such !s0 will also be nontrivial and nondegenerate.)

Recall that an orientation O of S is an F-tangle if it is consistent and
avoids F . We call F standard for ~S if it forces all !s 2 ~S that are trivial
in ~S. The ‘strong duality theorem’ from [10] now reads as follows.

Theorem 3.2 (Tangle-tree duality theorem for abstract separation sys-
tems).
Let (~U, ,⇤,_,^) be a universe of separations containing a separation system
(~S, ,⇤). Let F ✓ 2~U be a set of stars, standard for ~S. If ~S is F-separable,
exactly one of the following assertions holds:

(i) There exists an F-tangle of S.
(ii) There exists an S-tree over F .

Often, the proof that ~S is F-separable can be split into two easier parts,
a proof that ~S is separable and one that F is closed under shifting in ~S: that
whenever !s0 2 ~S emulates (in ~S) some nontrivial and nondegenerate !r  !s0 not
forced by F , then it does so for F . Indeed, the following lemma is immediate
from the definitions:

Lemma 3.3. If ~S is separable and F is closed under shifting in ~S, then ~S is
F-separable.

The separability of ~S will often be established as follows. Let us call a real
function !s 7! |!s | on a universe (~U, ,⇤,_,^) of oriented separations an order
function if it is non-negative, symmetric and submodular, that is, if 0  |!s | =
| s | and ��!r _ !s

��+
��!r ^ !s

�� 
��!r
��+ |!s |

for all !r , !s 2 ~U . We then call |s| := |!s | the order of s and of !s . For every
positive integer k,

~Sk := {!s 2 ~U : |!s | < k}

is a submodular separation system (though not necessarily a universe).

Lemma 3.4. Every such ~Sk is separable.

Proof. Given nontrivial and nondegenerate !r ,
 
r0 2 ~Sk such that !r  !

r0, we
have to find an !s0 2 ~Sk such that !s0 emulates !r in ~Sk and  s0 emulates  r0 in ~Sk.
We choose !s0 2 ~U of minimum order with !r  !s0  !

r0. Since !r is a candidate
for !s0, we have |!s0| 

��!r
�� and hence !s0 2 ~Sk. We show that !s0 emulates !r ; by

symmetry, this will imply also that  s0 emulates  r0.
Let us show that every !s � !r in ~Sk satisfies !s _ !s0 2 ~Sk. We prove this by

showing that |!s _ !s0|  |!s |, which will follow from submodularity once we have
shown that |!s ^ !s0| � |!s0|. This, however, holds since !s ^ !s0 was a candidate
for the choice of !s0: we have !r  !s ^ !s0 since !r  !s and !r  !s0, while
!s ^ !s0  !s0  !

r0.
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For the rest of this paper except in Section 5, whenever we consider a graph
G = (V,E) it will have at least one vertex, and we consider the universe ~U of
its (oriented) vertex separations, the separations (A,B) of V such that G has
no edge between A r B and B r A, with the order function

|A,B| := |A \B| .

Note that A and B are allowed to be empty. For each positive integer k, the set
~Sk = {!s 2 ~U : |!s | < k} will be a submodular separable separation system, by
Lemma 3.4.

4 Tangle-tree duality in graphs

A tangle of order k in a finite graph G = (V,E), as introduced by Robertson
and Seymour [20], is (easily seen to be equivalent to) an orientation of Sk that
avoids

T :=
�
{(A1, B1), (A2, B2), (A3, B3)} ✓ ~U : G[A1] [G[A2] [G[A3] = G

 
.

(The three separations (A1, B1), (A2, B2), (A3, B3) need not be distinct.) Clearly,
T forces all the small separations in ~U , those of the form (A,V ). Hence T \ ~Sk

is a standard subset of ~Sk, for every integer k > 0.
Notice that any T -avoiding orientation O of Sk is consistent, and therefore a

T -tangle in our sense, since for any pair of separations (C,D)  (A,B) we have
G[D] [ G[A] ◆ G[B] [ G[A] = G and hence {(D,C), (A,B)} 2 T . Similarly,
O must contain all (A,B) with |A| < k: it cannot contain (B,A), as (A,V ) 2 O
by {(V,A)} 2 T but {(B,A), (A,V )} 2 T .

Since our duality theorems, so far, only work with sets F consisting of stars
of separations, let us consider the set T ⇤ of those sets in T that are stars.

Theorem 4.1 (Tangle-tree duality theorem for graphs).
For every k > 0, every graph G satisfies exactly one of the following assertions:

(i) G has a T ⇤-tangle of Sk.
(ii) G has an Sk-tree over T ⇤.

Proof. By Theorem 3.2 and Lemmas 3.3–3.4, all we need to show is that T ⇤ is
closed under shifting in ~S = ~Sk. This is easy from the definitions. Informally,
if (X,Y ) 2 ~S emulates some !r  (X,Y ) not forced by T and we shift a star

� = {(A1, B1), (A2, B2), (A3, B3)} ✓ ~S�!r r { r}

with !r  (A1, B1), say, then we replace (A1, B1) with (A1 [ X,B1 \ Y ), and
(Ai, Bi) with (Ai \ Y,Bi [ X) for i � 2. As any vertex or edge that is not
in G[Y ] lies in G[X], this means that

S
i G[Ai] = G remains unchanged.

Our tangle-tree duality theorem can easily be extended to include the clas-
sical duality theorem of Robertson and Seymour [20] for tangles and branch-
width. In order to do so, we first show that all T ⇤-tangles are in fact T -tangles,
so these two notions coincide. Secondly, we will check that our tree structure
witnesses for the non-existence of a tangle coincide with those used by Robert-
son and Seymour: that a graph has an Sk-tree over T ⇤ if and only if it has
branch-width < k.
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Using the submodularity of our order function {A,B} 7! |A,B|, we can
easily show that T ⇤-tangles of Sk are in fact T -tangles:

Lemma 4.2. Every consistent T ⇤-avoiding orientation O of Sk avoids T , as
long as |G| � k.

Proof. Suppose O has a subset � 2 T . We show that as long as this set is not
an inclusion-minimal nested set in T , we can either delete one of its elements,
or replace it by a smaller separation in O, so that the resulting set �0 ✓ O is
still in T but is smaller or contains fewer pairs of crossing separations. Iterating
this process, we eventually arrive at a minimal nested set in T that is still a
subset of O. By its minimality, this set is an antichain (compare the definition
of T ), and all consistent nested antichains are stars.9 Our subset of O will thus
lie in T ⇤, contradicting our assumption that O avoids T ⇤.

If � has two comparable elements, we delete the smaller one and retain a
subset of O in T . We now assume that � is an antichain, but that it con-
tains two crossing separations, !r = (A,B) and !s = (C,D) say. As these
and their inverses lie in ~Sk, submodularity implies that one of the separations
(A \ D,B [ C)  (A,B) and (B \ C,A [ D)  (C,D) also lies in ~Sk. Let us
assume the former; the other case is analogous.

Let �0 be obtained from � by replacing !r with !
r0 := (A \D,B [ C) 2 ~Sk.

Then �0 is still in T , since any vertex or edge of G[A] that is not in G[A \D]
lies in G[C], and (C,D) is still in �0. Moreover, while !r crosses !s , clearly !

r0

does not. To complete the proof, we just have to show that !r0 cannot cross any
separation

!
t 2 �0 that was nested with !r .

If !r  !
t or !r   

t , then !
r0  !r is nested with

!
t , as desired. If not then

!
t  !r , since {!r ,

!
t } ✓ O is consistent. This contradicts our assumption that

� is an antichain.

The following elementary lemma provides the link between our S-trees and
branch-decompositions as defined by Robertson and Seymour [20]. Its elemen-
tary proof is included in the ArXiv version of this paper [11].

Lemma 4.3. For every integer k � 3,10 a graph G of order at least k has
branch-width < k if and only if G has an Sk-tree over T ⇤.

We can now derive, and extend, the Robertson-Seymour [20] duality theorem
for tangles and branch-width:

Theorem 4.4 (Tangle-tree duality theorem for graphs, extended).
The following assertions are equivalent for all finite graphs G 6= ; and 0 < k  |G| :

(i) G has a tangle of order k.
(ii) G has a T -tangle of Sk.
(iii) G has a T ⇤-tangle of Sk.
(iv) G has no Sk-tree over T ⇤.
(v) G has branch-width at least k, or k = 1 and G has no edge, or k = 2 and G

is a disjoint union of stars and isolated vertices and has at least one edge.
9Here we use that |G| � k: otherwise {(V, V )} 2 T rT ⇤ lies in O.

10See the remark after Theorem 4.4.
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Proof. If k = 1, then all statements are true. If k = 2, they are all true if G has
an edge, and all false if not. Assume now that k � 3.

(i)$(ii) follows from the definition of a tangle at the start of this section,
and our observation that they are consistent.

(ii)!(iii) is trivial; the converse is Lemma 4.2.
(iii)$(iv) is an application of Theorem 3.2.
(iv)$(v) is Lemma 4.3.

The exceptions in (v) for k  2 are due to a quirk in the notion of branch-
width, which results from its emphasis on separating individual edges. The
branch-width of all nontrivial trees other than stars is 2, but it is 1 for stars K1,n.
For a clean duality theorem (even one just in the context of [20]) it should be 2
also for stars: every graph with at least one edge has a tangle of order 2, because
we can orient all separations in S2 towards a fixed edge. Similarly, the branch-
width of a disjoint union of edges is 0, but its tangle number is 2.

5 Tangle-tree duality for set separations:
rank-width, carving-width and edge-tangles in
graphs; matroid tangles; clusters in data sets

The concepts of branch-width and tangles were introduced by Robertson and
Seymour [20] not only for graphs but more generally for hypergraphs. They
proved all their relevant lemmas more generally for arbitrary order functions
(A,B) 7! |A,B| rather than just |A,B| = |A\B|. Geelen, Gerards, Robertson,
and Whittle [13] applied this explicitly to the submodular connectivity function
in matroids.

Our first aim in this section is to derive from Theorem 3.2 a duality the-
orem for tangles in arbitrary universes of set separations11 equipped with an
order function. This will imply the above branch-width duality theorems for
hypergraphs and matroids, as well as their cousins for carving width [22] and
rank-width of graphs [18]. It will also yield a duality theorem for edge-tangles,
tangles of bipartitions of the vertex set of a graph whose order is the number
of edges across. We shall then recast the theorem in the language of cluster
analysis to derive a duality theorem for the existence of clusters in data sets.

Recall that an oriented separation of a set V is a pair (A,B) such that
A [ B = V . Often, the separations considered will be bipartitions of V, but
in general we allow A \ B 6= ;. We also allow A and B to be empty. Recall
that order functions are non-negative, symmetric and submodular functions on
a separation system.

Let ~U be any universe of separations of a set V of at least two elements, with
a submodular order function (A,B) 7! |A,B|. Given k > 0, call an orientation
of

Sk = { {A,B} 2 U : |A,B| < k }

a tangle of order k if it avoids

F =
�
{(A1, B1), (A2, B2), (A3, B3)} ✓ ~Sk : A1 [A2 [A3 = V

 

[ { {(A,B)} ✓ ~Sk : |B| = 1 }.
11Recall that these are more general than set partitions: the two sides may overlap.
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Here, (A1, B1), (A2, B2), (A3, B3) need not be distinct. In particular, F is stan-
dard and tangles are consistent, so the tangles of ~U are precisely its F-tangles.

Let F⇤ ✓ F be the set of stars in F . As in the proof of Theorem 4.1, it is
easy to prove that F⇤ is closed under shifting in every ~Sk. We also have the
following analogue of Lemma 4.2, with the same proof:

Lemma 5.1. Every consistent F⇤-avoiding orientation of Sk avoids F , as long
as |V | � k.

By Lemmas 3.4 and 5.1, Theorem 3.2 now specializes as follows:

Theorem 5.2 (Tangle-tree duality theorem for set separations).
Given a universe ~U of separations of a set V with a submodular order function,
and k  |V |, the following assertions are equivalent:

(i) ~U has a tangle of order k.
(ii) ~U has an F⇤-tangle of Sk.
(iii) ~U has no ~Sk-tree over F⇤.

Applying Theorem 5.2 with the appropriate order functions yields duality
theorems for all known width parameters based on set separations. For example,
let V be the vertex set of a graph G, with bipartitions as separations. Counting
the edges across a bipartition defines an order function whose F-tangles are
known as the edge-tangles of G, so Theorem 5.2 yields a duality theorem for
these. See Liu [16] for more on edge-tangles, as well as their applications to
immersion problems.

The duals to edge-tangles of order k are Sk-trees over F⇤. These were
introduced by Seymour and Thomas [22] as carvings. The least k such that
G has a carving is its carving-width. We thus have a duality theorem between
edge-tangles and carving-width.

Taking as the order of a vertex bipartition the rank of the adjacency matrix
of the bipartite graph that this partition induces (which is submodular [18])
gives rise to a width parameter called rank-width. In our terminology, G has
rank-width < k if and only if it admits an Sk-tree over F⇤. The corresponding
F-tangles of Sk, then, are necessary and su�cient witnesses for having rank-
width � k, and we have a duality theorem for rank-width.

If V is the vertex set of a hypergraph or the ground set of a matroid, the
F-tangles coincide, just as for graphs, with the hypergraph tangles of [20] or the
matroid tangles of [13]. As in the proof of Lemma 4.3, a hypergraph or matroid
has branch-width < k if and only if it has an Sk-tree over F⇤. Theorem 5.2
thus yields the original duality theorems of [20] and [13] in this case.

Our tangle-tree duality theorem for set separations can also be applied in
contexts quite di↵erent from graphs and matroids. As soon as a set comes with
a natural type of set separation – for example, bipartitions – and a (submodular)
order function on these, it is natural to think of the tangles in this separation
universe as clusters in that set. Theorem 5.2 then applies to these clusters: if
there is no cluster of some given order, then this is witnessed by a nested set of
separations which cut the given set, recursively, into small pieces.

The interpretation is that the separations to be oriented have small enough
order that they cannot cut right through a cluster. So if there exists a cluster,
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it can be thought of as orienting all these separations towards it. If not, the
nested subset of the separations returned by the theorem divides the ground set
into pieces too small to accommodate a cluster. This tree set of separations,
therefore, will be an easily checkable witness for the non-existence of a cluster.

This approach to clusters has an important advantage over more traditional
ways of identifying clusters: real-world clusters tend to be fuzzy, and tangles
can capture them despite their fuzziness. For example, consider a large grid in
a graph. For every low-order separation, most of the grid will lie on the same
side, so the grid ‘orients’ that separation towards this side. But every single
vertex will lie on the ‘wrong’ side for some low-order separation, the side not
containing most of the grid; for example, it may be separated o↵ by its four
neighbours. The grid, therefore, defines a unique k-tangle for some large k,
but the ‘location’ of this tangle is not represented correctly by any one of its
vertices – just as for a fuzzy cluster in a data set it may be impossible to say
which data exactly belong to that cluster and which do not.

Even if we base our cluster analysis just on bipartitions, we still need to
define an order function to make this work. This will depend both on the type
of data that our set represents and on the envisaged type of clustering. In [12]
there are some examples of how this might be done for a set of pixels of an
image, where the clusters to be captured are the natural regions of this image
such as a nose, or a cheek, in a portrait of the Mona Lisa. The corresponding
duality theorem then reads as follows:

Corollary 5.3. [12] For every picture ⇡ on a canvas and every integer k > 0,
either ⇡ has a non-trivial region of coherence at least k, or there exists a laminar
set of lines of order < k all whose splitting stars are void 3-stars or single pixels.
For no picture do both of these happen at once.

6 Tangle duality for tree-width in graphs

We now apply our abstract duality theorem to obtain a new duality theorem for
tree-width in graphs. Its witnesses for large tree-width will be orientations of Sk,
like tangles, and thus di↵erent from brambles (or ‘screens’), the dual objects in
the classical tree-width duality theorem of Seymour and Thomas [21].

This latter theorem, which ours easily implies, says that a finite graph either
has a tree-decomposition of width less than k�1 or a bramble of order at least k,
but not both. The original proof of this theorem is as mysterious as the result
is beautiful. The shortest known proof is given in [5] (where we refer the reader
also for definitions), but it is hardly less mysterious. A more natural, if slightly
longer, proof due to Mazoit is presented in [6]. The proof via our abstract
duality theorem, as outlined below, is perhaps not shorter all told, but it seems
to be the simplest available so far.

Given a finite graph G = (V,E), we consider its separation universe ~U and
the submodular separation systems ~Sk ✓ ~U as defined at the end of Section 3.
For every integer k > 0 let

Fk :=
�

� ✓ ~U | � = {(Ai, Bi) : i = 0, . . . , n} is a star with
��Tn

i=0 Bi

�� < k
 
.

(We take
Tn

i=0 Bi := V if � = ;, so K1 is an Sk-tree over Fk if |G| < k.)
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Since Fk forces all the small nondegenerate separations in ~Sk, the separations
(A,V ) 2 ~Sk with A 6= V, it is standard for every Sk. We have also seen that
~Sk is separable (Lemma 3.4). To apply Theorem 3.2 we thus only need the
following lemma (cf. Lemma 3.3) – whose proof contains the only bit of magic
now left in tree-width duality:

Lemma 6.1. For every integer k > 0, the set Fk is closed under shifting in Sk.

Proof. Consider a separation !s0 = (X,Y ) 2 ~Sk =: ~S that emulates, in ~S, some
nontrivial and nondegenerate !r 2 ~S not forced by Fk. Let

� =
�
(Ai, Bi) : i = 0, . . . , n

 
✓ ~S�!r r { r}

be a star in Fk with !r  (A0, B0). Then

!r  (A0, B0)  (Bi, Ai) for all i � 1. (3)

We have to show that

�0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fk

for (A0
i, B

0
i) := f#!r!s0

(Ai, Bi).
From Lemma 3.1 we know that �0 is a star. Since (X,Y ) emulates !r in ~S,

we have �0 ✓ ~S by (3). It remains to show that
��Tn

i=0 B0
i

�� < k. The trick will
be to rewrite this intersection as the intersection of the two sides of a suitable
separation that we know to lie in S = Sk.

By (3) we have (A0
0, B

0
0) = (A0[X,B0\Y ), while (A0

i, B
0
i) = (Ai\Y,Bi[X)

for i � 1. Since the (Ai, Bi) are separations, i.e. in ~U , so is
�Tn

i=1 Bi,
Sn

i=1 Ai

�
.

As trivially (V,B0) 2 ~U , this implies that, for B⇤ :=
Tn

i=1 Bi, also

⇣ n\

i=1

Bi \ V ,
n[

i=1

Ai [B0

⌘
=
(3)

(B⇤, B0) 2 ~U .

Since � 2 Fk we have |B⇤, B0| =
��Tn

i=0 Bi

�� < k, so (B⇤, B0) 2 ~Sk = ~S
(Fig. 4).12 As also !r  (B⇤, B0) by (3), the fact that (X,Y ) emulates !r

.. . A1 ∪ . . . ∪ AnAn

Bn

A0

B0

B1 ∩ . . . ∩ Bn

X Y

X Y

A0

A1

B0

B1

→r

Figure 4: Shifting the separation (B⇤, B0)
12The Ai, of course, are ‘more disjoint’ than they appear in the figure.
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in ~S therefore implies that (B⇤ [X,B0 \ Y ) 2 ~S = ~Sk. But then

���
n\

i=0

B0
i

��� =
���(B0 \ Y ) \

n\

i=1

(Bi [X)
��� =

��B0 \ Y,B⇤ [X
�� < k ,

which means that �0 2 Fk.

Theorem 6.2 (Tangle-treewidth duality theorem for graphs).
For every k > 0, every graph G satisfies exactly one of the following assertions:

(i) G has an Fk-tangle of Sk.
(ii) G has an Sk-tree over Fk.

Proof. Apply Theorem 3.2 and Lemmas 3.3, 3.4 and 6.1.

Condition (ii) above can be expressed in terms of the tree-width tw(G) of G:

Lemma 6.3. A graph G has an Sk-tree over Fk if and only if tw(G) < k � 1.
More precisely, G has an Sk-tree (T,↵) over Fk if and only if it admits a tree-
decomposition (T,V) of width < k � 1.

Proof. Given any S-tree (T,↵) of G over a set F of stars, let V = (Vt)t2T be
defined by letting

Vt =
\�

B : (A,B) = ↵(s, t), st 2 E(T )
 
. (4)

It is easy to check [4] that (T,V) is a tree-decomposition of G with adhesion
sets Vt \ Vt0 = A \ B whenever (A,B) = ↵(t, t0). If S = Sk and F = Fk, we
have |Vt| < k at all t 2 T , so (T,V) has width less than k � 1.

Conversely, given a tree-decomposition (T,V) with V = (Vt)t2T , say, define
↵ : ~E(T ) ! ~Sk as follows. Given t1t2 2 E(T ), let Ti be the component of
T �t1t2 containing ti, and put Ui :=

S
t2V (Ti)

Vt (i = 1, 2). Then let ↵(t1, t2) :=
(U1, U2). One easily checks [6] that U1 \ U2 = Vt1 \ Vt2 , so ↵ takes its values
in ~Sk if (T,V) has width < k � 1. Moreover, every part Vt satisfies (4), so if
(T,V) has width < k � 1 then (T,↵) is over Fk.

If desired, we can derive from Theorem 6.2 the tree-width duality theorem
of Seymour and Thomas [21]. This is cast in terms of brambles, or ‘screens’, as
they originally called them. (See [6] for a definition and some background.)

Brambles have an interesting history. After Robertson and Seymour had
invented tangles, they looked for a tangle-like type of highly cohesive substruc-
ture, or HCS, dual to low tree-width. Their plan was that this should be a map
� assigning to every set X of fewer than k vertices one component of G � X.
The question, in our language, was how to make these choices consistent: so
that they would define an abstract HCS.

The obvious consistency requirement, that �(Y ) ✓ �(X) whenever X ✓ Y ,
is easily seen to be too weak. Yet asking that �(X)\�(Y ) 6= ; for all X,Y turned
out to be too strong. In [21], Seymour and Thomas then found a requirement
that worked: that any two such sets, �(X) and �(Y ), should touch: that either
they share a vertex or G has an edge between them. Such maps � are now called
havens, and it is easy to show that G admits a haven of order k (one defined on
all sets X of fewer than k vertices) if and only if G has a bramble of order at
least k.
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Lemma 6.4. G has a bramble of order at least k if and only if G has an Fk-
tangle of Sk.

Proof. Let B be a bramble of order at least k. For every {A,B} 2 Sk, since
A\B is too small to cover B but every two sets in B touch and are connected,
exactly one of the sets A r B and B r A contains an element of B. Thus,

O = { (A,B) 2 ~Sk : B r A contains an element of B }

is an orientation of Sk, which for the same reason is clearly consistent.
To show that O avoids Fk, let � = {(A1, B1), . . . , (An, Bn)} 2 Fk be given.

Then
��Tn

i=1 Bi

�� < k, so some C 2 B avoids this set and hence lies in the union
of the sets Ai r Bi. But these sets are disjoint, since � is a star, and have no
edges between them. Hence C lies in one of them, A1 rB1 say, putting (B1, A1)
in O. But then (A1, B1) /2 O, so � 6✓ O as claimed.

Conversely, let O be an Fk-tangle of Sk. We shall define a bramble B con-
taining for every set X of fewer than k vertices exactly one component of G�X,
and no other sets. Such a bramble will have order at least k, since no such set
X covers it.

Given such a set X, note first that X 6= V . For if |V | < k then ; 2 Fk,
contradicting our assumption that O has no subset in Fk. Let C1, . . . , Cn be
the vertex sets of the components of G�X. Consider the separations (Ai, Bi)
with Ai = Ci [N(Ci) and Bi = V r Ci. Since

�X := { (Ai, Bi) | i = 1, . . . , n }

is a star in Fk, not all the (Ai, Bi) lie in O. So (Bi, Ai) 2 O for some i, and
since O is consistent this i is unique. Let us make Ci an element of B.

B ∩ B

N(C) N(C )

A B = C C = A B

Figure 5: If C,C0 do not touch, then (B,A) and (B0, A0) are inconsistent.

It remains to show that every two sets in B touch. Given C,C0 2 B, there are
sets X and X 0 such that �X contains a separation (A,B) with A = C [N(C)
and (B,A) 2 O, and likewise for C0. If C and C0 do not touch, then C0 ✓ B rA
and hence A0 ✓ B (Fig. 5), and similarly A ✓ B0. Hence (A,B)  (B0, A0) 2 O
but also (B,A) 2 O, contradicting the consistency of O.

Theorem 6.2 can thus be extended to incorporate tree-width and brambles:

Theorem 6.5 (Tangle-bramble-treewidth duality theorem for graphs).
The following assertions are equivalent for all finite graphs G and k > 0:

(i) G has a bramble of order at least k.
(ii) G has an Fk-tangle of Sk.
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(iii) G has no Sk-tree over Fk.
(iv) G has tree-width at least k � 1.

Proof. (i)$(ii) is Lemma 6.4. (ii)$(iii) is Theorem 6.2. (iii)$(iv) is Lemma 6.3.

7 Tangle duality for path-width in graphs

A path-decomposition of a graph G is a tree-decomposition of G whose de-
composition tree is a path. The path-width of G is the least width of such a
tree-decomposition. By Lemma 6.3, G has path-width < k � 1 if and only if it
has an Sk-tree over

F (2)
k :=

�
� 2 Fk : |�|  2

 
,

where Fk is defined as in Section 6. Theorem 6.2 has the following analogue:

Theorem 7.1 (Tangle-pathwidth duality theorem for graphs).
For every k > 0, every graph G satisfies exactly one of the following assertions:

(i) G has an F (2)
k -tangle of Sk.

(ii) G has an Sk-tree over F (2)
k .

Proof. Apply Theorem 3.2 and Lemmas 3.3, 3.4 and 6.1.

Bienstock, Robertson, Seymour and Thomas [2] also found tangle-like HCSs
dual to path-width, which they call ‘blockages’.13 Let us define these, and then
incorprorate their result into our duality theorem with a unified proof.

Given a set X of vertices in G = (V,E), let us write @(X) for the set of
vertices in X that have a neighbour outside X. A blockage of order k � 1,
according to [2], is a collection B of sets X ✓ V such that

(B1) |@(X)| < k for all X 2 B;
(B2) X 0 2 B whenever X 0 ✓ X 2 B and |@(X 0)| < k;
(B3) for every {X1,X2} 2 Sk, exactly one of X1 and X2 lies in B.

To deduce the duality theorem of [2] from Theorem 3.2, we just need to
translate blockages into orientations of Sk:

Theorem 7.2 (Tangle-blockage-pathwidth duality theorem for graphs).
The following assertions are equivalent for finite graphs G 6= ; and k > 0:

(i) G has a blockage of order k � 1.
(ii) G has an F (2)

k -tangle of Sk.
(iii) G has no Sk-tree over F (2)

k .
(iv) G has path-width at least k � 1.
13They go on to show that all graphs with a blockage of order k � 1 – which are precisely

the graphs of path-width at least k � 1 – contain every forest of order k as a minor. This
corollary is perhaps better known than the path-width duality theorem itself.
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Proof. Theorem 7.1 asserts the equivalence of (ii) and (iii), while (iii) is equiv-
alent to (iv) by Lemma 6.3.

(i)!(ii): Suppose that G has a blockage B of order k�1. By (B2) and (B3),

O = { (X,Y ) 2 ~Sk : X 2 B }

is a consistent orientation of Sk.
For a proof that O avoids every singleton star {(A,X)} 2 F (2)

k it su�ces
to show that B contains every set X of order < k: then (X,A) 2 O and hence
(A,X) /2 O. To show that X 2 B, consider the separation {X,V } 2 Sk. If
V 2 B, then also X 2 B by (B2), contradicting (B3). Hence V /2 B, and thus
X 2 B by (B3).

To complete the proof that O avoidsF (2)
k consider {(A1, B1), (A2, B2)} 2 F (2)

k
with (A1, B1) 6= (A2, B2), and suppose that (A1, B1) 2 O. Since {(A1, B1), (A2, B2)}
is a star, {B1, B2} is a separation. As |B1 \B2| < k by definition of F (2)

k , it lies
in Sk. Applying (B3) three times, we deduce from our assumption of A1 2 B
that B1 /2 B, and hence B2 2 B, and hence A2 /2 B. Thus, (A2, B2) /2 O.

(ii)!(i): Let O be an F (2)
k -tangle of Sk. We claim that

B := {X : (X,Y ) 2 O }

is a blockage of order k � 1. Clearly, B satisfies (B1).
Given {X1,X2} 2 Sk as in (B3), assume that (X1,X2) 2 O. Then X1 2 B.

If also X2 2 B, there exists Y2 such that (X2, Y2) 2 O. Then {X1 \ Y2,X2} is
still a separation of V, and clearly in Sk. As (X1 \ Y2,X2)  (X1,X2) 2 O and
O is consistent, we have (X1 \ Y2,X2) 2 O. Then {(X1 \ Y2,X2), (X2, Y2)} is a
star in F (2)

k , contradicting our assumption.
Given X 0 ✓ X 2 B as in (B2), with (X,Y ) 2 O say, let Y 0 := @(X 0)[(V rX 0)

and Z := @(X) [ (V r X). Then Z ✓ Y and hence |X \ Z|  |X \ Y | < k, so
{X,Z} 2 Sk. By (B3) we have Z /2 B and hence (Z,X) /2 O, so (X,Z) 2 O.
Since O is consistent and ~Sk 3 (X 0, Y 0)  (X,Z), we thus obtain (X 0, Y 0) 2 O
and hence X 0 2 B, as desired.

8 Tangle duality for tree-width in matroids

Hliněný and Whittle [14, 15] generalized the notion of tree-width from graphs
to matroids.14 Let us show how Theorem 3.2 implies a duality theorem for
tree-width in matroids.

Let M = (E, I) be a matroid with rank function r. Its connectivity function
is defined as

�(X) := r(X) + r(E r X)� r(M).

We consider the universe ~U of all bipartitions (X,Y ) of E. Since

|X,Y | := �(X) = �(Y )

is non-negative, submodular and symmetric, it is an order function on ~U , so our
universe ~U is submodular.

14In our matroid terminology we follow Oxley [19].
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A tree-decomposition of M is a pair (T, ⌧), where T is a tree and ⌧ : E ! V (T )
is any map. Let t be a node of T , and let T1, . . . , Td be the components of T � t.
Then the width of t is the number

dX

i=1

r(E r Fi)� (d� 1) r(M),

where Fi = ⌧�1(V (Ti)). (If t is the only node of T , we let its width be r(M).)
The width of (T, ⌧) is the maximum width of the nodes of T . The tree-width
of M is the minimum width over all tree-decompositions of M .

Matroid tree-width was designed so as to generalize the tree-width of graphs:

Theorem 8.1 (Hliněný and Whittle [14, 15]). The tree-width of a finite
graph containing at least one edge equals the tree-width of its cycle matroid.

In order to specialize Theorem 3.2 to a duality theorem for tree-width in
matroids, we consider for k > 0 the set

Sk = { {A,B} 2 U : |A,B| < k };

then ~Sk is separable by Lemma 3.4. For stars � = {(Ai, Bi) : i = 0, . . . , n} ✓ ~U
we write

h�i := r(M) +
nX

i=0

�
r(Bi)� r(M)

�
.

We consider
Fk :=

�
� ✓ ~U : � is a star with h�i < k

 
.

Clearly, the singleton stars {(A,B)} in Fk are precisely those with r(B) < k,
and the empty star lies in Fk if and only if r(M) < k. We remark that requiring
� ✓ ~Sk in the definition of Fk would not spare us a proof of the following lemma,
which we shall need in the proof of Lemma 8.4.

Lemma 8.2. Every � 2 Fk is a subset of ~Sk.

Proof. We show that every Ai in a star � = {(Ai, Bi) : i = 0, . . . , n} ✓ ~U
satisfies �(Ai)  h�i; if � 2 Fk, this implies that |Ai, Bi| < k as desired. Our
proof will be for i = 0; the other cases then follow by symmetry.

Since � is a star we have Ai ✓ Bj whenever i 6= j, and in particular Ai+1 ✓
B⇤

i := B1 \ . . . \Bi for i = 1, . . . , n� 1. Hence B⇤
i [Bi+1 ◆ E. Submodularity

of the rank function now gives

r(B⇤
i ) + r(Bi+1) � r(B⇤

i \Bi+1) + r(B⇤
i [Bi+1) = r(B⇤

i+1) + r(M)

for each i = 1, . . . , n� 1. Summing these inequalities over i = 1, . . . , n� 1, and
noting that B⇤

1 = B1, yields

r(B1) + . . . + r(Bn) � r(B1 \ . . . \Bn) + (n� 1) r(M).

Using that � is a star and hence A0 ✓ B1 \ . . . \Bn, we deduce

h�i =
nX

i=0

r(Bi)� n r(M) � r(B0) + r(B1 \ . . . \Bn)� r(M)

� r(B0) + r(A0)� r(M)

= �(A0).

as desired.
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In order to apply Theorem 3.2, we have to prove that ~Sk is Fk-separable:

Lemma 8.3. ~Sk is Fk-separable.

Proof. Let !r ,
 
r0 2 ~Sk be given: nondegenerate, nontrivial, not forced by Fk, and

satisfying !r  !
r0. Pick (X,Y ) 2 ~Sk with !r  (X,Y )  !

r0 and |X,Y | minimum.
We claim that (X,Y ) emulates !r in ~Sk for Fk, and that (Y,X) emulates  r0 in ~Sk

for Fk. By symmetry, it is enough to prove that (X,Y ) emulates !r for Fk.
The proof of Lemma 3.4 shows that (X,Y ) emulates !r .15 To show that it

does so for Fk, consider a nonempty star

� =
�
(Ai, Bi) : i = 0, . . . , n

 
✓ ~S�!r r { r}

in Fk (where ~S := ~Sk) with !r  (A0, B0). Then
!r  (A0, B0)  (Bi, Ai) for all i � 1. (5)

We have to show that

�0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fk

for (A0
i, B

0
i) := f#!r!s0

(Ai, Bi).
From Lemma 3.1 we know that �0 is a star. Since (X,Y ) emulates !r , we

have �0 ✓ ~Sk by (5). It remains to show that h�0i < k. We show that, in fact,

�
h�0i =

�
r(Y \B0) +

nX

i=1

r(X [Bi)� n r(M)  h�i ; (6)

as h�i < k by our assumption that � 2 Fk, this will complete the proof.
By submodulary of the rank function, we have

r(Y \B0) + r(Y [B0)  r(Y ) + r(B0)
and r(X [Bi) + r(X \Bi)  r(X) + r(Bi) for i = 1, . . . , n.

For our proof of (6) we need to show that the sum of the first terms in these
n + 1 inequalities is at most the sum of the last terms. This will follow from
these inequalities once we know that the sum of the second terms is at least the
sum of the third terms. So let us prove this, i.e., that

r(Y [B0) +
nX

i=1

r(X \Bi) � r(Y ) + n r(X) . (7)

For i = 1, . . . , n let us abbreviate A⇤
i := A1 [ . . . [Ai and B⇤

i := B1 \ . . . \Bi.
Since � is a star we have Ai ✓ Bj whenever i 6= j. Hence A⇤

n ✓ B0, giving

r(Y [B0) � r(Y [A⇤
n), (8)

and Ai+1 ✓ B⇤
i for i � 1. Hence B⇤

i [Bi+1 ◆ E. By submodularity, this implies

r(X \B⇤
i ) + r(X \Bi+1) � r(X \ (B⇤

i \Bi+1)) + r(X \ (B⇤
i [Bi+1))

= r(X \B⇤
i+1) + r(X)

for each i = 1, . . . , n� 1. Summing this for i = 1, . . . , n� 1, and recalling that
15Technically, we do not need this fact at this point and could use Lemma 8.2 to deduce it

from the fact that all �0 as below lie in Fk. But that seems heavy-handed.
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B⇤
1 = B1, we obtain

nX

i=1

r(X \Bi) � r(X \B⇤
n) + (n� 1) r(X) . (9)

Since {X,Y } and {B⇤
n, A⇤

n} are bipartitions of E, so is {X \ B⇤
n, Y [ A⇤

n}.
Moreover, we have !r  (X \B⇤

n, Y [A⇤
n) since !r  (X,Y ) and !r  (B⇤

n, A⇤
n)

by (5), and we also have (X \ B⇤
n, Y [ A⇤

n)  (X,Y )  !
r0. It would therefore

contradict our choice of (X,Y ) if we had |X \B⇤
n, Y [A⇤

n| < |X,Y |. Hence
|X \B⇤

n, Y [A⇤
n| � |X,Y |, and therefore

r(X \B⇤
n) + r(Y [A⇤

n) � r(X) + r(Y ). (10)

Adding up inequalities (8), (9), (10) we obtain (7), proving (6).

Lemma 8.4. M has an Sk-tree over Fk if and only if it has tree-width < k.
More precisely, M has an Sk-tree (T,↵) over Fk if and only if it admits a
tree-decomposition (T, ⌧) of width < k.

Proof. For the forward implication, consider any Sk-tree (T,↵) of M . Given
e 2 E, orient every edge st of T , with ↵(s, t) = (A,B) say, towards t if e 2 B,
and let ⌧ map e to the unique sink of T in this orientation. Then (T, ⌧) is a
tree-decomposition of M . If (T,↵) is over Fk, the decomposition is easily seen
to have width less than k.

Conversely, let (T, ⌧) be a tree-decomposition of M of width < k. For every
edge e = st of T , let Ts and Tt be the components of T � e containing s and t,
respectively. Let

↵(s, t) :=
�
⌧�1(Ts), ⌧�1(Tt)

�
2 ~U.

Since every node t has width less than k, its associated star {↵(s, t) : st 2 E(T )}
of separations is in Fk. (This includes the case of |T | = 1.) By Lemma 8.2 this
implies that ↵( ~E(T )) ✓ ~Sk, so (T,↵) is an Sk-tree over Fk.

Theorem 3.2 now yields the following duality theorem for matroid tree-width.

Theorem 8.5 (Tangle-treewidth duality theorem for matroids).
Let M be a matroid, and let k > 0 be an integer. Then the following statements
are equivalent:

(i) M has tree-width at least k.
(ii) M has no Sk-tree over Fk.
(iii) M has an Fk-tangle of Sk.

9 Tangle duality for tree-decompositions of small
adhesion

To demonstrate the versatility of Theorem 3.2, we now deduce a duality theorem
for a new width parameter: one that bounds the width and the adhesion of a
tree-decomposition independently, that is, allows the first bound to be greater.

Recall that the adhesion of a tree-decomposition (T,V) of a graph G = (V,E)
is the largest size of an attachment set, the number maxst2E(T ) |Vs \ Vt|. (If T
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has only one node t, we set the adhesion to 0.) Trivially if a tree-decomposi-
tion has width < k � 1 it has adhesion < k, and it is easy to convert it to a
tree-decomposition of the same width and adhesion < k � 1.

The idea now is to have a duality theorem whose tree structures are the
tree-decompositions of adhesion < k and width less than w � 1 � k � 1. For
w = k this should default to the duality for tree-width discussed in Section 6.

Let ~U and ~Sk be as defined at the end of Section 3. Recall that ~Sk is
separable, by Lemma 3.4. Let

Fw
k =

�
� ✓ ~Sk | � = {(Ai, Bi) : i = 0, . . . , n} is a star with

��Tn
i=0 Bi

�� < w
 
,

(As before, we let
Tn

i=0 Bi := V if � = ;, so K1 is an Sk-tree over Fk if |G| < w.)
Note that, for w = k, we have Fw

k = Fk as defined in Section 6.

Lemma 9.1. Sk is Fw
k -separable.

Proof. Let !r ,
 
r0 2 ~Sk be given: nondegenerate, nontrivial, not forced by Fw

k ,
and satisfying !r  !

r0. Pick !s0 = (X,Y ) 2 ~Sk with !r  (X,Y )  !
r0 and |X,Y |

minimum. We claim that (X,Y ) emulates !r in ~Sk for Fw
k , and that (Y,X)

emulates  r0 in ~Sk for Fw
k . By symmetry, it is enough to prove that (X,Y )

emulates !r for Fw
k .

The proof of Lemma 3.4 shows that (X,Y ) emulates !r . To show that it
does so in Fw

k , consider a nonempty star

� =
�
(Ai, Bi) : i = 0, . . . , n

 
✓ ~S�!r r { r}

in Fw
k (where ~S := ~Sk) with !r  (A0, B0). Then

!r  (A0, B0)  (Bi, Ai) for all i � 1. (11)

We have to show that

�0 =
�
(A0

i, B
0
i) : i = 0, . . . , n

 
2 Fw

k

for (A0
i, B

0
i) := f#!r!s0

(Ai, Bi).
From Lemma 3.1 we know that �0 is a star. Since (X,Y ) emulates !r , we

have �0 ✓ ~Sk by (11). It remains to show that
��Tn

i=0 B0
i

�� < w. As in Lemma 6.1,
we shall prove this by rewriting the intersection of all the B0

i as an intersection
of the two sides of a suitable separation, and use submodularity and the choice
of (X,Y ) to show that this separation has order < w.

By (11) and the definition of f#!r!s0
, we have (A0

0, B
0
0) = (A0 [X,B0 \ Y ),

while (A0
i, B

0
i) = (Ai \ Y,Bi [X) for i � 1. Since the (Ai, Bi) are separations,

i.e. in ~U , so is
�Tn

i=1 Bi,
Sn

i=1 Ai

�
. As trivially (V,B0) 2 ~U , this implies that,

for B⇤ :=
Tn

i=1 Bi, also

⇣ n\

i=1

Bi \ V ,
n[

i=1

Ai [B0

⌘
=

(11)
(B⇤, B0) 2 ~U .

Note that
|B⇤, B0| = |B⇤ \B0| =

��
n\

i=0

Bi

�� < w (12)

since � 2 Fw
k .
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As !r  (X,Y ), and also !r  (B⇤, B0) by (11), we further have

!r  (X \B⇤, Y [B0)  (X,Y )  !
r0.

Hence if |X \B⇤, Y [B0| < |X,Y | then this would contradict our choice of (X,Y ).
Therefore |X \B⇤, Y [B0| � |X,Y |. As

|X \B⇤, Y [B0| + |X [B⇤, Y \B0|  |X,Y | + |B⇤, B0|

by submodularity, we deduce that

|X [B⇤, Y \B0|  |B⇤, B0| < w

by (12). Hence

���
n\

i=0

B0
i

��� =
���(B0 \ Y ) \

n\

i=1

(Bi [X)
��� =

��B0 \ Y,B⇤ [X
�� < w ,

which means that �0 2 Fw
k as desired.

The following translation lemma is proved like Lemma 6.3:

Lemma 9.2. G has an Sk-tree over Fw
k if and only if it has a tree-decomposition

of width < w � 1 and adhesion < k.

Theorem 3.2 and our two lemmas imply the following duality theorem:

Theorem 9.3 (Tangle-treewidth duality for bounded adhesion).
The following assertions are equivalent for all finite graphs G 6= ; and integers
w � k > 0:

(i) G has an Fw
k -tangle of Sk.

(ii) G has no Sk-tree over Fw
k .

(iii) G has no tree-decomposition of width < w � 1 and adhesion < k.

10 Further applications

There are some obvious ways in which we can modify the sets F considered
so far in this section to create new kinds of highly cohesive substructures and
obtain associated duality theorems as corollaries of Theorem 3.2. For example,
we might strengthen the notion of a tangle by forbidding not just all the 3-sets
of separations whose small sides together cover the entire graph or matroid, but
forbid all such m-sets with m up to some fixed value n > 3. The resulting set
F can then be replaced by its subset F⇤ of stars without a↵ecting the set of
consistent orientations avoiding F , just as in Lemma 4.2.

Similarly, we might like tree-decompositions whose decomposition trees have
degrees of at least n at all internal nodes: graphs with such a tree-decomposi-
tion, of width and adhesion < k say, would ‘decay fast’ along (< k)-separations.
Such tree-decompositions can be described as Sk-trees over the subset of all
(� n)-sets and singletons in the Fk defined in Section 6.
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Another ingredient we might wish to change are the singleton stars in F
associated with leaves. For example, we might be interested in tree-decompo-
sitions whose leaf parts are planar, while its internal parts need not be planar
but might have to be small. Theorem 3.2 would o↵er dual objects also for such
decompositions.

Conversely, it would be interesting to see whether other concrete highly
cohesive substructures than those discussed in the preceding sections can be
described as F-tangles for some F of a suitable set S of separations – of a graph
or something else.

Bowler [3] answered this in the negative for complete minors in graphs, a
natural candidate. Using the terminology of [6] for minors H of G, let us say
that a separation (A,B) of G points to an IH ✓ G if this IH has a branch set
in B r A but none in A r B. A set of oriented separations points to a given IH
if each of its elements does. Clearly, for every IKk ✓ G exactly one of (A,B)
and (B,A) in ~Sk points to this IKk.

Theorem 10.1. [3] For every k � 5 there exists a graph G such that for no set
F ✓ 2~Sk of stars are the F-tangles of Sk precisely the orientations of Sk that
point to some IKk ✓ G.

To prove this, Bowler considered as G a subdivision of Kk obtained by
subdividing every edge of Kk exactly once. He constructed an orientation O
such that every star � ✓ O points to an IKk but the entire O does not. This O,
then, avoids every F consisting only of stars not pointing to any IKk. But any
F ✓ 2~Sk such that the orientations of Sk pointing to an IKk are precisely the
F-tangles must consist of stars not pointing to an IKk, since any star that does
is contained in the unique orientation of Sk pointing to the IKk to which this
star points.

However, Kk minors can be captured by F-avoiding orientations of Sk if we
do not insist that F contain only stars but allow it to contain weak stars: sets
of oriented separations that pairwise either cross or point towards each other
(formally: consistent antichains in ~Sk). In [9] we prove a duality theorem for
orientations of separation systems avoiding such collections F of weak stars.

In [8], we show that Theorem 3.2 implies duality theorems for k-blocks and
for any given subset of k-tangles.
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