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We consider two infinite games, played on a countable graph G given
with an integer vertex labelling. One player seeks to construct a ray
(a one-way infinite path) in G, so that the ray’s labels dominate or
elude domination by an integer sequence being constructed by another
player. For each game, we give a structural characterization of the
graphs on which one player or the other can win, providing explicit
winning strategies.

1. Introduction

Let G be a countable graph, and let �:V (G)→ ω be an injective labelling of
its vertices with natural numbers (thus distinct vertices have distinct labels).
Consider the following game for two players, Adam and Eve. The two players
move alternately, ω times, Eve having the first move. When Eve moves, she
plays a natural number; when Adam moves, he plays a vertex of G. In the
course of one game, Eve thus creates a sequence e:ω→ω, n �→ en, of numbers,
while Adam creates a sequence a:ω→V (G), n �→ an, of vertices. More specifi-
cally, Adam tries to choose his vertices so as to define a ray (a one-way infinite
path) in G, i.e. so that an+1 is adjacent to an for every n ∈ ω and no vertices
are repeated.

Let us say that a sequence (an)n∈ω of natural numbers dominates another
such sequence (bn)n∈ω if an � bn for all n greater than some n0 ∈ ω. In the
dominating game, Adam wins if his function a defines a ray whose sequence
(�(an)) of labels dominates Eve’s sequence (en). Otherwise, Eve wins. In the
bounding game, Adam merely tries to escape domination by Eve: he wins iff he
constructs a ray whose labels exceed the corresponding terms of Eve’s sequence
again and again, i.e. such that (en) does not dominate (�(an)). Note that if
Eve has won a particular instance of the bounding game, this same game would
also go to her credit if viewed as an instance of the dominating game. Similarly,
if Adam can win the dominating game on a particular graph, he can trivially
also win the bounding game on that graph.

Let us look at a few examples. It is easy to see that Adam has a winning
strategy for the dominating game on Tω, the tree in which every vertex has
countably infinite degree. Indeed, he can always find a new vertex an+1 adja-
cent to his previous vertex an and such that �(an+1) > en+1. This, of course,
also gives him a winning strategy for any graph that contains a copy of Tω as
a subgraph.
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In Section 2, we shall prove that this simple example already exhausts
Adam’s resources for the dominating game. More precisely, we shall show that
Adam has a winning strategy for the dominating game on G if and only if
Tω ⊂ G, and that otherwise Eve has a winning strategy. The proof of this
result will be fairly straightforward.

In contrast, the situation for the bounding game is rather more interesting.
Again, Adam clearly has a winning strategy on Tω. But more is true: since
Adam only needs to beat Eve’s sequence again and again, he will also win on
any subdivision of Tω, i.e. on any graph obtained from Tω by replacing its edges
with non-trivial paths whose interiors are pairwise disjoint. Any such graph
will be called a TTω.

FIGURE 1. The prototype bundle graph B

For similar reasons, Adam has a winning strategy on the graphs B and F

shown in Figs. 1 and 2. Indeed, he simply constructs a ray from left to right,
starting at the leftmost vertex (of B or F , respectively). Provided he never
moves back towards the left on B or vertically up on F , he will again and again
find himself at a vertex with an infinite choice of neighbours to the right: as all
these neighbours carry different labels, he can choose one whose label exceeds
the corresponding number just played by Eve. As before, Adam’s winning
strategies for B and F extend to subdivisions of these graphs; subdivisions of
B will be called bundle graphs, subdivisions of F are fan graphs.

FIGURE 2. The prototype fan graph F

In Section 3, we shall show that these three types of subgraph provide the
unique discriminator between the graphs where Adam has a winning strategy
and those where Eve can win. In other words, we shall prove that Adam has a
winning strategy for the bounding game on G if and only if G has a subgraph
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isomorphic to a TTω, a bundle graph or a fan graph, and that otherwise Eve
has a winning strategy.

Note that, for the domination game as for the bounding game, our char-
acterizations depend only on the structure of G, and not on the particular
labelling chosen.

For a fixed countable graph G with labelling �, each game is Borel (meaning
that the set of winning runs is Borel in the obvious product topology), and so
it follows from Martin’s theorem of Borel determinacy [ 3 ] that one player or
the other must have a winning strategy. (In fact, each of our games is Fσ, so
this follows already from Wolfe’s theorem on Fσ determinacy [ 4 ].) However,
we shall not need to rely on this result: we shall always be able to give explicit
winning strategies.

Let us remark in passing that a typical winning strategy is unlikely to
depend on the entire information encoded in the positions to which it assigns
a next vertex or number.

In order to make the game set-up described above precise, we now briefly
go through the (standard) definitions of the terms involved. The reader familiar
with infinite games may wish to skip through to the start of the next section.

Let G be a fixed countable graph whose vertices are injectively labelled
with natural numbers. For either game, a position of the game will be a pair of
a sequence v0, . . . , vn of vertices of G (‘those which Adam has played so far’)
and a sequence k0, . . . , km of natural numbers (‘those which Eve has played
so far’) such that either n = m or n = m− 1 (depending on ‘who is to move
next’). A strategy for Adam is a function α which assigns to every position with
n = m− 1 a vertex of G. A strategy for Eve is a function η which assigns to
every position with n = m a natural number. A run of the game is a pair of ω-
sequences (an) and (en). Adam has played this run according to the strategy α

if an = α(a0, . . . , an−1 | e0, . . . , en) for every n ∈ ω. Similarly, Eve has played
this run according to the strategy η if en = η(a0, . . . , an−1 | e0, . . . , en−1) for
every n ∈ ω.

A winning strategy (for either Adam or Eve) is a strategy such that every
run on G played according to it is won.

2. The dominating game

We start by showing that, for the dominating game, Adam can force a win only
if G ⊇ Tω.

Proposition 1. Adam has a winning strategy for the dominating game on G

if and only if Tω ⊂ G.
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Proof. As we saw in Section 1, Adam has an obvious winning strategy if
G ⊇ Tω: he is easily able to beat Eve at every move. So it remains for us to
show that if Adam has a winning strategy then G ⊇ Tω.

Let Adam’s winning strategy be α. We claim that there exists a sequence
e1, . . . , ek of natural numbers such that for every extension e1, . . . , en (n � k)
we have an � en when Eve plays e1, . . . , en and Adam follows α. Indeed, if
this were not the case then we could inductively construct an infinite sequence
e1, e2, . . . such that if Eve plays this sequence and Adam follows α then an < en

for infinitely many n. However, this is impossible, as α is a winning strategy
for Adam.

Now consider the subgraph H of G spanned by Adam’s replies (following α)
to all the sequences starting e1, . . . , ek. By the choice of e1, . . . , ek, it is clear
that, for every such sequence e1, . . . , en (n � k), Adam must have an infinite
choice of distinct replies to the sequences e1, . . . , en, x as x varies over ω. Thus
H is a (non-empty) graph in which every vertex has infinite degree. However,
in any such graph it is easy to construct a Tω inductively. �

As we remarked earlier, Proposition 1 implies by Borel (or just Fσ) deter-
minacy that Eve has a winning strategy for the dominating game on any graph
not containing a Tω. In the proof of the following extension of Proposition 1,
we make such a winning strategy explicit.

Theorem 2. If Tω ⊂ G then Adam has a winning strategy for the dominating

game on G. Otherwise, Eve has a winning strategy.

Proof. We assume that G contains no Tω, and construct a winning strategy
for Eve. We start by recursively defining a rank function ρ on some or all of
the vertices of G. For each ordinal α, give rank α = ρ(v) to all vertices v such
that all but finitely many neighbours w of v have rank ρ(w) < α. If any vertex
remains unranked, then it has infinitely many unranked neighbours, and so the
unranked vertices span a (non-empty) graph in which every vertex has infinite
degree. We may then construct a Tω ⊂ G from these vertices inductively. Thus,
since G �⊇ Tω by assumption, ρ gets defined for every vertex of G.

We may now choose a winning strategy for Eve as follows. Let Eve’s first
move be arbitrary (say 0). Later, if Adam’s last chosen vertex is v, let Eve
play the number

1 + max { �(w) | w is a neighbour of v and ρ(w) � ρ(v) };

note that, by definition of ρ(v), this maximum is taken over just a finite set.
Now consider a run of the game which Eve has played according to this

strategy. If Adam fails to construct a ray, then Eve wins by definition. So
assume that Adam does indeed construct a ray R ⊂ G. Since there is no
infinite descending sequence of ordinals, R has infinitely many vertices each
of whose rank is at most that of its successor on R. But Eve beats Adam
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on all these successors, so Adam’s sequence (�(an)) fails to dominate Eve’s
sequence (en). Thus Eve’s strategy is indeed a winning strategy. �

3. The bounding game

We now turn our attention to the bounding game. It turns out that the key
notion here is that of a propagating set of paths [ 1 ], which we now describe.
Call a non-empty set P of finite (directed) paths propagating if every path
in P has infinitely many extensions in P of some common length. (A path
v0 . . . vn is an extension of a path u0 . . . um if m � n and vi = ui for all i � m.)
Equivalently, P is propagating if and only if every P ∈ P has an extension Q

such that P contains infinitely many one-vertex extensions of Q. Note that
the paths from left to right in a bundle graph and the paths from left to right
and down in a fan graph form propagating sets: indeed, this was precisely the
property we used in Section 1 to show that Adam can win the bounding game
on F and on B.

The following proposition shows that the concept of a propagating set of
paths captures precisely the structural properties of a graph that enable Adam
to win the bounding game—again, independently of the choice of the graph’s
labelling.

Proposition 3. Adam has a winning strategy for the bounding game on G if

and only if G contains a propagating set of paths.

Proof. We have seen that Adam has a winning strategy if G contains a
propagating set of paths. So, for the converse, suppose Adam has a winning
strategy α for the bounding game on G. We claim that the collection of plays
a1, . . . , ak in which Adam follows α defines a propagating set of paths.

Indeed, suppose to the contrary that some such path a1 . . . ak has only
finitely many extensions of each length n. Let Eve play a sequence forcing
Adam to play a1, . . . , ak (remember, Adam is following α). Then, at each
n > k, when Adam has played a1, . . . , an, let Eve play a number greater than
the maximum of the finite set of labels of possible next moves for Adam when
he follows α. Eve clearly wins this run of the bounding game, a contradiction.

�

We now turn to winning strategies for Eve.

Theorem 4. If G contains a propagating set of paths then Adam has a winning

strategy for the bounding game on G. Otherwise, Eve has a winning strategy.

Proof. We assume that G contains no propagating set of paths, and construct
a winning strategy for Eve.

Recall that a non-empty set P of finite paths in G is propagating if
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for every P ∈ P there exists an n ∈ ω such that P contains

infinitely many extensions of P all of length n.
(∗)

Starting with the set P0 of all finite paths in G, let us force property (∗) on to
this set by recursively deleting any paths P that violate (∗). More precisely,
let us define for each ordinal α > 0 a set Pα, as follows. If α is a successor
ordinal, α = β + 1 say, let

Pα = Pβ � {P ∈ Pβ | P violates (∗) for P = Pβ } ;

thus, Pα is obtained from Pβ by deleting from it any path P such that, for
each n ∈ ω, Pβ contains only finitely many extensions of P of length n. If α
is a limit ordinal, let Pα =

⋂
β<α Pβ .

Choose γ large enough that Pγ+1 = Pγ (remember, we have defined Pα

for arbitrarily large α), and set P∗ = Pγ . Clearly, P = P∗ satisfies (∗). By
assumption, however, G contains no propagating set of paths; therefore P∗

must be empty.
We may now define a strategy for Eve as follows. Consider any position

where Eve is next to move. If the vertices v0, . . . , vn which Adam has played
so far do not form a path (in this order), let Eve’s move be arbitrary (say 0).
If they do form a path, P say, let α be minimal such that P /∈ Pα; as P∗ = ∅,
this α certainly exists. Moreover, α is a successor ordinal (note that α > 0,
because P ∈ P0), say α = β + 1. Then P ∈ Pβ , but P fails to satisfy (∗) for
P = Pβ . In particular, P has only finitely many extensions in Pβ by just one
vertex, and we may define as Eve’s next move the number

1 + max { �(w) | v0 . . . vnw is a path in Pβ } .

Let us now show that this is a winning strategy for Eve. Consider any run
of the bounding game which Eve has played according to this strategy. Let
v0, v1, . . . be the vertices chosen by Adam. If they fail to form a ray in G, then
Eve has won by definition. So suppose that v0v1 . . . is a ray. Let α be minimal
such that P = v0 . . . vk /∈ Pα for some k ∈ ω. As before, α = β +1 for some β,
so P is in Pβ but fails to satisfy (∗) for P = Pβ . But then the same is true for
every path P ′ = v0 . . . vn with n � k: by the minimality of α, we have P ′ ∈ Pβ ,
and P ′ cannot have infinitely many extensions in Pβ of any common length,
because these would also be extensions of P . Hence, all the paths v0 . . . vn with
n � k were deleted at the same time, when Pα was formed from Pβ . Thus
in each case, the number played by Eve as en+1 is at least one greater than
the label of w = vn+1, and so Eve beats Adam in every move from the k’th
position onwards. �

Theorem 4 presents us with an obvious question: which graphs contain a
propagating set of paths?
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A graph G is called bounded if for every labelling �:V (G)→ω of its vertices
there exists an ω-sequence (dn) of natural numbers which dominates all the se-
quences (�(vn)) for rays v0v1 . . . in G. Otherwise, the graph G is unbounded .
Thus to prove from the definition of boundedness that a certain graph G is
bounded is like playing the part of Eve in the bounding game, but with a
handicap: a labelling of G is given to us, and we have to produce a sequence
(dn) which dominates every ray in G according to this labelling; we are not
allowed however (as Eve is) to let the definition of the later values of dn de-
pend on the initial segments of the ray we are trying to dominate. Similarly,
a proof that G is unbounded is like playing the role of Adam, but with an
additional advantage: we may now choose even the beginning of our ray in the
full knowledge of the sequence we are trying to elude.

Confirming a long-standing conjecture of Halin, it was proved in [ 1 ] that
a countable graph is bounded if and only if it contains no TTω, no bundle
graph, and no fan graph. Now, it is easy to see that any graph containing a
propagating set of paths must be unbounded, and we have seen that any TTω,
bundle graph or fan graph does contain a propagating set of paths. We thus
have the following classification theorem for bounded graphs.

Theorem 5. [ 1 ] The following statements are equivalent for countable

graphs G:

(i) G is bounded;

(ii) G has no subgraph isomorphic a TTω, a bundle graph, or a fan graph;

(iii) G does not contain a propagating set of paths.

Putting Theorems 4 and 5 together, we obtain our desired structural char-
acterization for the bounding game.

Theorem 6. If G has a subgraph isomorphic to a TTω, a bundle graph or a

fan graph, then Adam has a winning strategy for the bounding game on G.

Otherwise, Eve has a winning strategy. �

Let us once more point out the fact that, as a corollary of the above char-
acterization theorems, the outcome of the domination game or the bounding
game does not depend on ‘how fast’ the labelling � ‘grows’: it depends only
on the structure of the graph G on which the game is played. As long as G

is countable (which we have so far assumed; but cf. Section 4), one can also
see this directly. Indeed, the bounding and the dominating game on G with
labels are then equivalent to the following game on G itself: at each move Eve
chooses a finite set En of vertices, while Adam tries to construct a ray a0a1 . . .

in such a way that an /∈ En eventually (for the dominating game) or infinitely
often (for the bounding game).
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4. Concluding remarks

The graphs G we considered in this paper were all countable. However, the
reader may have noticed that we never make full use of the fact that the la-
bellings � are injective: all we actually use is that every vertex of infinite degree
has an infinite set of neighbours with distinct labels. With this version of a
labelling, one could extend the domination and bounding games to uncount-
able graphs. Alternatively, we might leave it to Adam to choose a labelling
before Eve makes her first move. It is not difficult to show that these two
generalizations are in fact equivalent.

With these adaptations, all our results extend to uncountable graphs. The-
orems 2 and 4 remain true, because the countability of G is not used in their
proofs. Theorem 6 remains true, because the equivalence of (ii) and (iii) in
Theorem 5 still holds in the uncountable case: note that any graph with a
propagating set of paths must contain a countable such graph.

We remark, however, that the equivalence of (i) and (ii) in Theorem 5 does
not extend to uncountable graphs. A simple example of an unbounded graph
not containing a TTω, a bundle graph or a fan graph is the disjoint union of 2ω

rays. In [ 1 ], it is proved (assuming CH) that a graph is bounded if and only
if it does not contain a TTω, a bundle graph, a fan graph or the disjoint union
of 2ω rays.

Finally, let us remark that there is also a notion of a dominating graph:
G is called dominating if there exists a labelling �:V (G)→ω of its vertices such
that every ω-sequence of integers is dominated by the labelling along some ray
in G. Viewed from the perspective of our games, the dominating graphs dif-
fer from the bounded graphs in an interesting way: the structural distinction
between the graphs that are dominating and those that are not does not run
parallel, even in the countable case, to the distinction between those graphs on
which Adam wins the dominating game and those where Eve wins. Thus, the
dominating graphs are not merely those that contain a Tω: in the countable
case, a graph is dominating if and only if it contains a uniform subdivision
of Tω (one where at each branch vertex the incident edges are subdivided a
bounded number of times), while in the uncountable case there is a similar
(yet surprisingly different) characterization. The interested reader is referred
to [ 2 ], where the dominating graphs are classified.
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