
The Erdős-Menger conjecture

for source/sink sets with disjoint closures

Reinhard Diestel

Erdős conjectured that, given an infinite graph G and vertex sets
A, B ⊆ V (G), there exist a set P of disjoint A–B paths in G and
an A–B separator X ‘on’ P, in the sense that X consists of a choice of
one vertex from each path in P. We prove the conjecture for vertex sets
A and B that have disjoint closures in the usual topology on graphs
with ends. The result can be extended by allowing A, B and X to
contain ends as well as vertices.

1. Introduction

The following conjecture of Erdős is one of the best known open problems in
infinite graph theory:

Erdős-Menger Conjecture. For every graph G = (V, E) and any two sets

A, B ⊆ V there is a set P of disjoint A–B paths in G and an A–B separator

X consisting of a choice of one vertex from each of the paths in P.

The conjecture appears in print first in Nash-Williams’s 1967 survey [ 12 ] on
infinite graphs, although it seems to be considerably older. It was proved
by Aharoni for countable graphs [ 3 ], and by Aharoni et al. [ 2, 5 ] for bipar-
tite graphs G with bipartition (A, B), and independently by Aharoni [ 1 ] and
Polat [ 13 ] for graphs without infinite paths. The current state of the art,
including further partial results by other authors, is described in Aharoni [ 4 ].

Our main result in this paper is the following:

Theorem 1.1. Every graph G satisfies the Erdős-Menger conjecture for all

vertex sets A and B that have disjoint closures in |G|.

Here, |G| denotes the topological space usually associated with G and its
ends, to be defined formally in Section 2. Expressed in this topological setting,
the premise in Theorem 1.1 looks hardly stronger than A∩B = ∅, an assump-
tion that we can make without loss of generality. While this may be taken
as an indication of the strength of Theorem 1.1 compared with other known
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results, it should not lead one to believe that there remains only a little way
to go: the additional assumption means that every infinite path in G can be
separated from A or from B by a finite set of vertices, which remains a major
assumption. For more discussion see Section 2, after the precise definitions of
the terms involved.

In [ 8 ], the Erdős-Menger conjecture has been generalized to sets A and B

that may include ends as well as vertices (in which case the paths in P may
be rays or double rays between these ends or vertices, and the separator X

may also contain ends from A or B), and proved in this more general form for
countable G. Theorem 1.1, too, generalizes in this way:

Theorem 1.2. Every graph G = (V, E, Ω) satisfies the Erdős-Menger conjec-

ture for all sets A, B ⊆ V ∪Ω that have disjoint closures in |G|.

(Here, V and Ω denote the set of vertices and ends of G, respectively.
The precise definitions of A–B paths and A–B separators for arbitrary sets
A, B ⊆ V ∪Ω are what one expects; see [ 8 ].)

Thus, formally, Theorem 1.1 is just a special case of Theorem 1.2. In order
to concentrate on the original vertex case, however, we shall prove Theorem 1.1
directly and defer the more complicated proof of Theorem 1.2 to [ 6 ].

2. Terminology and basic tools

The basic terminology we use is that of [ 7 ] – except that most of our graphs
will be infinite, and |G| will denote a certain topological space associated with
a graph G, not its order. (For sets, we continue to use | | to denote cardinality.)
Our graphs are simple and undirected, but the result we prove can easily be
adapted to directed graphs.

An infinite path that has a first but no last vertex is a ray ; a path with
neither a first nor a last vertex is a double ray . The subrays of a ray are its
tails. Any union of a ray R and infinitely many disjoint finite paths with their
first vertex on R but otherwise disjoint from R is a comb with back R; the last
vertices of those paths are the teeth of the comb. (Note that the paths may be
trivial, ie. the teeth of a comb may lie on its back.)

Two rays in a graph G = (V, E) are equivalent if no finite set of vertices
separates them in G. The corresponding equivalence classes of rays are the
ends of G; the set of these ends is denoted by Ω = Ω(G), and G together
with its ends is referred to as G = (V, E, Ω). (The grid, for example, has one
end, the double ladder has two, and the binary tree has continuum many.)
We shall endow our graphs G, complete with vertices, edges and ends, with
a standard topology to be defined below. (When G is locally finite, this is
its “Freudenthal compactification”.) This topological space will be denoted
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by |G|, and the closure in |G| of a subset X will be written as X. See [ 9, 10 ]
for more background on ends and this topology.

To define |G|, we start with G viewed as a 1-complex. Then every edge is
homeomorphic to the real interval [ 0, 1 ], the basic open sets around an inner
point being just the open intervals on the edge. The basic open neighbourhoods
of a vertex x are the unions of half-open intervals [x, z), one from every edge
[x, y ] at x; note that we do not require local finiteness here.

For ω ∈ Ω and any finite set S ⊆ V , the graph G − S has exactly one
component C = C(S, ω) that contains a tail of every ray in ω. We say that ω

belongs to C. Write Ω(S, ω) for the set of all ends of G belonging to C, and
E(S, ω) for the set of all edges of G between S and C. Now let |G| be the point
set V ∪Ω∪

⋃
E endowed with the topology generated by the open sets of the

1-complex G and all sets of the form

Ĉ(S, ω) := C(S, ω)∪Ω(S, ω)∪E′(S, ω) ,

where E′(S, ω) is any union of half-edges (x, y ] ⊂ e, one for every e ∈ E(S, ω),
with x ∈ e̊ and y ∈ C. (So for each end ω, the sets Ĉ(S, ω) with S varying over
the finite subsets of V are the basic open neighbourhoods of ω.) This is the
standard topology on graphs with ends. With this topology, |G| is a Hausdorff
space in which every ray, viewed as an arc, converges to the end that contains
it. |G| is easily seen to be compact if and only if every vertex has finite degree.

A subgraph G′ = (V ′, E′) of G will be viewed topologically as just the
point set V ′ ∪

⋃
E′, without any ends. Then the closure G′ of this set in |G|

may contain some ends of G, which should not be confused with ends of G′.
With precise definitions now available, let us take another look at what

the assumption of A ∩B = ∅ in Theorem 1.1 means for the relative position
of the sets A and B (which we assume to be disjoint). One obvious way to
ensure that A∩B = ∅ is to assume that some finite set of vertices separates A

from B in G. For locally finite graphs (for which the Erdős-Menger conjecture
is known), this assumption is indeed equivalent to A∩B = ∅. But in general
it is much stronger, and the conjecture has long been known for this case (see
Lemma 2.2 below). An example of A∩B = ∅ where A and B cannot be finitely
separated is to take as A and B two distinct levels of vertices in the ℵ1-regular
tree.

We now list a few easy or well-known lemmas that we shall need in our
proofs. Let us start with two observations about the Erdős-Menger conjecture
itself. The first is that we may assume A and B to be disjoint:

Lemma 2.1. If G′ := G− (A∩B) satisfies the Erdős-Menger conjecture for

A′ := A \B and B′ := B \A, then G satisfies the conjecture for A and B.

Proof. Let X ′ be an A′–B′ separator on a set P ′ of A′–B′ paths in G′. Then
X ′ ∪ (A∩B) is an A–B separator on the set P ′ ∪ { (x) | x ∈ A∩B } of A–B

paths in G, where (x) denotes the trivial path with vertex x. �
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We shall also need the following special case of the Erdős-Menger conjec-
ture, which can be reduced to finite graphs [ 11 ] and is covered by the results
in [ 6 ].

Lemma 2.2. The Erdős-Menger conjecture holds for A and B in G if every

set of disjoint A–B paths in G is finite.

Our next two lemmas are standard tools for infinite graphs.

Lemma 2.3. Let R ⊆ G be a ray, with end ω say, and X ⊆ V . Then ω ∈ X

if and only if G contains a comb with back R and teeth in X.

Proof. If ω /∈ X, then ω has a neighbourhood Ĉ(S, ω) in |G| that avoids X. As
R ∈ ω, R has a tail in C. Then all the infinitely many disjoint paths that start
on this tail and end in X have to pass through the finite set S, a contradiction.

Conversely, if ω ∈ X then every C = C(S, ω) meets both R and X, and we
can construct the desired comb inductively by taking as S the (finite) union of
the R–X paths already chosen, and finding a new R–X path in C. �

A proof of the following lemma can be found in [ 10 ].

Lemma 2.4. Assume that G is connected, and let U ⊆ V be an infinite set of

vertices. Then G contains either a comb with |U | teeth in U or a subdivided

star with |U | leaves in U . (Note that if U is uncountable then the latter holds.)

3. Proof of Theorem 1.1

The basic idea for the proof of Theorem 1.1 is to reduce the problem to rayless
graphs, an early result of Aharoni [ 1 ]:

Lemma 3.1. (Aharoni 1983)
The Erdős-Menger conjecture holds for all graphs containing no infinite path.

We shall eliminate the infinite paths in our given graph G in three steps. In
the first two steps we eliminate the rays whose ends lie in A and B, respectively,
and in the third step we eliminate any remaining rays.

The first step consists of the following reduction lemma applied with
H := G and U := A and W := B.

Lemma 3.2. Let H = (V, E, Ω) be a graph, and let U, W ⊆ V be such that

U ∩W = ∅. Then there exist a subgraph H ′ = (V ′, E′,Ω′) of H containing W ,

and a set U ′ ⊆ V ′ with Ω′ ∩ U ′ = ∅ (where the closure U ′ is taken in |H ′|),
such that the Erdős-Menger conjecture holds for U and W in H if it holds for

U ′ and W in H ′.
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After this first step, it remains to prove the Erdős-Menger conjecture for
A′ := U ′ and B = W in G′ := H ′. By Lemma 2.1, we may assume that
A′ ∩B = ∅. Since Ω′ ∩A′ = ∅ in |G′| as a result of the first application of the
lemma, we then have A′ ∩B = ∅. We may thus apply the lemma again with
H := G′ and U := B and W := A′, to obtain a subgraph G′′ = (V ′′, E′′,Ω′′)
of G′ that contains A′ and a set U ′ =: B′ such that Ω′′ ∩B′ = ∅.

Note that also Ω′′ ∩A′ = ∅ in |G′′|. For by Lemma 2.3 this is equivalent
to the non-existence of a comb in G′′ with teeth in A′. As any such comb
would also lie in G′, its existence would likewise imply Ω′ ∩A′ �= ∅ in |G′|, a
contradiction.

To this graph G′′ we then apply the following lemma as our third reduction
step (setting H := G′′ and U := A′ and W := B′):

Lemma 3.3. Let H = (V, E, Ω) be a graph, and let U, W ⊆ V be such that

Ω∩ (U ∪W ) = ∅. Then H has a rayless subgraph H ′ ⊆ H containing U ∪W

such that the Erdős-Menger conjecture for U and W holds in H if it does in H ′.

Since the Erdős-Menger conjecture does hold in H ′ by Lemma 3.1, this com-
pletes the proof of Theorem 1.1.

It remains to prove Lemmas 3.2 and 3.3.

Proof of Lemma 3.2. Our first aim is to construct a subgraph H∗ ⊆ H such
that

(i) Ω∩U ∩H∗ = ∅ in |H|;
(ii) W ⊆ V (H∗);

(iii) for every component C of H −H∗, its set SC := NH(C) of neighbours
in H∗ cannot be linked to UC := U ∩ (V (C) ∪ SC) by infinitely many
disjoint paths in HC := H [V (C)∪SC ].

Our desired graph H ′ ⊆ H will be a supergraph of H∗.
We define H∗ by transfinite ordinal recursion, as a limit H∗ =

⋂
α�α∗ Hα

of a well-ordered descending family of subgraphs Hα indexed by ordinals. Let
H0 := H, and for limit ordinals α > 0 let Hα :=

⋂
β<α Hβ . For successor

ordinals α + 1 we first check whether Ω ∩ U ∩ Hα = ∅ in |H|, in which case
we put α =: α∗ and terminate the recursion with H∗ = Hα. Otherwise pick
ωα ∈ Ω ∩ U ∩ Hα, and let Sα be a finite set of vertices such that Ĉ(Sα, ωα)
is a basic open neighbourhood of ωα in |H| that does not meet W . (Such a
set Sα exists, as U ∩W = ∅ by assumption.) Put Cα := C(Sα, ωα), and let
Hα+1 := Hα −Cα.

For any vertex v ∈ H−H∗ we record as α(v) := min{α | v ∈ Cα } the ‘time
it was deleted’. Note that, as ωα ∈ Hα, we have Cα ∩Hα �= ∅ for every α, so
the recursion terminates. Let us write C for the set of components of H −H∗.

H∗ satisfies (i) because H∗ = Hα∗ , and (ii) by the choice of the Sα and Cα.
To prove (iii), let a component C ∈ C be given. Suppose there is an infinite
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family Pi = si . . . ui (i ∈ N) of disjoint SC–UC paths in HC . Let C ′ ⊆ HC be
the graph obtained from C by adding for every i ∈ N the vertex si and one
si–C edge. Let us show that Lemma 2.4 yields a comb in C ′ with its teeth in
{ si | i ∈ N } ⊆ SC . If not, then C ′ contains an infinite subdivided star with its
leaves in this set. As all the si have degree 1 in C ′, the centre v of this star lies
in C; let α := α(v). Then v ∈ Cα but SC ⊆ V (H∗) ⊆ V (Hα+1) ⊆ V (H −Cα),
so the finite set Sα separates the star’s centre from its leaves, a contradiction.
Hence C ′ contains the desired comb; let ω ∈ Ω denote the end of its back. Then
every basic open neighbourhood Ĉ(S, ω) of ω contains infinitely many si, and
hence also infinitely many Pi and their endvertices in U . Therefore ω ∈ U as
well as ω ∈ SC ⊆ H∗ in |H|, and thus Ω∩U ∩H∗ �= ∅ contradicting (i). This
completes the proof of (iii).

To expand H∗ to our desired subgraph H ′, we now consider the compo-
nents of H −H∗ separately. For every C ∈ C, there exist in HC a finite set PC

of SC–UC paths and an SC–UC separator XC on PC (by (iii) and Lemma 2.2).
Let DC denote the set of all the components of HC −XC that meet UC , and
put D :=

⋃
C∈C DC . Then let

H ′ := H −
⋃

D and U ′ :=
(
U ∩V ′)∪ ⋃

C∈C
XC .

Let us show that Ω′ ∩U ′ = ∅ in |H ′|. If not, then by Lemma 2.3 there is a
comb K ′ in H ′ with teeth in U ′; let R be its back. Using the paths in

⋃
C∈C PC

(more precisely, their segments between XC and UC), we can extend K ′ to a
comb K in H with back R and teeth in U . Since every infinite subset of V (K)
has the end of R in its closure, our condition (i) implies that K meets H∗ in
only finitely many vertices. We may thus assume that K ⊆ C for some C ∈ C.
As R is also the back of K ′ ⊆ H ′, we thus have R ⊆ C ∩H ′. But the finite set
XC separates C ∩H ′ from UC in HC , and hence the back of K from its teeth
(a contradiction).

It remains to show that the Erdős-Menger conjecture holds for U and W

in H if it holds for U ′ and W in H ′. Assume the latter, and let P ′ be a set of
disjoint U ′–W paths in H ′ with a U ′–W separator X on it. Let P be obtained
from P ′ by appending to every P ∈ P ′ whose first vertex u′ in U ′ lies in U ′

�U ,
and hence in some XC , the XC–UC segment of the path in PC containing u′.
These segments will be disjoint for different u′, because different C ∈ C are
disjoint and the paths in PC are disjoint for each C. (We remark that u′ may
lie on XC for several C if u′ ∈ H∗, so the choice of C may not be unique.)

Thus, P is a set of disjoint U–W paths in H, and X consists of a choice of
one vertex from each path in P. It remains to show that X separates U from
W in H. So let Q be a U–W path in H. If Q ⊆ H ′ then its first vertex lies
in U ∩ V ′ ⊆ U ′, so Q links U ′ to W in H ′ and hence meets X. Suppose then
that Q has a vertex in H − H ′, and let z be its last such vertex. Then the
component D of H −H ′ containing z is an element of DC for some C ∈ C, so
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NH(D) = XC ⊆ U ′. As W ⊆ V ′ and hence W ∩D = ∅, the vertex z is not
the last vertex of Q. But the vertex x following z on Q lies in H ′, and hence
in XC ⊆ U ′. So xQ joins U ′ to W in H ′ and hence meets X. �

For our proof of Lemma 3.3 we need the following lemma of Stein [ 14 ].
Let T be a finite set of vertices in a graph J . A T -path, for the purpose of this
paper, is any path whose endvertices lie in T , whose inner vertices lie outside T ,
and which has at least one inner vertex. Paths P1, . . . , Pk are said to be disjoint
outside some given Q ⊆ J if Pi ∩Pj ⊆ Q whenever i �= j.

Lemma 3.4. Let J be a graph, let T ⊆ V (J) be finite, and let k ∈ N. Then

J has a finite subgraph J ′ containing T such that for every T -path Q = s . . . t

in J that meets J − J ′ there are k distinct T -paths from s to t in J ′ that are

disjoint outside Q.

A proof of Lemma 3.4 can be found in [ 8 ].

Proof of Lemma 3.3. As in the proof of Lemma 3.2, we start by construct-
ing a subgraph H∗ ⊆ H. This time, we require that H∗ satisfy the following
conditions:

(i) Ω∩H∗ = ∅ in |H|;
(ii) U ∪W ⊆ V (H∗);

(iii) for every component C of H −H∗, its set SC := NH(C) of neighbours
in H∗ is finite.

Again, our desired graph H ′ ⊆ H will be a supergraph of H∗.
We define H∗ recursively as before, putting H0 := H and Hα :=

⋂
β<α Hβ

for limit ordinals α > 0. For successor ordinals α + 1 we check whether
Ω∩Hα = ∅ in |H|, in which case we put α =: α∗ and terminate the recursion
with H∗ = Hα. Otherwise we pick ωα ∈ Ω∩Hα and a basic open neighbourhood
Ĉ(Sα, ωα) of ωα in |H| that avoids U ∪W , which exists as Ω∩ (U ∪W ) = ∅ by
assumption. We finally let Cα := C(Sα, ωα) and Hα+1 := Hα −Cα.

For vertices v ∈ H −H∗ put α(v) := min {α | v ∈ Cα }. Write C for the
set of components of H −H∗, and let HC := H [V (C)∪SC ] for each C ∈ C.

As before, H∗ clearly satisfies (i) and (ii). To prove (iii), consider any
component C ∈ C. If SC is infinite, then HC contains a comb with teeth in SC

(as before). But then the back of this comb has its end in H∗, contradicting (i).
Therefore SC is finite, as claimed.

To expand H∗ to our desired subgraph H ′, we again consider the compo-
nents of H −H∗ separately. For each C ∈ C, denote by H ′

C the graph J ′ which
Lemma 3.4 returns on input J := HC , T := SC , and k := |SC |. We then
define

H ′ := H∗ ∪
⋃

C∈C
H ′

C .
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Let us show that H ′ is rayless. Suppose there is a ray R in H ′, say with
end ω ∈ Ω. Since H ′ contains from every component C of H − H∗ only the
finite subgraph H ′

C ∩C, R must have infinitely many vertices in H∗. But then
ω lies in the closure in |H| of this set of vertices and hence in H∗, contrary
to (i).

It remains to show that the Erdős-Menger conjecture holds for U and W in
H if it does so in H ′. Suppose there exist in H ′ a set P of disjoint U–W paths
and a U–W separator X on P. As H ′ ⊆ H, it suffices to show that X also
separates U from W in H. Suppose not, and let Q be a U–W path in H −X.
As Q starts and ends in H∗, and every segment of Q outside H∗ lies in some
C ∈ C, we can find a sequence of internally disjoint segments sQt of Q, each
with all its inner vertices in some C ∈ C (and at least one of these outside H ′)
and its endvertices s, t in SC , such that the union of these segments contains
Q−H ′. Our aim is to replace each of these segments sQt ⊆ HC with an SC-
path Pst from s to t in H ′

C that avoids X: this will turn Q into a connected
subgraph of H ′ −X that contains both the starting vertex of Q in U and its
endvertex in W , contradicting our assumption that X separates U from W

in H ′.
For our choice of Pst, Lemma 3.4 offers k = |SC | different paths that are

disjoint outside sQt. Since Q avoids X, we can thus find Pst as desired if we
can show that X has fewer than k vertices in C. But every x ∈ X ∩V (C) lies
on a path Px ∈ P that links U to W , and hence by (ii) has at least two vertices
in SC . As these Px are disjoint for different x, X has at most |SC |/2 < k

vertices in C. �
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