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Decomposing Infinite Graphs

Reinhard Diestel

This paper gives an introduction to the theory of simplicial and related
decompositions of graphs as developed in [ 1 ]. It is intended for the
non-specialist, and particular prominence is given to the presentation
of open problems.

Introduction

In his classic paper Über eine Eigenschaft der ebenen Komplexe, Wagner [ 19 ]
tackles the following problem. Kuratowski’s theorem, in its excluded minor
version, states that a finite graph is planar if and only if it has no minor
isomorphic to K5 or to K3,3. (A minor of G is any graph obtained from some
H ⊂ G by contracting connected subgraphs.) If we exclude only one of these
two minors, the graph may no longer be planar—but will it be very different
from a planar graph? For example, can the non-planarity of an arbitrary finite
graph without a K5 minor be tied down to certain parts of it, the rest of the
graph being planar?

Wagner’s solution to this problem is based on the following observation.
Suppose we take two graphs G1 and G2, neither of which has a K5 minor,
and paste them together along a complete subgraph. (Following Wagner, we
shall use the term simplex for complete graphs. So here we let G = G1 ∪G2

and assume that G1 ∩G2 is a simplex.) Then the resulting graph G is again
K5-free (has no K5 minor). For if H1, . . . , H5 are connected subgraphs of some
H ⊂ G whose contraction yields aK5, then either G1 or G2 must also have such
subgraphs (Fig. 1), contrary to our assumption that these graphs are K5-free.

FIGURE 1. Finding a K5 minor in G1

Repeating this process, we can easily construct simplicial decompositions
of arbitrarily large K5-free graphs: just keep attaching new K5-free graphs
along simplices contained in the graph constructed so far (Fig. 2). And more
importantly, the converse is also true: every K5-free graph, however large, can
be constructed in such a simplicial decomposition from prime factors, i.e. from
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‘small’ graphs which do not themselves have a simplicial decomposition into
more than one factor. (The general question of which graphs admit a prime
decomposition is a fundamental problem in simplicial decomposition theory;
see Section 1.) Thus, we can characterize the finite K5-free graphs by their
decompositions if we succeed in drawing up a complete list of the prime factors
needed to construct all these graphs.

FIGURE 2. A simplicial decomposition

Essentially, this is just what Wagner does in his paper—the only difference
being that he keeps the list shorter by including only the factors of edge-maximal
K5-free graphs, those in which the addition of any new edge creates a minor
isomorphic to K5. As it turns out, this list, which he calls the ‘homomorphism
base’ of K5, contains only one non-planar graph W , while all its other graphs
are planar (namely, the 4-connected plane triangulations). (More generally, the
homomorphism base of a finite graph X is the class of all the graphs occuring
as factors in prime decompositions of—finite or infinite—edge-maximal X-free
graphs.) Our somewhat vague opening question thus has a surprisingly positive
answer: the non-planarity of any finite K5-free graph can be localized within
parts of it that are either subgraphs of the one non-planar graph W , or else
arise from at least three planar graphs pasted together along a triangle. (Note
that pasting planar factors together along a simplex smaller than K3 still yields
a planar graph.)

Since Wagners original paper, homomorphism bases have been determined
for several other excluded minors, in each case giving rise to a similar structural
characterization of the graphs without this minor (see Wagner [ 19 ], [ 20 ], [ 21 ],
Halin [ 10 ], [ 11 ], [ 13 ], [ 14 ], or [ 1, Ch. 6.1 ] or [ 7 ] for a table of all known ho-
momorphism bases.) A typical example: the edge-maximal K−

5 -free graphs
(where K−

5 denotes a K5 minus an edge) are precisely the graphs which can be
constructed in a simplicial decomposition with attachment simplices of order 2
from factors isomorphic to K3, K3,3, the prism (K3 ×K2) or wheels.

It is clear that excluded minor theorems in terms of homomorphism bases
can be very powerful characterizations. In the case of K−

5 , for instance, the
simplicity of the prime factors of the K−

5 -free graphs enables us instantly to
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determine sharp bounds on their chromatic number, minimal degree and so
on. Moreover, the graph properties definable by the exclusion of minors are
important properties: they are precisely the properties that are closed under
subcontraction (= taking minors), and include such natural properties as, say,
the embeddability in a given surface.

However, not every homomorphism base offers as much information as does
that of K−

5 . In the case of K5, for example, we know that the base elements,
with the exception of the graph W , are maximally planar. But how well do we
really know an arbitrary maximally planar graph? We can hardly determine
its chromatic number!

An important problem, therefore, is to learn to distinguish the minors
whose exclusion gives rise to a simple homomorphism base from those where
the base elements can be nearly as complicated as the graphs they serve to
describe. At first glance, this notion of a ‘simple’ homomorphism base seems
a difficult one to make precise. However, it so happens that as soon as we
allow our graphs to be infinite, the simple and the complicated bases seem
to fall neatly apart: into bases which are made up of finite graphs only (and
are therefore countable, like the homomorphism base of K−

5 ) and uncountable
bases (like that of K5, which contains all the—uncountably many—countable
maximally planar graphs). By a beautiful theorem of Halin, homomorphism
base elements are always themselves countable, whatever the cardinality of the
graphs of which they are factors; see [ 1, Ch. 5 ].

Calling a homomorphism base simple if it is countable—or, alternatively,
if all its members are finite—we are thus led to the following problem. (It is
unknown whether the two suggested definitions of ‘simple’ coincide.)

Problem. For which excluded minors is the corresponding homomorphism

base simple?

Although this problem in its full generality seems to be hard, so little is
known about it that even the most basic results would mean progress. For
example, if the homomorphism base of X is simple and X ′ is obtained from
X by deleting an edge, is the base of X ′ again simple? More such conjectures,
including some farther reaching ones, can be found in [ 1, Ch. 6.1 ] or in [ 7 ].

Since their introduction by Wagner for the purpose of investigating the
K5-free graphs, simplicial decompositions have been applied to a wide range
of problems, mainly in infinite graph theory. Moreover, the investigation of
these and related decompositions has led to an interesting theory in its own
right. The aim of this paper is to give an introduction to some of the central
aspects of this theory, to state its main results (without proofs, but illustrated
by examples), and to present its guiding open problems.

Sections 1 and 2 deal with the problem of the existence of simplicial de-
compositions into prime or otherwise ‘small’ factors. Section 3 gives a brief
introduction to the problem of when such prime decompositions are unique.
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In Section 4 finally, we look at the ‘structural essence’ of simplicial decom-
positions, which is neatly captured by another type of decomposition called
tree-decompositions. For finite graphs, these tree-decompositions reduce to the
by now familiar decompositions used by Robertson and Seymour for the proof
of their well-quasi-ordering theorem (Wagner’s Conjecture).

1. The existence of prime decompositions

The question of which graphs admit a simplicial decomposition into prime fac-
tors, already touched upon above, is perhaps the most fundamental and at the
same time the most complex problem in simplicial decomposition theory. And
while a good deal is now known about prime decompositions, existing results
amount to no more than a partial solution of the general problem:

Problem. Which graphs admit a simplicial decomposition into primes?

Before we look into this problem further, let us give a precise definition of
a simplicial decomposition. In order to make the definition suitable for infinite
as well as for finite graphs, we do not follow the intuitive approach of ‘de-
composing’ a graph into smaller and smaller pieces (a process which may never
end), but build it up from below, adding one factor at a time.

Thus, let G be a graph, σ > 0 an ordinal, and let Bλ be an induced
subgraph of G for every λ < σ. The family F = (Bλ)λ<σ is called a simplicial
decomposition of G if the following three conditions hold:

(S1) G =
⋃

λ<σ Bλ;

(S2)
(⋃

λ<µBλ

)
∩Bµ =: Sµ is a complete graph for each µ (0 < µ < σ);

(S3) no Sµ contains Bµ or any other Bλ (0 � λ < µ < σ).

(Condition (S3) is of lesser importance; its purpose is to avoid ‘redundant’
factors.)

The graph
⋃

λ<µBλ in (S2) will be denoted by G|µ, and the simplex Sµ in
(S2) will be called the simplex of attachment of Bµ. A graph is prime if it has no
simplicial decomposition into more than one factor, and a prime decomposition
is a simplicial decomposition in which every factor is prime. Furthermore, we
shall call a subgraph H ⊂ G attached to another subgraph H ′ ⊂ G\H if every
vertex of H has a neighbour in H ′. (These subgraphs H and H ′ will usually
be induced and connected.) If H is not attached to any component of G\H,
we call H unattached in G.

We remark that a graph is prime if and only if it does not contain a
separating simplex. This is not quite as trivial as it may seem, because one has
to show that a simplex of attachment continues to separate the graph after the
addition of further factors. This, however, is an easy consequence of (S2):
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Proposition 1.1. If (Bλ)λ<σ is a simplicial decomposition of G, and if

x ∈ G|µ\Sµ and y ∈ Bµ\Sµ for some µ < σ, then Sµ separates x from y

in G.

Suppose we are given an arbitrary graph G and are asked to find a sim-
plicial decomposition of G into primes. How shall we go about the problem?
Clearly, there are two tasks involved: finding the right subgraphs of G to serve
as the factors Bλ, and putting them together in accordance with (S1)–(S3).

The problem of which kinds of subgraph may be used as factors in a prime
decomposition has been studied thoroughly and may be regarded as fully under-
stood. Essentially, the prime factors of a graph (in any prime decomposition)
are its smallest unattached convex subgraphs. (A subgraph H ⊂ G is convex in
G if any induced (or ‘chordless’) path in G connecting vertices of H is contained
in H.) In fact, more is true: if F is a simplicial decomposition of G, then any
subgraph of G which corresponds to a ‘subtree’ of the ‘decomposition tree’ of F
(Fig. 2) is convex in G (see [ 1, Chs. 1.1 and 5.4 ] for details).

The more challenging part of the prime decomposition problem is the sec-
ond of the two tasks mentioned: finding the correct order, if it exists, in which
the potential prime factors Bλ may be assembled into a simplicial decomposi-
tion of G. Starting from a simple example, we shall now look into this problem
in some detail. In order to concentrate on the essential, we shall assume that
the set of potential factors Bλ has already been determined.

1.1. The construction of a prime decomposition

Consider the graph G shown in Figure 3. The potential prime factors of G
are the triangles T1, . . . , T4. Trying to be as short-sighted as possible, let us
begin to contstruct a prime decomposition (Bλ)λ<σ of G with the two bottom
triangles, setting B0 := T1 and B1 := T3, say. Then S1 = T1 ∩ T3, so S1 is
a simplex (of order 1) as required. For B2, we can choose between the two
remaining factors, the triangles T2 and T4. But neither of these choices is
feasible: S2 = B2 ∩ (B0 ∪B1) would be a path of length 2 or consist of two
isolated vertices—thus in neither case would S2 be a simplex.

FIGURE 3. Constructing a prime decomposition
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What went wrong? Of course, we should not have chosen T3 as the fac-
tor B1: Proposition 1.1 requires that S1 separate the vertices of B0\S1 from
those of B1\S1 in G, which is clearly not the case with our choice of T3 as B1.
And indeed, if we set B1 := T2 instead, we can easily complete our prime
decomposition, e.g. to (T1, T2, T3, T4).

With the above example in mind, let us now consider a more abstract
situation. Let G be a graph containing a simplex S which separates G into two
components (making up G\S), C and C ′ say. Let us assume that S is attached
to C, and let S′ ⊂ S denote the simplex induced by those vertices of S that
have a neighbour in C ′ (Fig. 4). Suppose we have started to build a prime
decomposition of G, having chosen factors Bλ for all λ up to (but excluding)
some ordinal µ. Suppose further that the part G|µ of G we have covered lies
entirely in G [C ′∪S′ ] (the subgraph of G induced by the vertices of C ′ and S′),
so that G|µ ∩C = ∅ (but G|µ ∩C ′ �= ∅). Let us consider the following question:
under what assumptions can we choose Bµ so as to include a vertex from C?

FIGURE 4. Choosing Bµ

Notice first that if Bµ is to include a vertex from C, it must lie entirely
within G [C ∪S ]: otherwise it would be separated by a subsimplex of S, which
contradicts the requirement that it should be prime. Thus Sµ, the intersection
of Bµ with G|µ, will be a part of S′. Now by Proposition 1.1, we can see that
Sµ must in fact be equal to S′: since S′ is attached both to C and to C ′,
Sµ could not otherwise separate G|µ from Bµ in G.

This observation has two consequences, one practical, for the construction
of concrete prime decompositions, the other more theoretical, for the problem
of when such a decomposition exists. The first consequence is that whenever
we have S,C,C ′, S′ ⊂ G as in our example and we have started to construct a
prime decomposition of G with factors inside G [C ′∪S′ ], we cannot move over
into C until we have covered all of S′ (because S′ has to serve as the simplex
of attachment for the first factor including a vertex from C). The impact of
this restriction will be the greater the more separating simplices S there are in
the graph G to be decomposed.

The other consequence of our observations sounds almost trivial, but it
lies at the heart of the existence problem of prime decompositions: since Bµ is
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to be a prime factor and has to contain S′, there must be at least one prime
subgraph of G which contains S′ and a vertex from C. We shall express this
by saying that S′ has a prime extension into C.

In the next section we shall see that such prime extensions do not always
exist. This will lead us to the construction of a graph which does not admit
a simplicial decomposition into primes, and on to a characterization of the
graphs that do have prime decompositions in terms of the existence of prime
extensions of separating simplices.

1.2. Prime extensions

When Halin [ 12 ] introduced simplicial decomposition for infinite graphs, he
also proved the first major theorem on the existence of prime decompositions:

Theorem 1.2. Every graph not containing an infinite simplex admits a sim-

plicial decomposition into primes.

The key lemma in the proof of Halin’s theorem asserts that a finite simplex has
a prime extension into any component to which it is attached.

Halin [ 12 ] also gave a construction of a graph that does not admit a prime
decomposition. To get the flavour of why finding a prime decomposition may
be difficult or impossible, consider the following variation of Halin’s example:
let x be a single vertex, S = S [ s1, s2, . . . ] an infinite simplex, C = y1y2 . . . a
one-way infinite path, and let H1 be the graph obtained from the disjoint union
of x, S and C by joining x to all the vertices of S and drawing the edges yisj
for all i � j (Fig. 5).

FIGURE 5. S has no prime extension into C
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Here, S has no prime extension into C (observe that, in the notation of
our earlier example, we would have C ′ = {x } and hence S′ = S): since every
vertex y ∈ C is separated in H1 from some vertex s ∈ S by a simplex T , there
can be no prime subgraph in H1 which contains both S and a vertex of C.

What does this mean for the construction of a prime decomposition of H1?
Certainly that if we approach S ‘from the left’, with x being contained in the
first factor B0, then the first factor Bµ containing a vertex from C would have
to contain S as well (as its simplex of attachment Sµ), which is impossible if
Bµ is to be prime. Hence, we have to approach S from the right: choosing
factors from within H1 [C ∪ S ] until S is covered, and then move accross to
cover x as well. Such a prime decomposition of H1 does indeed exist; consider,
for example, the decomposition

F = (Y1, Y2, Y3, . . . , X) ,

where

Yi : = H1 [ yi, yi+1, s1, . . . , si ]

X : = H1 [x, s1, s2, s3 . . . ] (Fig. 6).

FIGURE 6. A prime decomposition of H1

However, we only have to alter H1 slightly to obtain a graph H0 which
does not admit a simplicial decomposition into primes: simply replace x with
a copy C ′ of C (joined to S in the same way as C is). In this graph, which
is very similar to Halin’s original example, it makes no difference from which
side we try to approach S in an attempt to construct a prime decomposition:
the moment we try to cross S and move over into the other side we will have
to find a prime extension of S (into that side), which does not exist.

Let us reformulate the indecomposability of the graph H0 within the more
general setting of our earlier prototype situation, involving an arbitrary sep-
arating simplex S and components C,C ′ of G\S. We have seen that if S′

(the part of S whose vertices have a neighbour in C ′) has no prime extension
into C, then any prime decomposition of G has to start with factors containing
vertices of C (and hence lying inside G [C ∪S ]). Now there may be many such
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configurations of (say) Si, Ci and C ′
i in a graph, including several where S′

i fails
to have a prime extension into Ci. As in each case any prime decomposition
ofG has to begin with vertices from Ci, these requirements are bound to conflict
for different i.

One way in which this may happen led to the indecomposability ofH0: in a
graphG which contains two critical configurations (S1, C1, C

′
1) and (S2, C2, C

′
2),

such that C1 ⊂ C ′
2 and C2 ⊂ C ′

1 (Fig. 7), a prime decomposition cannot begin
with vertices from C1 and at the same time with vertices from C2. In this case,
we shall say that G contains simplices with opposite inaccessible sides. (In the
example of H0, we have S1 = S2 = S, and C1 = C ′

2 = C (say), C2 = C ′
1 = C ′.)

Another way in which critical configurations may impose conflicting re-
quirements on the order of factors in a prime decomposition is that a graph
G contains an infinite series of critical configurations (Si, Ci, C

′
i) such that

Ci ⊇ Ci+1 for all i but
⋂

i∈N
Ci = ∅ (Fig. 7): no matter how we choose the first

factor B0, there will be some i ∈ N for which B0 lies in G [C ′
i ∪S′

i ], i.e. on the
wrong side of Si. In this case, we shall say that G contains simplices with an
infinite sequence of inaccessible sides. (See [ 1, Ch. 2.5 ] for details.)

FIGURE 7. The forbidden configurations in Dirac’s theorem

The following theorem of Dirac [ 9 ] summarizes our observations, provid-
ing a necessary condition for the existence of a prime decomposition.

Theorem 1.3. A graph can only have a simplicial decomposition into primes

if it contains neither simplices with opposite inaccessible sides nor simplices

with an infinite sequence of inaccessible sides.

The question of whether or not Theorem 1.3 has a direct converse is still
an open problem:

Problem. Are the conditions in Dirac’s theorem also sufficient for the exist-

ence of a prime decomposition?

While it is relatively easy to derive the necessary conditions for the exist-
ence of a prime decomposition as stated in Theorem 1.3—the formal proof
goes hardly beyond the sketch we have seen above—a sufficiency proof is likely
to require deeper arguments. However, it is quite possible that most of the

9



necessary ideas are already contained in the proof of our next theorem, which
solves the existence problem of prime decompositions for an important special
case.

A simplicial decomposition F = (Bλ)λ<σ of G is called a simplicial tree-
decomposition if, in addition to (S1)–(S3), it satisfies

(S4) each Sµ is contained in Bλ for some λ < µ (µ < σ).

Condition (S4) and the concept of simplicial tree-decompositions will be intro-
duced properly in Section 4; for the moment it suffices to remark that these
decompositions form a natural subclass of all simplicial decompositions, includ-
ing (for example) all finite simplicial decompositions.

Returning to our prototype configuration of a separating simplex S with
components C and C ′ of G\S, notice that (S4) has the simplifying effect of
making the situation symmetric: in order for G to admit a simplicial tree-
decomposition into primes, S′ must have prime extensions into both C and C ′.
For if we start our decomposition in C ′ (say) and Bµ is the first factor con-
taining a vertex from C, then (S4) requires that Sµ (= S′) is also contained in
some earlier factor Bλ, which would be a prime extension of S′ into C ′.

For countable graphs G, it was shown in [ 5 ] that the existence of prime
extensions in such configurations is not only necessary but also sufficient for
the existence of a simplicial tree-decomposition of G into primes (the proof
draws on almost all aspects of simplicial decomposition theory; with additional
analysis and motivation, it takes up most of a chapter in [ 1 ]):

Theorem 1.4. A countable graph G has a simplicial tree-decomposition into

primes if and only if G satisfies the following condition:

((†)) If S ⊂ G is a simplex, C and C ′ are distinct components of G\S, and S

is attached to C, then the simplex S′ ⊂ S induced by the vertices of S

with a neighbour in C ′ has a prime extension into C.

Notice that our graph H1, which has a (general) simplicial decomposition into
primes, fails to satisfy (†) and therefore has no simplicial tree-decomposition
into primes.

To conclude this section, let us see why Theorem 1.4 generally fails for
uncountable G.

Let T be a the ‘transitive closure’ (or comparability graph) of the infi-
nite dyadic tree. (For example, let V (T ) = { 0, 1 }<ω, the set of all finite 0-1
sequences, and join (a0, . . . , an) to (b0, . . . , bm) whenever n < m and ai = bi
for i= 0, . . . , n.) Let T ′ be obtained from T by adding its ‘limit points’: for each
maximal simplex M in T add a new vertex v(M), joining v(M) to every vertex
of M . Thus, M ′ := T ′ [M ∪ { v(M) } ] is a maximal simplex in T ′. (In the
concrete model of T cited above, the new vertices v(M) may be thought of as
representing the 0-1 sequences of length ω.) We shall prove that T ′ satisfies (†)
but has no simplicial tree-decomposition into primes.
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To see that T ′ satisfies (†), notice that any separating simplex S ⊂ T ′

attached to a component C of T ′\S has a prime extension of the form M ′

into C.
In order to show that T ′ has no simplicial tree-decomposition into primes,

notice first that there are 2ℵ0 vertices of the form v(M), and hence 2ℵ0 sim-
plices of the form M ′. Moreover, these simplices are the only possible prime
factors of T ′. (Since we skirted round the subject of which subgraphs can
occur as prime factors in simplicial decompositions, the reader must be asked
to take this on faith. However, we did mention that simplicial factors are always
unattached—and the simplices M ′ are clearly the only unattached and prime
subgraphs of T ′.)

Now suppose that F = (Bλ)λ<σ is a simplicial tree-decomposition of T ′

into primes. Consider a maximal simplex M in T , and assume that M ′ = Bµ.
Then Sµ ⊂ M . Since M ′ is the only factor in F that contains the entire
simplex M , but Sµ must also be contained in some other factor Bλ (by (S4)),
Sµ cannot be equal to M ; hence, M\Sµ �= ∅. We may therefore associate with
the factor M ′ = Bµ a vertex w(M ′) ∈ M\Sµ, noting that M ′ is the first factor
in F that contains w(M ′) (because w(M ′) /∈ Sµ implies that w(M ′) /∈ G|µ).
We have thus obtained an injective map from the uncountable set of factors
in F to the vertex set of T , which contradicts the countability of T .

1.3. Simplicial minors

It is a striking phenomenon that long after Halin had published his original ex-
ample of a graph not admitting a simplicial tree-decomposition into primes, no
essentially different such ‘counterexample’ had been found. Indeed, all graphs
G without such a prime decomposition seem to have a structure very much like
that of H1: they all contain an infinite simplex S separating G into compo-
nents C and C ′, where S is attached to C, G [C ∪ S ] is covered by a family
(Y1, Y2, . . .) of convex subgraphs that have the same intersection pattern with
S and with each other as in the case of H1, and S′ (defined as earlier) is not
contained in any one of the Yi. It is then only a small step further to notice
that contracting C ′ to a single vertex x and maybe shrinking the subgraphs Yi

a little gives one a contraction of G [C ′ ∪S ∪C ] onto H1.
And indeed, it can be shown that

(∗) Any graph not admitting a simplicial tree-decomposition into primes has

a minor isomorphic to H1.

How about the converse of (∗)—that is, how far is (∗) from being a charac-
terization of the graphs that admit simplicial tree-decompositions into primes?

Notice that the graph property of not containing H1 as a minor is closed
under taking minors. Thus we can only hope to characterize the prime-
decomposable graphs by that property if they share this feature, i.e. if minors of
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decomposable graphs are again decomposable. Or more intuitively, if we seek to
express our observation that H1 is in a sense the ‘simplest’ non-decomposable
graph by use of the minor relation, then this relation and our notion of ‘sim-
pler’ should match: a minor of a graph with a prime decomposition should
itself admit a prime decomposition, and this should be at most as complex as
that of the original graph.

With the usual concept of a minor, however, this is far from true. Recall
that a minor of a graph G is obtained in two steps:

(1) taking a subgraph of G, and

(2) contracting connected parts of the subgraph.

Clearly, both these steps are too general to meet our above requirement. That
is, if G is a graph that has a relatively simple prime decomposition, and if H
is obtained from G by either of the two steps, then H may only admit much
more complex prime decompositions, or even none at all.

For example, if G is an infinite simplex and thus admits the trivial prime
decomposition consisting only of itself, we can find subgraphs in G with ar-
bitrarily complex or even no prime decompositions, including H1. An only
slightly more complicated example shows that even if we restrict step (1) to
taking induced subgraphs it still allows us to obtain H1 from a prime graph: if
we add a new vertex to H1 and join it to all old vertices by independent paths
of length at least 2, the resulting graph is prime (because it has no separating
simplex) and contains H1 as an induced subgraph.

As an example for step (2), consider the graph G obtained by identifying
two cycles of order 10 along 3 consecutive vertices x, y, z. Then G is prime,
but contracting the edges xy and yz results in a graph that has a separating
simplex (the contracted vertex), and therefore only a non-trivial prime decom-
position into two factors. Or more extremely, if we subdivide every edge of H1

once, the resulting graph will again be prime (and therefore admit the trivial
prime decomposition), but we can reobtain H1 from it only by contracting the
appropriate edges.

Thus if we want the converse of (∗) to hold, we have to restrict the defini-
tion of a minor by sharpening both of the above steps.

Let us call two vertices of a graph simplicially close if they are not sepa-
rated by any simplex, and let us call H a simplicial minor of G if H is obtained
from G by

(1′) taking a convex subgraph of G, and

(2′) contracting connected parts of this convex subgraph in such a way that
simplicially close vertices remain simplicially close.

It is easily seen that this restricted concept of a minor no longer admits
the examples we considered above. And indeed, simplicial minors satisfy the
converse of (∗):
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(∗∗) If H1 is a simplicial minor of G, then G admits no simplicial tree-decom-

position into primes.

(More generally, one can show that if G has a simplicial tree-decomposition
into primes and H is a simplicial minor of G, then H has a simplicial tree-
decomposition into primes; see [ 1, Ch. 3.2 ].)

In order to achieve (∗∗), we had to come down a long way from the most
general concept of a minor that formed the basis of (∗). It would therefore not
be surprising if we now had to pay for the gain of (∗∗) with the loss of (∗), that
is, if not admitting a prime decomposition no longer implied the existence of
certain (simplicial) minors like H1.

The following main theorem of [ 2 ] asserts that this is not the case: the
graphs admitting a simplicial tree-decomposition into primes are characterized
by only two forbidden simplicial minors, H1 and the graph H2 obtained from
H1 by filling in all missing edges of the form yiyj .

Theorem 1.5. A countable graph G admits a simplicial tree-decomposition

into primes if and only if neither H1 nor H2 is a simplicial minor of G.

Given the intuitive appeal of characterizations by forbidden configurations
and the apparent suitability of simplicial minors in the context of the prime
decomposition problem, it would be interesting to derive a simplicial minor
version of Dirac’s theorem (Theorem 1.3). Moreover, our example T ′ of an
uncountable graph without a simplicial tree-decomposition into primes (see
the end of the previous section) suggests the following conjecture:

Conjecture. A graph G (of any cardinality) admits a simplicial tree-decom-

position into primes if and only if none of H1, H2 or T ′ is a simplicial minor

of G.

2. Decompositions into small factors

The quest for prime decompositions, as discussed in Section 1, arises straight
from the very notion of a decomposition: to break down a graph into factors
which are as small as possible. In the case of prime decompositions, ‘small’
is defined locally: a factor is considered small enough (only) if it cannot be
replaced with factors decomposing it further.

If we replace this local concept of ‘small’ with a global one, imposing a fixed
bound on the size of each factor, we obtain a problem which is quite different
in character but no less interesting: given any cardinal a, which graphs admit

a simplicial decomposition into factors of order < a?
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There are two obvious obstructions to the existence of a simplicial de-
composition into such uniformly small factors. One is the existence of large
complete subgraphs: if G = Ka, for example, then G is prime and cannot
be decomposed into factors of order < a. (Note, however, that if we delete
the vertex x from our earlier graph H1, we obtain a graph H ′

1 which contains
an infinite simplex but still admits a simplicial decomposition into the finite
factors Yi.)

Another property which tends to be incompatible with decomposition into
factors of order < a is high connectivity. For suppose that G has a simplicial
decomposition into such factors, and that x, y ∈ V (G) are non-adjacent. If x
and y are in the same factor B, they cannot be joined by a or more independent
paths. (These paths could without loss of generality be chosen induced, and
would thus have to be contained in B, because as a simplicial factor B is a
convex subgraph of G.) But if x and y are not in a common factor, they are
separated by some simplex of attachment Sµ, so again they cannot be joined
by a or more independent paths (because |Sµ| < |Bµ| < a).

The following theorem of Halin [ 15 ] says that if a is regular and uncount-
able, then these two obstructions to the existence of a simplicial decomposition
into factors of order < a are all there are: if we ban Ka subgraphs and large
systems of independent paths, the desired decomposition exists.

Theorem 2.1. Let G be a graph and a a regular uncountable cardinal. Sup-

pose that G �⊇ Ka, and that for any two non-adjacent vertices x, y ∈ V (G)
there are fewer than a independent x–y paths in G. Then G admits a simplicial

decomposition into factors of order < a.

Note that Theorem 2.1 does not extend down to a = ℵ0: the infinite
grid, for example, is prime (and thus has no simplicial decomposition into
finite factors), but it contains neither an infinite simplex nor an infinite set of
independent paths joining any two vertices.

Thus, embarrassingly, the simplest and most intriguing case of our problem
remains open:

Problem. Which graphs admit a simplicial decomposition into finite factors?
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3. The uniqueness of prime decompositions

An aspect of simplicial decomposition theory which has been studied in some
detail is that of the uniqueness of prime decompositions:

Problem. Which graphs have a simplicial decomposition into a unique set of

prime factors?

Recall that, by Halin’s theorem (Theorem 1.2), every graph not containing
an infinite simplex admits a simplicial decomposition into prime factors. These
factors are uniquely determined; they are precisely those prime subgraphs that
are convex and unattached. The unique set of primes of a finite graph can be
obtained particularly easily, by iteratively splitting the graph along minimal
separating simplices.

As soon as we admit infinite simplices as subgraphs, however, prime de-
compositions need no longer be unique. Consider, for example, our graph
H ′

1 = H1 −x. H ′
1 admits two different prime decompositions,

F = (S, Y1, Y2, Y3, . . .)

and

F ′ = (Y1, Y2, Y3, . . .) .

Thus, while F is a perfectly acceptable simplicial decomposition into primes,
its factor S is in a sense redundant: if we omit it, the remaining factors still
form a prime decomposition of H ′

1.
Let us call a simplicial decomposition reduced if it has no such redundant

factors. Reduced prime decompositions are by far the most ‘common’ kind; for
example, all prime decompositions into finite factors are reduced [ 6 ].

The following result was obtained in [ 1 ]:

Theorem 3.1. Any two reduced prime decompositions of a graph have the

same set of factors.

The immediate question arising from this result is whether every graph
that has some simplicial decomposition into primes also has a reduced such
decomposition—in which case prime decompositions could in practice be taken
reduced as a matter of course. However, this is not the case; our graph T ,
the ‘transitive closure’ of the infinite dyadic tree, has numerous simplicial de-
compositions into primes—select maximal simplices M in any order—but no
reduced prime decomposition.

It would be interesting to know (and should not be too difficult to decide)
whether T is essentially the only example of such a graph:

Problem. Is T in some sense contained in every graph that admits a simplicial

decomposition into primes but no reduced such decomposition?
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The problem of determining the graphs which admit a reduced simplicial
decomposition into primes has another fascinating aspect: any solution would,
on the basis of other known results, imply a solution to the last problem of the
previous section, to determine which graphs admit a simplicial decomposition
into finite factors. See [ 1, Ch. 4.4 ] for details.

4. Tree-decompositions

Simplicial decomposition theory does not only provide the theoretical basis for
applications such as excluded minor theorems by homomorphism bases; it is
also valuable for the study of a more general type of decompositions, called
tree-decompositions.

The original idea behind the concept of a tree-decomposition, first intro-
duced by Robertson and Seymour [ 16 ], was to make precise the apparent tree
shape imposed on a graph by a simplicial decomposition; see Fig. 2. How could
this be done?

The definition given by Robertson and Seymour refers directly to the tree
T (G) which the shape of the graph G is deemed to resemble: they call a
family (Xt)t∈T (G) of subsets of V (G) a tree-decomposition of G if

(T1)
⋃

t∈T (G)Xt = V (G);

(T2) ∀xy ∈ E(G) : ∃ t ∈ T (G) : x, y ∈ Xt;

(T3) if t, t′, t′′ ∈ T (G) and t′ lies on the t–t′′ path in T (G), then Xt∩Xt′′ ⊂ Xt′ .

For compatibility with simplicial decompositions, we shall here take a
slightly different approach, closer to our definition of a simplicial decomposi-
tion. Given a simplicial decomposition F = (Bλ)λ<σ, how should we associate
a tree TF with F , so as to express the tree shape of G imposed by F?

The obvious choice for the vertex set of TF is the set of factors in F ,

V (TF ) = {Bλ | λ < σ } .

The edges of TF should, intuitively, correspond to the simplices of attachment
in F , so let us choose them inductively for each µ < σ. Having constructed a
partial tree on {Bλ | λ < µ }, how shall we join the next ‘vertex’ Bµ to this
tree? In the example of Fig. 2, the obvious solution would be to join Bµ to the
unique Bλ (with λ < µ) which contains Sµ. Clearly, this can be done whenever
F is such that

(S4) each Sµ is contained in Bλ for some λ < µ (µ < σ);

if Bλ is not unique, we simply choose λ to be minimal. We may therefore
call F a simplicial tree-decomposition of G if, in addition to (S1)–(S3), it also
satisfies (S4).
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Note that the existence of the decomposition tree TF , as defined above, is
now independent of the conditions which originally gave rise to F as a simplicial
decomposition, in particular of (S2). If the tree shape of G is all we are inter-
ested in, we may therefore discard (S2) (and, if we so wish, (S3)) and call any
family F = (Bλ)λ<σ a tree-decomposition of G if it satisfies (S1) and (S4). It is
not difficult to show that this definition of a tree-decomposition is equivalent to
that given by Robertson and Seymour, except for the additional well-ordering
of V (TF ). (The latter is often convenient to have, especially for proofs by
induction on µ.)

Tree-decompositions are well worth investigating for their own sake, just
as simplicial decomposition are. The most natural questions, however, are
different. For example, there is not much point in asking for a tree-decomposi-
tion into primes: the only graphs that are prime (i.e. irreducible) with respect
to tree-decompositions are the complete graphs, and only chordal graphs can
have tree-decompositions into complete factors [ 3 ]. On the other hand, the
value of a tree-decomposition can meaningfully be measured by the size of its
factors. This raises questions like that of determining the tree-width of the
graphs G with a given property—the tree-width of G is the smallest natural k,
if one exists, such that G admits a tree-decomposition into factors of order
at most k+ 1—or of how to obtain algorithmically a tree-decomposition of a
graph that realizes its tree-width.

The following natural problem has not yet, to my knowledge, been inves-
tigated in its own right:

Problem. Which graphs admit a tree-decomposition into finite factors?

Robertson, Seymour and Thomas (see [ 18 ]) have recently shown that the ex-
clusion of infinite complete minors (even of subdivisions of infinite simplices)
is sufficient for the existence of such a decomposition: every Kℵ0-free graph
has a tree-decomposition into finite factors. The converse of this, however, is
false: our decomposition F ′ = (Y1, Y2, Y3, . . .) of the graph H ′

1 in Section 3 is
a tree-decomposition into finite factors, but H ′

1 contains an infinite simplex.

Even if a simplicial decomposition, by the example shown in Fig. 2, has
inspired our definition of a tree-decomposition—we have not yet shown that
every simplicial decomposition F does indeed satisfy (S4) and thereby defines
a decomposition tree TF . In other words: can a simplicial decomposition fail
to satisfy (S4) and thus not be a simplicial tree-decomposition?

At first glance, it seems pretty obvious that (S4) should follow from (S2).
For if a simplex of attachment Sµ is not contained in a single earlier factor Bλ,
one should expect it to contain vertices that are separated by some other sim-
plex of attachment—which of course is impossible if these vertices, being in the
same simplex, are to be adjacent (Fig. 8). And indeed, it is not difficult to show
that any simplicial decomposition is in fact a simplicial tree-decomposition—if
all its simplices of attachment are finite.
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Bµ ?

FIGURE 8. How (S2) prevents cycles in the decompo-
sition tree

However, we have already seen an example of a simplicial decomposition
which is not a simplicial tree-decomposition: the decomposition of the graphH1

given in Section 1.2. This decomposition does not satisfy (S4), because the (in-
finite) simplex of attachment of its last factorX, the simplex S, is not contained
in any of the earlier factors Yi.

Thus if we tried to define a decomposition tree for this decomposition
of H1 in the usual way, we would get stuck at the last factor X: this factor
should somehow sit ‘above’ the infinite path Y1Y2 . . . , but it has no immediate
predecessor among the vertices of this path. (Intuitively, we fail to obtain a tree
not because the factor X would introduce a cycle—a danger averted effectively
by condition (S2); see Fig. 8—but because we would lose the connectedness of
the tree.)

Fortunately, such ‘trees’ with limit points are familiar objects: they are
equivalent to order theoretical trees, partially ordered sets in which every set
of predecessors is linearly ordered. (In our example, {Y1, Y2 . . . } would be the
set of predecessors of X.) And indeed, it is not difficult to show that with any
simplicial decomposition F which fails to satisfy (S4) one can associate such a
(well-founded) order theoretical decomposition tree TF , much in the same way
as one associates a graph theoretical tree with a simplicial tree-decomposition.
(The similarity can be made precise: the decomposition tree for general simpli-
cial decompositions is defined in such a way that it coincides with the (natural
order of the rooted) decomposition tree induced by (S4) if the decomposition
happens to be a simplicial tree-decomposition; see [ 1, Ch. 5.4 ] for details.)

Let us return to the original theme of this section. We set out to find
a concept of tree-decomposition which makes precise the apparent tree shape
of a graph decomposed simplicially. We have partially succeeded in doing so
by introducing the condition (S4); this condition, if satisfied, gives rise to a
decomposition tree TF which corresponds in the desired natural way to a given
decomposition F . However, we have seen that (S4) is not satisfied by every
simplicial decomposition. On the other hand, a general simplicial decomposi-
tion still gives rise to a generalized type of decomposition tree. The question we
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face, therefore, is this: how can (S4) be weakened, to another condition (S5),
say, in such a way that every simplicial decomposition satisfies (S5) but (S5)
is still strong enough to give rise to an order theoretical decomposition tree as
associated with a general simplicial decomposition?

Our discussion of H1 suggests that the desired condition (S5) should aim
to capture the ‘acyclicity’ in the arrangement of factors in a simplicial decom-
position, as shown in Fig. 8. For as we have seen, this acyclicity is precisely the
tree-like property which is retained by order theoretical over graph theoretical
trees (as opposed to their connectedness), while on the other hand this acyclic-
ity does indeed follow from (S2), and is therefore a feature of general simplicial
decompositions. In other words, (S5) should express that a new factor Bµ

cannot use vertices of G|µ for its simplex of attachment if these vertices are
taken from different ‘branches’ of the decomposition tree of G|µ. The following
condition aims to express this:

(S5) µ < σ, x ∈ G|µ\Sµ, y ∈ Bµ\Sµ ⇒ �λ < σ : x, y ∈ Bλ.

And indeed, it is not difficult to show that this condition (S5) has the de-
sired properties: while being a consequence of (S2) and thus common to all
simplicial decompositions, it gives rise to the same decomposition tree as that
associated with a general simplicial decomposition. We are therefore justified
in calling a family F = (Bλ)λ<σ a generalized tree-decomposition if it sat-
isfies (S1) and (S5), and the order theoretical tree TF associated with it its
(generalized) decomposition tree. Then any tree-decomposition (as well as any
simplicial decomposition) is also a generalized tree-decomposition—notice that
(S4) implies (S5)—and the (order theoretical) decomposition tree of a general-
ized tree-decomposition F coincides with the (graph theoretical) decomposition
tree of F if F happens to satisfy (S4).

Let us finally see how the concepts of these tree-decompositions can be
applied. Recall that with the use of simplicial decompositions for the char-
acterization of minor-closed graph properties (via homomorphism bases) we
encountered a serious problem: in many cases the prime factors which were
needed to construct all the graphs without a certain given minor were as nu-
merous and as varied as these graphs themselves, a ‘characterization’ of these
graphs by their prime factors therefore both difficult and pointless. It is there-
fore natural to relax the definition of the decomposition used: this should result
in smaller and therefore fewer possible different factors.

The tree-decompositions definied above were inspired by this idea: they
still aim to capture the overall tree structure of the graphs with a given property
(in our case, without a given excluded minor), while making fewer requirements
on the nature of the factors and their attachment graphs. Of course, the graphs
with a given property can only be characterized by their tree shape if they all
share a common tree structure. While this cannot be expected of an arbitrary
minor-closed graph property, it is worth an effort trying to find out for which
properties it can be done:
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Problem. Which graph properties can be described in terms of the tree struc-

ture of their members?

For properties defined by the exclusion of a single finite minorX, this ques-
tion is answered beautifully by a result of Robertson and Seymour [ 17 ]: the
graphs without an X minor have tree-decompositions into factors of bounded
finite order if and only if X is planar.

Graph properties defined by excluding infinite minors have only been stud-
ied very recently. For graphs without large infinite simplices as minors, a char-
acterization purely in terms of tree-decompositions was obtained in [ 8 ] (or [ 1,
Ch. 5.4 ]):

Theorem 4.1. If a is a regular uncountable cardinal, then a graphG has noKa

minor if and only if G admits a generalized tree-decomposition F = (Bλ)λ<σ

such that every Bλ and every chain in TF has order < a.

The proof of this result is based on Theorem 2.1 and uses simplicial de-
compositions. Applying different methods, Robertson, Seymour and Thomas
have recently obtained an equivalent theorem, which moreover has a natural
extension to singular a and to a = ℵ0. For a survey of this and other beautiful
structure theorems in terms of generalized tree-decompositions see [ 18 ] in this
volume.
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