
NOTE

Decomposition Duality

Reinhard Diestel

The purpose of this note is just to point out a duality aspect of graph decom-
positions that came up unexpectedly in the context of other investigations [ 1 ],
but which can be presented briefly on its own and may be of independent
interest. The duality we shall define generalizes the duality of plane graphs. It
thus raises the question whether results based on the latter (such as colouring-
flow duality) can be extended or seen in a new light when viewed from a
decomposition angle.

Let G, H be graphs. Consider a family D = (Gh)h∈H of induced subgraphs
of G indexed by the vertices of H. Let us call D an H-decomposition of G (into
the parts Gh) if

(D1) every vertex of G lies in some Gh

(D2) given an edge e = gg′ ∈ G, either e lies in some Gh or there exists an
edge hh′ ∈ H such that g ∈ Gh and g′ ∈ Gh′

and call this decomposition D connected if it also satisfies

(D3) whenever a vertex g ∈ G lies in Gh1 ∩Gh2 for some h1, h2 ∈ H, there is
a path P = h1 . . . h2 in H such that g ∈ Gh for every h ∈ P .

When H is a tree, then this kind of decomposition is closely related to standard
tree-decompositions; see [ 1 ].

For every g ∈ G define a subgraph Hg of H by setting

Hg = H [ {h | g ∈ Gh } ] , (1)

and write
D∗ := (Hg)g∈G (2)

for the family of these subgraphs. We shall call the family D∗ the dual of the
family D, and its parts Hg the co-parts of D.

It is possible to rewrite the conditions (D1)–(D3) more elegantly in terms of
these co-parts. Recall that two subgraphs of a graph H are said to touch (in H)
if they have a vertex in common or H contains an edge between them. Each of
the conditions (D1)–(D3) is easily seen to be equivalent to the corresponding
following condition:

(C1) every Hg is non-empty;

(C2) for every edge gg′ ∈ G, the graphs Hg and Hg′ touch in H;

(C3) every Hg is connected.
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The conditions (C1)–(C3) offer an alternative way to think of a given H-
decomposition of G: as a collection of subgraphs of H rather than of G. Indeed,
presenting D∗ instead of D entails no loss of information. For given any two
vertices g ∈ G and h ∈ H, clearly (1) implies that

g ∈ Gh ⇔ h ∈ Hg (3)

and hence that
Gh = G [ { g | h ∈ Hg } ] , (4)

the dual statement to (1). So the Gh can be reobtained from the Hg, and they
are obtained from them in exactly the same way as the Hg were obtained from
the Gh. Thus,

D∗∗ = D.

Now it may or may not happen that the family D∗ = (Hg)g∈G obtained
from our H-decomposition D = (Gh)h∈H is in turn a G-decomposition of H.
Let us call D invertible if this is the case. By (4), the conditions (C1)–(C3) for
when this happens translate as follows:

Proposition 1. D is invertible if and only if

(I1) every Gh is non-empty;

(I2) for every edge hh′ ∈ H, the parts Gh and Gh′ touch in G.

The dual decomposition D∗ of D will be connected if and only if

(I3) every Gh is connected. �

The ‘message’ of translating the conditions on D∗ into statements about
D in this way is that D is invertible as soon as H has no more vertices or
edges than are required for D to satisfy (D1) and (D2). Thus we can make any
H-decomposition invertible simply by deleting superfluous vertices and edges
of H. (This technique turned out to be surprisingly useful in [ 2 ].)

Given a pair of dual decompositions D and D∗ as above, one might at first
be tempted also to think of H as a dual of G, and vice versa. However, given a
graph G there is no unique H such that G has an invertible H-decomposition.

For example, every graph G �= ∅ has two trivial invertible decompositions:
the K1-decomposition into just one part G, and the G-decomposition into sin-
gletons, ie. with Gg = { g }. More generally, for every graph H that contains
G as a minor, G has the connected H-decomposition (Gh)h∈H into singletons
defined by choosing as Hg the subgraph of H induced by the branch set corre-
sponding to g. If G is even an MH, ie. obtained just by contraction without
deletion, then (I1) and (I2) hold while (I3) is void, so this decomposition is
invertible.

However, what we might ask for is a canonical way of obtaining such dual
graphs and decompositions:
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Problem 2. For which classes C of finite graphs can we assign in a non-trivial

way to every graph G ∈ C a graph G∗ ∈ C and an invertible G∗-decomposition

D(G) of G so that G∗∗ = G and D(G∗) = D∗(G)?

Here, D∗(G) denotes the dual of the decomposition D(G). The definition of
‘non-trivial’ will have to be adjusted to need; for example, it should probably
preclude most choices of G∗ and D(G) with G∗ = G.

Abstract though this may seem, there is a well-known instance of this
kind of duality: the duality of planar graphs. Indeed, if G is a planar graph
(3-connected, say, to make its drawing unique) and G∗ is its planar dual, then
the obvious G∗-decomposition of G into its face boundaries satisfies all the
requirements of Problem 2. A special case of this problem, therefore, would
be to ask for C to extend the class of planar graphs and for G∗ and D(G) to
coincide with planar duality and face decompositions when G is planar. For
example:

Problem 3. Can the flow-colouring duality for plane graphs be extended to a

larger class based on decomposition duality?

It should be pointed out that interpreting planar duality as decomposition
duality in this way is, so far, no more than a restatement, carrying no ‘sub-
stance’. The hope, however, is that viewing this duality from a decomposition
angle might guide attempts to generalize planar duality in ways that are natural
in a decomposition context but might otherwise not be obvious.
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