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Abstract
The connected tree-width of a graph is the minimum width of a tree-
decomposition whose parts induce connected subgraphs. Long cycles
are examples of graphs that have small tree-width but large connected
tree-width. We show that a graph has small connected tree-width if
and only if it has small tree-width and contains no long geodesic cycle.

We further prove a connected analogue of the duality theorem for
tree-width: a finite graph has small connected tree-width if and only
if it has no bramble whose connected covers are all large. Both these
results are qualitative: the bounds are good but not tight.

We show that graphs of connected tree-width k are k-hyperbolic,
which is tight, and that graphs of tree-width k whose geodesic cycles
all have length at most ` are b3

2`(k � 1)c-hyperbolic. The existence of
such a function h(k, `) had been conjectured by Sullivan.

1 Introduction

Let us call a tree-decomposition (T, (Vt)t2T ) of a graph G connected if its
parts Vt are connected in G. For example, the standard minimum width
tree-decomposition of a tree or a grid is connected. The connected tree-width
ctw(G) of G is the minimum width that a connected tree-decomposition of
G can have.

Much of the practical use of tree-decompositions, connected or not, de-
rives from the fact that G reflects the nested edge-separations of T obtained
by deleting a single edge: these correspond to nested vertex-separations of G.
If the tree-decomposition and G are connected, we also have a converse:
then every (connected) subtree of T induces a connected subgraph of G.

We shall indicate below some contexts in which connected tree-width has
been used for applications. The purpose of this paper, however, is to answer
the natural first question one would ask: does connected tree-width di↵er
from ordinary tree-width, and if so how? The answer will be unexpectedly
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satisfying: we shall find an obstruction to when the two parameters are tied
(in the sense that each is bounded by a function of the other), and be able
to show that it is the only obstruction. Let us make this precise.

The ordinary tree-width tw(G) of a graph G is clearly at most its con-
nected tree-width, so large tree-width causes a graph to have large connected
tree-width. But it is not the only possible cause.

A k-cycle C, for example, has tree-width 2 but connected tree-width dk/2e.
Indeed, its only connected subgraphs are its segments. In any tree-decompo-
sition none of whose parts contains another, the intersection of two adjacent
parts separates them in the whole graph [4, Lemma12.3.1]. But the inter-
section of two such segments of C only separates them in C if they cover C –
in which case one of them has at least dk/2e edges.

Long cycles as subgraphs do not necessarily raise the connected tree-
width: consider wheels. But long geodesic cycles do: we shall be able to
show that every graph containing a k-cycle geodesically also has connected
tree-width at least dk/2e (Lemma 7.1). Here, a path or cycle in G is geodesic
if it is an isometric subgraph of G. A subgraph H ✓ G is isometric in G if
dH(x, y) = dG(x, y) for all its vertices x and y, where d(x, y) is the length of
a shortest x–y path in H or G, respectively. Note that geodesic u–v paths
are simply shortest u–v paths.

Our main theorem says that, conversely, large tree-width and long geodesic
cycles are the only two obstructions to small connected tree-width:

Theorem 1.1. The connected tree-width of a graph G is bounded above by
a function of its tree-width and of the maximum length of its geodesic cycles.

Specifically, if G is not a forest, tw(G) < k 2 N, and ` is the maximum
length of a geodesic cycle in G, then ctw(G) < f(k, `) for

f(k, `) = k +
✓

k

2

◆�
`(k � 2)� 1

�
.

Theorem 1.1 is qualitatively best possible in that the two obstructions
are independent: a large cycle (as a graph) contains a large geodesic cycle
but has small tree-width, while a large grid has large tree-width but all its
geodesic cycles are small. And both graphs have large connected tree-width.

Quantitatively, the bound has recently been improved by Hamann and
Weißauer [7].

Among the classical1 obstructions to small ordinary tree-width there is
one that gives a tight duality theorem: large-order brambles. A bramble is

1See [5] for a more recent duality theorem for tree-width that is also tight.
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a set of pairwise touching connected sets of vertices, where two vertex sets
touch if they share a vertex or the graph has an edge between them. A set
of vertices covers (or is a cover of) a bramble if it has a vertex in each of
these sets. The order of a bramble is the smallest size of a cover.

Tree-width duality theorem (Seymour & Thomas [11, 4]). A graph has
tree-width at least k � 0 if and only if it contains a bramble of order > k.

To adapt this duality to connected tree-width, let the connected order
of a bramble be the least order of a connected cover, a cover inducing a
connected subgraph. Given any tree-decomposition of a graph, it is well
known and easy to show that every bramble is covered by some part of that
tree-decomposition. Hence graphs of connected tree-width < k cannot have
brambles of connected order > k. Theorem 1.1 will enable us to prove a
qualitative converse of this:

Theorem 1.2. There is a function g : N ! N such that every graph with
no bramble of connected order > k has connected tree-width < g(k).

We conjecture that, just as in the case of ordinary tree-width, the duality
is also quantitatively tight:

Conjecture. A graph has connected tree-width at least k � 0 if and only if
it contains a bramble of connected order > k.

We believe that the notion of connected tree-width is natural enough to
merit further study: tree-decompositions, after all, are meant to exhibit the
tree-like structure of a graph, and this aim is better served when its parts
are connected (as in a minimum-width decomposition of a tree) than if not
(as in a minimum-width decomposition of a long cycle). However, let us
give a few pointers to how it relates to other contexts, both in graph theory
and beyond.

One of these is hyperbolic graphs. These are important especially when
they are infinite and appear as Cayley graphs of hyperbolic groups. But
hyperbolicity has also been exploited for the design of algorithms. We shall
prove the following (see Section 6 for a more detailed statement and a defi-
nition of hyperbolicity):

Theorem 1.3. Graphs of connected tree-width k are k-hyperbolic. This is
best possible for every k > 1.
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Another width parameter, somewhat related to connected tree-width,
was introduced recently by Dourisboure and Gavoille [6] and has since re-
ceived some attention. They call it the tree-length of a graph G: the small-
est value, minimized over all its tree-decompositions, of the maximum dis-
tance in G of any two vertices in a common part of this decomposition.
Clearly, graphs of connected tree-width < k also have tree-length < k, so by
Theorem 1.1 the tree-length of G is bounded by the same function f(k, `)
as its connected tree-width. In fact, Reidl and Sullivan [12, 1] observed that
the following better bound follows directly from one of our lemmas for the
proof of Theorem 1.1:

Theorem 1.4. If G has tree-width < k and no geodesic cycle longer than `,
and G is not a forest, then the tree-length of G is at most `(k � 2).

Chepoi et al. [3] showed that graphs of tree-length at most k are 4k-
hyperbolic. We shall give a simple direct proof showing that they are b3

2kc-
hyperbolic, which is best possible.

Theorem 1.4 thus implies that graphs of tree-width < k that have no
geodesic cycle longer than ` are b3

2`(k � 2)c-hyperbolic. This confirms the
conjecture of Sullivan [12] that the hyperbolicity of graphs can be bounded
in terms of their tree-width and the maximum length of their geodesic cycles.
Note that bounding just one of these parameters will not imply hyperbolic-
ity: long cycles have small tree-width and grids have no geodesic cycles of
length > 4, but neither of these (classes of) graphs is hyperbolic.

Finally, connected tree-width has been used directly for the design of
algorithms. Soon after this paper first appeared on the ArXiv [10], Jegou
and Terrioux [8, 9] used connected tree-width in the context of constraint
satisfaction problems in AI. They show how practical CSP algorithms can
be improved if the constraint network considered has bounded connected
tree-width. They also study the complexity of computing the connected
tree-width of a graph.

We use the terminology of [4]. In particular, the length of a path is its
number of edges, and the distance dG(u, v) between vertices u, v in a graph G
is the minimum length of a u–v path in G. Given vertices u, v in a tree T ,
possibly just a path, we write uTv for the unique path in T between u and v.
We also assume familiarity with the basic theory of tree-decompositions as
described in [4, Ch. 12.3], in particular with their axioms (T1)–(T3). The
proof of our main result, Theorem 1.1, will be given in Sections 2–5. In
Section 7 we use it to prove Theorem 1.2. Theorems 1.3–1.4 are proved in
Section 6.
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2 Making a tree-decomposition connected

Our approach to obtaining an upper bound for the connected tree-width
of a graph G will be to start with an ordinary tree-decomposition of G of
low width, and then to make its parts connected by adding paths joining its
components in G. Since adding vertices to a part may invalidate axiom (T3)
of a tree-decomposition, we may have to add the same vertices to other parts
too. Our task will thus be to ensure that the number of vertices added to
any given part in this way, either explicitly in order to decrease its number
of components or implicitly when repairing (T3), remains bounded.

Vt

x1

x

a b

2

x3

Vt1

Vt2

Vt3

Vs3

. . .

...

Vs1

Vs2

...

Figure 1: Making Vt1 , Vt2 , . . . connected can inflate Vt unboundedly

For example, consider the graph and tree-decomposition indicated in
Figure 1. If for i = 1, 2, . . . we use the path through xi to make Vti con-
nected, we will have to add all the xi to the central part Vt while repair-
ing (T3), because t lies between si and ti in T .

Of course we made a bad choice here: we could use the path through x1

for every Vti . This is the idea behind the following definition: if we already
know a path joining two vertices a and b, we can re-use it whenever we have
to connect a and b later.

Definition 2.1 (Navigational path systems, or navs). Let G = (V,E) be a
graph, K ✓ [V ]2 a set of 2-element subsets xy := {x, y} of its vertex set,
and N = (Pxy)xy2K a family of paths between these, where Pxy links x to y.

(i) N is a K-nav if for every path P 2 N and for every two vertices
a, b 2 P we have ab 2 K and Pab = aPb.
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(ii) A nav is a K-nav for K = [V ]2.

(iii) When D := (T, (Vt)t2T ) is a tree-decomposition of G, then a K-nav
satisfying [Vt]2 ✓ K for every t 2 T is a D-nav.

(iv) N is geodesic if every Pxy 2 N is a shortest x–y path in G.

(v) The length `(N ) of N is the maximum length of a path in N .

We shall use navs to make tree-decompositions connected, as follows:

Lemma 2.2. Let G be a graph, D = (T, (Vt)t2T ) a tree-decomposition of G
of width < k, and N = (Puv)uv2K a D-nav of G. For all t 2 T let

Wt := Vt [
[

xy2[Vt]2

V (Pxy)

Then (T, (Wt)t2T ) is a connected tree-decomposition of G of width less than

k +
✓

k

2

◆�
`(N )� 1

�
.

Proof. The family (T, (Wt)t2T ) satisfies the axioms (T1) and (T2) for tree-
decompositions, because D does. To prove (T3) let t1, t2 and t3 be distinct
nodes of T with t2 2 t1Tt3, and let z 2 Wt1 \ Wt3 be given. We have to
show that z 2 Wt2 .

If z 2 Vt2 this is the case, so we assume that z /2 Vt2 . Then Vt2 , which
separates Vt1 from Vt3 in G, also separates z from one of these, say from Vt3 .
Hence as z 2 Wt3 there are x, y 2 Vt3 such that z 2 Pxy, and z lies on a
subpath uPxyv with u, v 2 Vt2 . Since N is a D-nav, this subpath coincides
with Puv ✓ Wt2 , so z 2 Wt2 as desired.

The sets Wt are connected in G by construction. Since |Vt|  k by
assumption, and each path in N has at most `(N )� 1 inner vertices, they
also satisfy |Wt|  k +

�k
2

�
(`(N )� 1).

Lemma 2.2 reduces our task of making a given tree-decomposition D
connected without increasing its width too much to that of finding a D-nav
of bounded length. This will be achieved by a geodesic nav of G.

While the existence of some nav in a connected graph is trivial – for
example, we can route all its paths through some fixed spanning tree – the
existence of a geodesic nav is more surprising. Spanning trees, for example,
are never geodesic unless the entire graph is a tree.

Lemma 2.3. Every connected graph has a geodesic nav.
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Proof. Let G = (V,E) be a connected graph. Fix a linear ordering on V ,
and consider the following ordering on the subsets of V . If v is the first
vertex of V that lies in the symmetric di↵erence of two sets U1, U2 ✓ V , let
U1 < U2 if v 2 U2. Then U 0 ( U implies U 0 < U , and if we replace in U a
subset U 0 ✓ U with a smaller set U 00 < U 0, the resulting set (U \U 0)[U 00 is
smaller than U .

For every two vertices x, y 2 V let Pxy be a shortest x–y path in G whose
vertex set is smallest in our ordering among all such paths. We claim that
N := (Pxy)xy2[V ]2 is a nav in G; if so, it will be geodesic by definition.

Suppose not. Then there are x, y 2 V and a, b 2 Pxy such that Pab

di↵ers from aPxyb. As both these paths are geodesic, it is easy to see that
their vertex sets di↵er too; then V (Pab) < V (aPxyb) by the choice of Pab. By
our earlier observation, replacing aPxyb with Pab in Pxy yields a shortest x–y
path with a vertex set smaller than V (Pxy), contrary to the choice of Pxy.

A geodesic nav N = (Pxy)xy2[V ]2 of G induces, for any tree-decomposi-
tion D = (T, (Vt)t2T ) of G, a geodesic D-nav ND := (Puv)uv2KD of G simply
by restricting [V ]2 to its subset

KD :=
[
t2T

[
xy2[Vt]2

[V (Pxy)]2;

note that ND is indeed a nav. Its length `(ND) is bounded by the maximum
distance of two vertices in a common part of D.

We have thus reduced our task further: it only remains to find a tree-
decomposition of width tw(G) such that the distance between any two ver-
tices in a common part is bounded by a function of tw(G) and of the maxi-
mum length of a geodesic cycle in G.

3 Atomic tree-decompositions

We shall work with tree-decompositions that cannot be refined in a certain
sense. These were introduced by Thomas [13] and have also been used in [2].
We therefore only sketch the proofs of the few easy lemmas we need. Explicit
proofs can be found in [10].

Definition 3.1 (Atomic tree-decomposition). The fatness of a tree-decom-
position of a graph of order n is the n-tuple (a0, . . . , an) in whichs ai denotes
the number of parts of order n�i. A tree-decomposition of lexicographically
minimum fatness is atomic.
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Clearly, atomic tree-decompositions of a graph G have width tw(G). The
point of the notion is to minimize not just the largest part but the smaller
ones too, in turn as their size decreases.

Let D = (T, (Vt)t2T ) be an atomic tree-decomposition of a graph G.

Lemma 3.2. No part of D contains another part.

Proof. If there are t 6= t0 such that Vt0 ✓ Vt, then by (T3) such t, t0 can be
chosen adjacent. Contracting the edge tt0 in T and assigning Vt as a part
to the new contracted node yields a tree-decomposition of smaller fatness
than D, a contradiction.

Given an edge e = t1t2 of T and i 2 {1, 2}, let Ti be the component of
T � e containing ti, and put Ui :=

S
t2Ti

Vt and Gi := G[Ui]. Then {U1, U2}
is a separation of G, with X := U1 \ U2 = Vt1 \ Vt2 [4, Lemma12.3.1].

Lemma 3.3. G1�X and G2�X have components C1 and C2, respectively,
in which every vertex from X has a neighbour.

Proof. If the neighbourhood of every component of G1�X (say) is a proper
subset of X, we can obtain a tree-decomposition of smaller fatness than D
by replacing its portion that decomposes G1 with the decompositions that
D induces on the graphs G1[V (C)[N(C)], where C ranges over the compo-
nents of G1�X. This decomposition has smaller fatness, because we lose the
part Vt1 ◆ X and gain only parts that are proper subsets of parts we lose.

More formally, we replace T1 in T with copies T1,C of T1, one for every C,
making the nodes t1,C corresponding to t1 adjacent to t2. For every C and
every t 2 T1, we associate VtC := Vt \ (V (C) \ N(C)) with the node tC
of T1,C corresponding to t. It can be checked that the decomposition thus
obtained has smaller fatness than D.

Lemma 3.3 implies at once:

Corollary 3.4. Every two vertices u, v 2 X are linked by an X- path in G1

and another in G2, which thus form a cycle.

Our final lemma ensures that any two non-adjacent vertices in a common
part of D lie in some such X. We shall then be able to use Corollary 3.4 to
find a cycle through them, which will be our aim when we prove Theorem 1.1.

Lemma 3.5. For all t 2 T and distinct u, v 2 Vt, either uv 2 E(G) or t has
a neighbour s in T such that u, v 2 Vs.
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Proof. If not, we split Vt into Vt0 := Vt \{u} and Vt00 := Vt \{v}, and replace
t in T with new adjacent nodes t0, t00. This yields another tree-decomposi-
tion (of smaller fatness) since, by assumption, every Vs with st 2 E(T ) fails
to contain either u or v, so we can join s to t0 or t00, respectively, in the
expanded decomposition tree.

4 Use of the cycle space

As shown at the end of Section 2, our remaining task for a proof of Theorem
1.1 was to show that, in a suitable tree-decomposition of width tw(G) < k,
say, the distance in G between any two vertices in a common part is bounded
by a function of k and of the maximum length ` of a geodesic cycle in G.

The tree-decomposition that we shall choose will be any atomic one, say
D = (T, (Vt)t2T ). By Lemma 3.5 we can then find, for any non-adjacent
vertices u, v in a common part of D, adjacent nodes t1, t2 2 T such that
{u, v} ✓ X := Vt1 \ Vt2 . Corollary 3.4 then provides X-paths P1 ✓ G1

and P2 ✓ G2 linking u to v (the Gi being defined as in Section 3), so that
Cuv := P1 [ P2 will be a cycle.

If these cycles Cuv were geodesic, the distances dG(u, v) would be bounded
by `/2 and achieve our goal. Unfortunately they need not be. However,
we shall use an algebraic argument to deduce from their existence that we
can link the vertices u, v using only geodesic cycles meeting X, and only a
bounded number of these.

Given X ✓ V (G) and a set C of cycles in G, let us write

C[X] :=
[�

C 2 C | V (C) \X 6= ;
 
.

The set C will later be the set of geodesic cycles in G. The diameter of X
in G is the maximum distance in G between any two vertices in X.

Lemma 4.1. If G[X] [ C[X] is connected, 1  ` 2 N, and every cycle in C
has length at most `, then X has diameter at most ` (|X|� 1) in G.

Proof. If C[X] = ; then G[X] is connected, and the assertion holds. If not,
then ` � 3, which we shall now assume.

Let x1, x2 2 X be given. By assumption, G[X][C[X] contains an x1–x2

walk W consisting of segments that are each either an edge of G[X] or a
path on a cycle in C[X]. By definition of C[X], these latter segments, too,
can be chosen so as to meet X. Cutting loops out of W as necessary we
may assume that no two of these segments meet X in the same vertex x,
unless they are consecutive segments meeting at x.
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Let us combine each pair of consecutive segments u . . . x and x . . . v with
x 2 X and u /2 X to a new segment u . . . v. This can be done simultaneously
with all relevant segments since, by our conditions on x and u, a given
segment can be combined with at most one of its two adjacent segments.
Choosing u . . . x and x . . . v as either an edge of G[X] or the shorter half of a
cycle in C[X], we can ensure that the combined segment has length at most `.

The resulting segments all meet X and have distinct first vertices in X.
They each have length at most `. The first segment, starting at x1, can in
fact be chosen of length at most `/2. So can the last segment, the one ending
at x2, unless it is a combined segment, in which case x2 is not its first vertex
in X. Altogether we now have either |X|� 1 segments of length at most `,
or |X| � 2 inner segments of length at most ` and two outer segments of
length at most `/2. So W has length at most ` (|X|� 1), as claimed.

In our next lemmas we use + to denote addition in the binary cycle space
of G, that is, for the symmetric di↵erence of edge sets. To avoid clutter, we
shall not always distinguish notationally between a subgraph and its edge
set, or between an edge e and the set {e}.

Lemma 4.2. Let P = u . . . v be a path in G, where uv =: e /2 E(G). Let D
be an element of the cycle space of G. Then P + D contains a u– v path.

Proof. Since (P + e) + D lies in the cycle space of G + e, it is also an edge-
disjoint union of cycles [4, Prop. 1.9.1]. If C is the cycle containing e, then
C � e is the desired u–v path in P + D.

Lemma 4.3. Let G = G1 [ G2, and let u, v 2 X = V (G1 \ G2) be non-
adjacent in G. Assume that each Gi contains an X- path Pi = u . . . v, and
that C is a set of cycles generating C = P1 [ P2. Then C[X] contains a
u– v path.

Proof. As C generates C, we can find subsets C1, CX , C2 ✓ C such that

C =
P

C1 +
P

CX +
P

C2 ,

where every cycle in Ci has its vertices in Gi � X and every cycle in CX

meets X. By Lemma 4.2 there is a u–v path P in P1 +
P

C1. This latter
set of edges is disjoint from P2 +

P
C2, so

P ✓ P1 +
P

C1 + P2 +
P

C2 = C +
P

C1 +
P

C2 =
P

CX ✓ C[X] .
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Lemma 4.4. Let D be any atomic tree-decomposition of G, and 1  ` 2 N.
Let C be a set of cycles in G, all of length at most `, that generate its cycle
space. Then any two non-adjacent vertices in a common part W of D have
distance at most ` · (|W |� 2) in G.

Proof. Let D = (T, (Vt)t2T ). Let W be any part of D, and let u, v 2 W be
non-adjacent. We show that dG(u, v)  ` · (|W |� 2).

By Lemma 3.5 we can find adjacent nodes t1, t2 2 T such that {u, v} ✓
X := Vt1 \Vt2 . For every two non-adjacent vertices u0, v0 in X, Corollary 3.4
ensures that there are X- paths P1 ✓ G1 and P2 ✓ G2 linking u0 to v0 (the Gi

being defined as in Section 3). By Lemma 4.3 there is a u0–v0 path in C[X].
Thus, G[X] [ C[X] is connected.

By Lemma 4.1, the vertices u, v have distance at most ` · (|X|� 1) in G.
By Lemma 3.2 we have |X| < |W |, which completes the proof.

5 Proof of Theorem 1.1

We are now ready to prove our main result, which we restate.

Theorem 1.1. The connected tree-width of a graph G is bounded above by
a function of its tree-width and of the maximum length of its geodesic cycles.

Specifically, if G is not a forest, tw(G) < k 2 N, and ` is the maximum
length of a geodesic cycle in G, then ctw(G) < f(k, `) for

f(k, `) = k +
✓

k

2

◆�
`(k � 2)� 1

�
.

Proof. The connected tree-width of forests coincides with their ordinary
tree-width, so we assume that G contains a cycle. Let ` denote the maximum
length of a geodesic cycle in G, and let k 2 N be such that tw(G) < k.
Assume without loss of generality that G is connected.

By Lemma 2.3, G has a geodesic nav N . Let D = (T, (Vt)t2T ) be any
atomic tree-decomposition of G. Then N induces a geodesic D-nav ND :=
(Puv)uv2KD of G, where

KD :=
[
t2T

[
xy2[Vt]2

[V (Pxy)]2;

For each t 2 T let
Wt := Vt [

[
xy2[Vt]2

V (Pxy) .
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By Lemma 2.2, (T, (Wt)t2T ) is a connected tree-decomposition of G of width
less than

k +
✓

k

2

◆�
`(ND)� 1

�
.

It remains to show that `(ND)  `(k � 2), i.e., that any two vertices
x, y in a common part of D have distance at most `(k � 2) in G. This is
clear if x, y are adjacent, since G contains a cycle and hence k, ` � 3. If x, y
are non-adjacent, it follows from Lemma 4.4, since the geodesic cycles of G
generate its cycle space [4, Ex. 1.32] and D realizes the tree-width of G.

6 Tree-length and hyperbolicity

The tree-length of a graph G is the smallest value, minimized over all tree-
decompositions of G, of the maximum diameter in G of a part of this de-
composition [6]. Reidl and Sullivan, see [12, 1], noticed that our lemmas
from Sections 3 and 4 can be applied directly to give a better bound on the
tree-length of G than the bound of f(`, k) implied by Theorem 1.1:

Theorem 1.4. If G has tree-width < k and no geodesic cycle longer than `,
and G is not a forest, then the tree-length of G is at most `(k � 2).

Proof. This follows from Lemma 4.4, as the geodesic cycles of G generate its
cycle space and every atomic tree-decomposition realizes its tree-width.

Reidl and Sullivan point out that the graph obtained from the n ⇥ n
grid by subdividing every edge m � 1 times has tree-width n, no geodesic
cycle longer than ` = 4m, and its tree-length is at most nm.2 The bound of
4m(n� 1) o↵ered by Theorem 1.4 is thus o↵ by no more than a factor of 4.

Given a real number d � 0, a graph is called d-hyperbolic if whenever
vertices x, y, z are linked by shortest paths Pxy = x . . . y and Pyz = y . . . z
and Pxz = x . . . z, each of these paths lies within distance d of the other two.
Trees, for example, are 0-hyperbolic, since Pxz ✓ Pxy [ Pyz.

Chepoi et al [3] showed that graphs of tree-length d are 4d-hyperbolic.3
It is not hard to make this bound sharp:

2In fact, it has connected tree-width nm: the standard width n tree-decompositions
of the n ⇥ n grid induce connected tree-decompositions of its subdivision of width nm,
and the well-known brambles of order n + 1 in the grid, see e.g. [4, Ex. 12.21], extend to
brambles of connected order nm + 1. See Section 7 for connected bramble order.

3Their result, Proposition 13, says ‘d-hyperbolic’. But they use a di↵erent notion of
hyperbolicity that translates to ours at a loss of a factor of 4. See their Proposition 1.
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Lemma 6.1. Graphs of tree-length d are b3
2dc-hyperbolic. This value is

sharp for every d � 0.

Proof. Let G be a graph with a tree-decomposition (T, (Vt)t2T ) into parts Vt

each of diameter at most d in G. Consider vertices x, y, z 2 G and shortest
paths Pxy, Pyz, Pxz between them as in the definition of hyperbolicity. We
show that P = Pxz lies within distance b3

2dc of P 0 = Pxy [ Pyz.
Let t0 . . . tn be the path in T between a node t0 such that x 2 Vt0 and

a node tn with z 2 Vtn . Since P is connected and meets Vt0 as well as Vtn ,
it meets every set Si := Vti \ Vti�1 with i = 1, . . . , n [4, Lemma 12.3.1], in a
vertex si 2 Si say. Similarly, P 0 has a vertex s0i in every Si. Put s0 := x =: s00
and sn+1 := z =: s0n+1, and let S := {s0, . . . , sn+1} and S0 := {s00, . . . , s0n+1}.

For each i = 0, . . . , n we have si, si+1 2 Vti and hence d(si, si+1)  d.
Since P is a shortest path, its segments siPsi+1 thus have length at most d,
so every vertex of P lies within distance bd/2c of S. Similarly, d(si, s0i)  d
for every i, so S lies within distance d of S0 ✓ V (P 0). Hence P lies within
distance b3

2dc of P 0, as claimed.
To show that the bound of b3

2dc is sharp, consider a path-decomposition
of adhesion 2 into many copies of K4 and with disjoint adhesion sets. Subdi-
viding every edge d� 1 times yields a graph G of tree-length at most d: the
tree-decomposition witnessing this is a path-decomposition whose parts are
the 4-vertex-sets from the K4s together with pendent parts each consisting
of a subdivided edge.

It is easy to find in G three vertices x, y, z with shortest paths Pxy, Pyz

and Pxz between them such that each subdivided K4 (other than the first and
the last) meets Pxz in exactly one subdivided edge P and Pxy[Pyz in exactly
one subdivided edge Q disjoint from P (Fig. 2). For each subdivided K4

except the leftmost and the rightmost one, the vertex closest to the mid-
point of P ✓ Pxz has distance exactly b3

2dc not only from Q but from all
of Pxy [ Pyz.

y

x
v

z

Figure 2: Geodesic paths between x, y, z showing that b3
2dc-hyperbolicity is

best possible for tree-length d

Lemma 6.1 and Theorem 1.4 imply:
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Corollary 6.2. If G has tree-width < k, has no geodesic cycle longer than `,
and G is not a forest, then G is b3

2`(k � 2)c-hyperbolic.

If we strengthen the premise in Lemma 6.1 so as to assume that not just
the tree-length but even the connected tree-width is bounded, we also get a
stronger bound, which is again sharp:

Theorem 1.3. The following statements hold for every integer k > 1 :

(i) Every graph of connected tree-width k is k-hyperbolic.

(ii) There exists a graph of connected tree-width k that is not (k � 1)-
hyperbolic.

The graphs of connected tree-width 1 are forests, which are 0-hyperbolic.

Proof. Repeat verbatim the first two paragraphs of the proof of Lemma 6.1,
except that the tree-decomposition (T, (Vt)t2T ) is now connected and of
width k, and we wish to show that P lies within distance k of P 0. Let v 2 P
be any vertex, say in its segment Pi := siPsi+1.

Let Ti be a spanning tree of G[Vti ]. Since P is a geodesic path, Pi is at
most as long as the path Qi := siTisi+1. Let Ri be the unique s0i–Qi path
in Ti, and let qi 2 Qi be its last vertex.

Since siPisi+1Qisi is a closed walk that has kPik+ kQik  2kQik edges
and contains both v and qi, we have d(qi, v)  kQik. As Ri is an s0i–qi path
with at most kTik � kQik  k � kQik edges, we thus have d(s0i, v)  k.

v

x z

y

Figure 3: The vertex v 2 Pxz has distance k from Pxy [ Pyz

Figure 3 shows a graph G of connected tree-width k = 5 that is not
(k � 1)-hyperbolic. Indeed, G has a path-decomposition into parts of order
at most k + 1 that form roughly vertical slices, each spanning a path in G.
Two (non-adjacent) such parts are shown in the figure. To see that G is not
(k � 1)-hyperbolic, consider the shortest paths Pxy, Pyz, Pxz between x, y
and z whose union is the perimeter cycle, and the middle vertex v of Pxz.
The example can be adapted to other values of k � 3 by extending the
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underlying ladder and altering the number of small vertices on its rungs,
and to k = 2 by keeping the rungs unsubdivided and contracting the edge
below y.

In the notation of the proof of Theorem 1.3 (i), replacing the segments
Pi ✓ P with Qi ✓ Ti shows that, given a connected tree-decomposition
(T, (Vt)t2T ) of width < k of G, the distance in G between two vertices
v 2 Vt and v0 2 Vt0 is at most k · (dT (t, t0) + 1). It thus seems that graphs
of bounded connected tree-width are quasi-isometric to their decomposition
trees (and, in particular, hyperbolic). However, this is not the case, since
the converse inequality may fail: there need not be a constant ck such that
dT (t, t0)  ck · dG(v, v0), even if we choose the tree-decomposition well.

For example, let G be obtained from a long path P by joining a new
vertex v to every vertex of P . All its tree-decompositions of low width,
connected or not, have a long path in their decomposition tree T : otherwise
T would have a node t of large degree, and Vt would be a small separator
of G leaving many components; but G has no such separator. So while the
distance of two vertices v, v0 2 P is always at most 2 in G, the distance in
T of nodes t, t0 with v 2 Vt and v0 2 Vt0 can be arbitrarily large.

7 Duality

We have postponed until now a proof that not only do long cycles themselves
have large connected tree-width (as we saw in the Introduction), but more
generally that any graph with a long geodesic cycle does. Indeed, this is not
entirely straightforward to prove. It is, however, an immediate consequence
of connected tree-width duality, our topic in this last section.

Duality theorems for width parameters give us witnesses for large width.
A general framework for this, which includes all the classical duality theo-
rems and several others, has recently been developed in [5]. For tree-width,
the classical duality is between tree-decompositions and brambles:

Tree-width duality theorem (Seymour & Thomas [11, 4]). A graph has
tree-width at least k � 0 if and only if it contains a bramble of order > k.

Rephrased as a min-max theorem: 1 + the minimum width of a tree-decom-
position equals the maximum order of a bramble.

To adapt this duality to connected tree-width, let the connected order
of a bramble be the least order of a connected cover, a cover spanning a
connected subgraph. (See the Introduction, or [4, Ch. 12], for definitions.)
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Conjecture. Let k � 0 be an integer. A graph has connected tree-width at
least k if and only if it contains a bramble of connected order > k.

The proof of the backward implication, or of � in the min-max version,
is the same as for ordinary tree-width. Given any bramble B and any tree-
decomposition D, one shows that some part of D covers B. Hence no bramble
has greater order than the largest size of a part of D. And if D is connected,
no bramble has greater connected order.

Let us apply this to show that long geodesic cycles raise the connected
tree-width of a graph by giving rise to a bramble of large connected order.

Lemma 7.1. If a graph G contains a geodesic cycle of length k 2 N, then
G has a bramble of connected order at least dk/2e+1, and ctw(G) � dk/2e.

Proof. Let C ✓ G be a geodesic cycle of length k, and let B be the set of
all connected subsets of V (C) of size bk/2c. This is clearly a bramble. We
shall prove that every connected cover X of B has at least dk/2e+1 vertices.
This will also imply that ctw(G) � dk/2e, as noted above.

Choose x, y 2 X \ V (C) at maximum distance dC(x, y) = dG(x, y). If
this distance is k/2 2 N, then X contains an x–y path with dk/2e+1 vertices.

If dC(x, y) < k/2, then X has another vertex z in the longer x–y segment
of C. Let Cxy, Cyz, Czx be the shortest paths on C between their indices. By
the choice of x, y, z, none of these contains another, so Cxy [Cyz [Czx = C.
Hence d(x, y) + d(y, z) + d(z, x) � k, in C and hence also in G.

Consider a spanning tree T of G[X]. The lenghts of the paths xTy, yTz
and zTx sum to at least d(x, y) + d(y, z) + d(z, x) � k. But no edge of T
lies on more than two of these paths, so T has at least dk/2e edges. Thus,
|X| = |T | � dk/2e+ 1 as desired.

We already saw in the Introduction that k-cycles themselves have con-
nected tree-width at least dk/2e. Lemma 7.1 says that graphs containing
such cycles geodesically inherit this. This may lead one to suspect that,
whenever H ✓ G is embedded in G isometrically, ctw(H)  ctw(G). The
graph G of Figure 4, however, shows that this is not so. Indeed, G itself has
a connected tree-decomposition of width 3, with v and its neighbours as a
central part of order 4. Its isometric subgraph H = G � v, however, has a
bramble of connected order 5 (and hence ctw(H) � 4): the set of paths of
order 4 on its outer 9-cycle.

Still, it would be interesting to explore further the relationship between
both the connected tree-width and the largest connected order of brambles
of a graph and the corresponding parameters of its isometric subgraphs.
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v

Figure 4: G� v is isometric in G but has larger connected tree-width

While deleting edges can increase the connected tree-width of a graph
(for example, delete the inner rungs of a long ladder), it is easy to see that
contracting edges cannot increase the connected tree-width.

Let us finish by proving a qualitative connected version of the hard im-
plication of the tree-width duality theorem, to establish at least a weakening
of our connected tree-width duality conjecture:

Theorem 1.2. There is a function g : N ! N such that every graph of
connected tree-width at least g(k) has a bramble of connected order > k.

Proof. Let g(k) = 2 for k  2, and g(k) = f(k, 2k� 2) for k > 2, where f is
the function from Theorem 1.1.

Let G be a graph with no bramble of connected order > k 2 N. If G is
a forest then ctw(G) < 2  g(k), as desired. Assume now that G is not a
forest. Then k > 2, because cycles contain brambles of order 3.

Since every bramble in G has (connected) order  k, we have tw(G) < k
by the classical tree-width duality theorem, and every geodesic cycle in G
has length at most 2k � 2 by Lemma 7.1. By Theorem 1.1 this implies
ctw(G) < f(k, 2k � 2) = g(k), as desired.
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