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Abstract

Our aim in this note is to present a transitive graph that we conjecture is
not quasi-isometric to any Cayley graph. No such graph is currently known.
Our graph arises both as an abstract limit in a suitable space of graphs and in
a concrete way as a subset of a product of trees.

1. Introduction

Woess [ 7 ] asked the following beautiful and natural question: does every
transitive graph ‘look like’ a Cayley graph? More precisely, is every connected
locally finite vertex-transitive graph quasi-isometric to some Cayley graph?

Let us recall that graphs G and H are said to be quasi-isometric if there
exist Lipschitz mappings θ:V (G) → V (H) and φ:V (H) → V (G) such that
θ ◦φ and φ◦ θ are bounded. Equivalently, G and H are quasi-isometric if there
exists a quasi-isometry from G to H, a function θ:V (G) → V (H) for which
there are constants C,D � 1 such that

d(θx, θy) ≤ Cd(x, y) for all x, y ∈ G,

d(θx, θy) ≥ 1
C
d(x, y) for all x, y ∈ G with d(x, y) ≥ D,

d(θG, y) ≤ D for all y ∈ H,

where as usual d denotes the graph distance (in G or H) and d(A, y) =
min {d(x, y) : x ∈ A}.

Thus quasi-isometry is the natural notion of ‘looks the same as, from far
away’. Many properties of a graph are preserved under quasi-isometry – for
example, the space of ends is preserved. As another example, if G and H

are transitive graphs that are quasi-isometric then they have the same type of
growth: polynomial or sub-exponential or exponential. See [ 2 ] for background
on quasi-isometry.

Let us also recall that a Cayley graph is a graph arising in the following
way. Let G be a group, with a finite generating set S closed under inversion
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(ie. a ∈ S implies a−1 ∈ S). Then the (left) Cayley graph of G with respect
to S has vertex-set G, with x joined to y if for some a ∈ S we have x = ay.
Note that G acts freely (ie. with no non-identity element having a fixed point)
and transitively on this graph. In fact, Cayley graphs are characterised by this
property: if G is any locally finite connected graph whose automorphism group
AutG has a subgroup that acts transitively and freely on G then G is easily
seen to be isomorphic to a Cayley graph of that subgroup. See [ 3 ] for more
background on Cayley graphs. Let us also mention here that, up to quasi-
isometry, the Cayley graph of a (finitely-generated) group does not depend on
which generating set one chooses.

Several transitive graphs are known that are not (isomorphic to) Cayley
graphs (see [ 4 ], [ 5 ]), but each of these is quasi-isometric to a Cayley graph.
Indeed, the answer to Woess’ question is known to be in the affirmative for
several classes of graphs, including those of polynomial growth [ 6 ].

Our aim in this note is to present a graph that we believe is a counterex-
ample to Woess’ question. We construct a sequence of graphs that seem to look
less and less like Cayley graphs. It turns out that this sequence has a limit
when viewed in a certain natural space of graphs. We give this construction in
Section 2.

Fortunately, this limit graph can also be expressed ‘concretely’, as a certain
subset of a product of two trees. We do this in Section 3. We hope that this
should make the conjecture that this graph is not quasi-isometric to a Cayley
graph more susceptible to proof.

2. A limit of non-Cayley graphs

Our starting point is the following example of Thomassen and Watkins [ 5 ]
of a non-Cayley graph. Let H be the graph obtained from a T5 (the infinite
5-regular tree) by replacing each vertex by a K2,3 (the complete bipartite graph
with vertex classes of size 2 and 3) in the following way. Replace each vertex of
T5 by a disjoint copy of K2,3, and then, for each edge uv of the T5, identify a
vertex of the K2,3 corresponding to u with a vertex of the K2,3 corresponding
to v, in such a way that no point in any K2,3 is identified more than once, and
a vertex in a class of size 2 is always identified with a vertex in a class of size 3
and vice versa (see Figure 1). Then H is certainly transitive (of degree 5); why
is it not a Cayley graph?

Suppose there is a subgroup S of AutH that acts freely and transitive-
ly on H, and let K be one of the K2,3s making up H – say K has vertex
classes {x1, x2} and {y1, y2, y3}. Any automorphism that sends an element of
{y1, y2, y3} back into {y1, y2, y3} must fix K – indeed, it must map the set
{x1, x2} to itself, as {x1, x2} is the only pair of two vertices that has 3 common
neighbours and has a common neighbour in the set {y1, y2, y3}. Hence the θ ∈ S
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FIGURE 1. Constructing the non-Cayley graph H from T5

sending y1 to y2 must swap x1 and x2, as must the θ′ ∈ S sending y1 to y3.
But then θ′θ−1 sends y2 to y3 and fixes x1, a contradiction.

Of course, H is still quasi-isometric to T5 (which is the Cayley graph of
the free group with 5 generators, each of order 2): we just have to map each
K2,3 back to the vertex of T5 from which it was expanded. Thus the K2,3s are
too local to affect quasi-isometry: we would like to introduce something like
‘larger K2,3s’ to have the same effect more globally. The following idea shows
that these can indeed be obtained.

Roughly speaking, the reason why H is not Cayley is that the insertion
of K2,3s has introduced an ‘orientation’ which all automorphisms must pre-
serve (but cannot all preserve without a fixed point). Indeed, each K2,3 has a
natural orientation of its edges from the 2-set to the 3-set, and put together
they make H into a regular directed graph of in-degree 2 and out-degree 3.
Our key observation now is that we can reverse this process of obtaining an
orientation from K2,3s to one of obtaining K2,3s from an orientation. Indeed,
if we start from a suitable orientation D0 of T5, namely, the regular orientation
of in-degree 2 and out-degree 3, then our directed version of H (with all its
useful ‘Cayley-inhibiting’ K2,3s) is obtained from D0 by one simple operation,
which moreover can be iterated canonically to yield ‘larger and larger K2,3s’
(see Figures 2 and 5): the operation of taking a directed line graph.

Let us do this in more detail. Given a directed graph D, the line graph of
D is the directed graph D′ whose vertices are the arcs uv of D, and in which
such a vertex uv ∈ V (D′) sends an arc (of D′) to another vertex v′w′ ∈ V (D′) if
and only if v = v′. Note that if D is regular with in-degree a and out-degree b
then so is D′. The operation of taking a line graph can thus be iterated on
regular directed graphs without increasing their degrees – a fact that will be
vital to our whole approach.

A moment’s thought shows that our directed version of H is indeed the
line graph of D0. So for i = 1, 2, . . . let Di be the (directed) line graph of Di−1,
and let Gi denote the undirected graph underlying Di. (Thus, G1 = H.) Since
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FIGURE 2. The portion of G2 corresponding to the
central K2,3 in Figure 1

every Di is regular with in-degree 2 and out-degree 3, all the Gi are 5-regular;
it is therefore not unreasonable to expect that they converge to a graph ‘at
infinity’ in some natural sense, and that this limit graph might not be quasi-
isometric to a Cayley graph.

In order to define this limit graph precisely, let us pause to explain the
(very simple) space of graphs we are working with. For a fixed positive inte-
ger r (which for us will always be 5), let Q = Qr denote the set of (isomorphism
classes of) all connected r-regular transitive graphs. We introduce a metric on
Q by setting d(G,H) = 1/(n+ 1) if n is the maximum positive integer such
that there exists an isomorphism from the ball BG(0, n) to BH(0, n) sending
0 to 0. (Here 0 is any particular point of G or H, and BG(0, n) denotes the
set of all points at graph distance at most n from 0.) This is a natural metric
to use on Q; see for example [ 1 ]. The following easy compactness argument
shows that it is indeed a metric.

Proposition 1. Let G,H ∈ Q with d(G,H) = 0. Then G and H are isomor-

phic.

Proof. For each n, we have an isomorphism θn : BG(0, n) → BH(0, n) sending
0 to 0. Now, there are only finitely many choices for an isomorphism from
BG(0, 1) to BH(0, 1), so among the restrictions θ1|BG(0, 1), θ2|BG(0, 1), . . .
there are infinitely many that agree: say

θi1 |BG(0, 1) = θi2 |BG(0, 1) = . . . = θ1.

Then, among the restrictions θi1 |BG(0, 2), θi2 |BG(0, 2), . . . there must be in-
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finitely many that agree: say

θj1 |BG(0, 2) = θj2 |BG(0, 2) = . . . = θ2.

Continuing in this way, we obtain a sequence of isomorphisms θn :
BG(0, n) → BH(0, n) with the property that for all m ≤ n we have
θn|BG(0,m) = θm. It follows that the union

⋃
n≥1 θn is a (well-defined) iso-

morphism from G to H. �

A very similar argument shows that Q is compact:

Proposition 2. Every sequence in Q has a convergent subsequence.

Proof (sketch). Let G1, G2, . . . be any sequence of graphs in Q, each with
a chosen point 0. Infinitely many of the Gi must have isomorphic 1-balls
BGi

(0, 1): say BGi1
(0, 1), BGi2

(0, 1), . . . are all isomorphic (with 0 mapping
to 0). Among Gi1 , Gi2 , . . . we can find infinitely many graphs whose 2-balls are
isomorphic (extending the isomorphisms of their 1-balls), and so on.

Continuing in this way, and choosing suitable partially nested isomor-
phisms to some fixed reference set X of vertices, we build up a nested sequence
of finite graphs whose union G is a graph on X. Then G is connected and r-
regular. To show that G is transitive, it is enough to show that for every choice
of x, y ∈ X and every n there is an isomorphism BG(x, n)→BG(y, n) mapping
x to y; then the method of the proof of Proposition 1 yields an automorphism
of G that takes x to y. But this is immediate: BG(x, n) and BG(y, n) are both
contained in some ball BG(0,m); this ball coincides with the ball BGi(0,m) in
each of the graphs Gi of our mth subsequence; and Gi (being transitive) has
an automorphism that takes x to y, and therefore also BG(x, n) to BG(y, n).
Thus, G ∈ Q.

Finally, it is clear that any diagonal subsequence of the subsequences of
G1, G2, . . . that we have chosen converges to G, as required. �

We remark in passing that, although it does not seem to help us, it is
interesting to note that the set of Cayley graphs is a closed subset of Q: this
may be proved by arguments similar to those in the proof of Proposition 2.

Let G be any limit point of the sequence G1, G2, . . .. (A little thought
shows that this sequence is actually convergent and thus has a unique limit; we
shall prove this formally in the next section.) Is G still quasi-isometric to T5?
No, it is not: it will not be difficult to prove (see the next section) that G has
only one end, and so cannot be quasi-isometric to T5.

Of course, it is very hard to think about an abstract limit graph. Luckily,
there is a far more down-to-earth description of G, which we give now.
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3. An explicit construction

Our starting point here is that the (directed) line graph D1 of D0 is pre-
cisely the set of all directed paths in D0 of length 1, with path uv joined to
path wx if v = w. Similarly D2, the line graph of the line graph of D0, can be
thought of as the set of all directed paths in D0 of length 2, with uvw joined
to xyz if v = x and w = y. And so on:

Proposition 3. The directed graph Dn is isomorphic to the graph whose ver-

tices are the directed paths of length n in D0, with an arc from x1x2 . . . xn+1

to y1y2 . . . yn+1 if yi = xi+1 for all 1 ≤ i ≤ n.

Proof. Induction on n. �

Let us see what, when n is large, a ‘small’ neighbourhood (of radius much
less than n) of a vertex v ∈ Gn looks like. Let P be the path in D0 correspond-
ing to v. Suppose that we wish to move from v to one of its five neighbours v′

in Gn: how do we obtain the path P ′ corresponding to v′ from the path P? If
the edge e = vv′ is directed from v to v′ in Dn, then P ′ is obtained from P by
moving the last vertex of P to one of its three out-neighbours in D0, while all
the other vertices of P simply move to their successors along P . Similarly, if
e is directed from v′ to v, we obtain P ′ from P by moving the first vertex of
P to one of its two in-neighbours in D0, while all the other vertices of P are
forced: they just move to their predecessors on P . See Figure 3.

n edges

x x′

y′
1

y y′
2

y′
3

FIGURE 3. A path x . . . y ⊂ D corresponding to a ver-
tex v ∈ Dn, and the paths x′ . . . yi ⊂ D
corresponding to the 3 out-neighbours of v
in Dn

So what does the open n/2-neighbourhood N of a point v ∈ Gn look like?
If (the path of) v has start vertex x and end vertex y, then the set of the start
vertices of the points of N is disjoint from the set of their end vertices: indeed,
these sets are contained in the open balls of radius n/2 about x and y respec-
tively. So we may view the start and end vertices as behaving ‘independently’:
as long as we stay in the ball of radius n/2 about v, the start vertices trace out
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part of a tree of in-degree 2 and out-degree 1, while the end vertices trace out
part of a tree of in-degree 1 and out-degree 3.

This motivates the following explicit definition of a graph G∗, which will
turn out to be the unique limit of our sequence G1, G2, . . .. Let E be a 3-
regular tree, oriented to have in-degree 2 and out-degree 1, and let F be the
oriented 4-regular tree of in-degree 1 and out-degree 3. Fix a point 0 ∈ E and
a point 0 ∈ F . Let the rank r(x) of a point x ∈ E be the signed distance
from 0 to x (so if the unique undirected path from 0 to x in E has s forward
edges and t backward edges then r(x) = s− t), and define r(y) in the same
way for y ∈ F . Now define the directed graph D∗ as follows. The vertex set
of D∗ is the set {(x, y) ∈ E×F : r(x) = r(y)}, and D∗ has an arc from (x, y)
to (x′, y′) whenever xx′ ∈ E and yy′ ∈ F (Figure 4). Finally, let G∗ be the
undirected version of D∗.

E F

FIGURE 4. All directions are from left to right

Let us verify that G∗ is indeed the unique limit of the sequence G1, G2, . . . :

Proposition 4. The sequence (Gn) converges to G∗.

Proof. The directed graphs Dn and D∗ have isomorphic n/2-neighbourhoods,
so d(Gn, G

∗) ≤ 2
n+2 . �

We remark that it is now possible to define precisely what we mean by
‘large K2,3s’ in the graph G∗. Given a vertex (x, y) of G∗, we have r(x) = r(y)
by definition of G∗ and call this number the rank of (x, y), denoted again by
r(x, y). Given an integer k > 0, we call each of the (isomorphic) components of
the subgraph of G∗ spanned by the vertices of rank between 0 and k a K2,3 of
order k. It is not difficult (if a little tedious) to write down a formal partition
of the vertex set of such a K2,3 of order k into five classes, together with an
adjacency rule between these classes based on adjacencies in G∗, so that the
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resulting graph is indeed a K2,3. Instead, we offer a picture of a K2,3 of order 4,
shown in Figure 5.

Perhaps the most tangible evidence that we have for our conjecture that
G∗ is not quasi-isometric to a Cayley graph is that it is certainly not quasi-
isometric to the obvious candidate of such a Cayley graph, the graph T5:

Proposition 5. G∗ has only one end.

Proof. We show that the deletion of any finite set S of vertices from G∗ leaves
only one infinite component. Let r be the smallest and s the largest rank of a
vertex in S, and let S′ be the set of all vertices that can be reached from S by
a path whose vertices all have rank between r and s. Clearly S′ is finite, so it
suffices to show that G∗ −S′ is connected.

Let vertices (x1, y1), (x2, y2) ∈G∗−S′ be given, and let us show that we can
move a token vertex (x, y) from (x1, y1) to (x2, y2) in G∗ without hitting S′. We
may assume that s < r(x1, y1) � r(x2, y2): the proof for r(x1, y1) � r(x2, y2)< r

is analogous, and any vertex of rank between r and s can be joined to a vertex
of rank > s by any path of increasing rank (which avoids S′ by definition of S′).

Starting with (x, y) = (x1, y1), we first move (x, y) towards the right in
Figure 4 (formally: with increasing rank, and thus avoiding S′) until x lies
on a left (i.e. backward oriented) ray R in E that avoids S′

E , the set of first
components of the vertices in S′. We now move (x, y) to the left, keeping x

on R, until y lies to the left of y2 in F . We then move (x, y) right again until
y = y2; since x stays on R during this move, this keeps us outside S′ until we
are back at points of rank > s. We now move on towards the right until x lies
to the right of x2 in E, and back again until (x, y) = (x2, y2). �

How might one show that G∗ is not quasi-isometric to a Cayley graph?
The first hope, of course, would be to imitate our proof of why H is not a
Cayley graph, using a sufficiently large K2,3 instead of the actual K2,3s in H.
However, we have been unable to make this approach work and are not sure
that it can work: although it is straightforward to translate the canonical group
action on a hypothetical Cayley graph quasi-isometric to G∗ to similar ‘quasi-
automorphisms’ of G∗, the fuzziness introduced seems to blur the difference
between the sizes of the two vertex classes even of large K2,3s (which are 2n

and 3n, respectively), a difference central to the ‘non-Cayley’ proof for H.
As a more global approach we might try to show that every quasi-

automorphism of G∗ preserves the natural orientation of all sufficiently large
K2,3s, mapping their left sets (their vertices of minimal rank) to the left of the
images of their right sets (their vertices of maximal rank). Then any Cayley
graph quasi-isometric to G∗ would have two ‘directions’ invariant under all its
automorphisms (not just under its own group action), and in which it grows
at different speeds: 2n ‘to the left’ and 3n ‘to the right’. Can this happen in a
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FIGURE 5. A K2,3 of order 4 in G∗, and a (bold) K2,3

of order 2
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Cayley graph? (Recall that the overall growth speed of a graph is not preserved
under quasi-isometries: for example, the trees T3 and T4 are quasi-isometric.)
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